
Mary	Hall	
November	11,	2020	

1	

•  Anand	Venkat,	Utah	PhD,	now	at	Intel	
•  Other	Utah	students	

–  Khalid	Ahmad,	John	Jolly,	Mahesh	Lakshminaranan,	
Payal	Nandy,	Tuowen	Zhao	

•  University	of	Arizona	collaborators:	
– Michelle	Strout,	Mahdi	Mohammadi	

•  Boise	State	collaborators:	
–  Cathie	Olschanowsky,	Eddie	Davis,	Tobi	Popoola	

•  Intel	collaborators:	
–  Jongsoo	Park,	Hongbo	Rong,	Raj	Barik	

2	

This	research	was	supported	by	the	Exascale	Computing	Project	
(17-SC-20-SC),	a	collaborative	effort	of	the	U.S.	Department	of	
Energy	Office	of	Science	and	the	National	Nuclear	Security	
Administration,	and	by	the	National	Science	Foundation	under	
CCF-	1564074.		

•  Sparse	matrices/tensors	appear	frequently	in	large	
systems	of	equations	

•  Sparse	matrices/tensors	have	diverse	applications	
•  Density	δ		often	<<	.1	

3	

Network	Theory	
(Web	connectivity)	

Epidemiology	
(2D	Markov	model	of	epidemic)		

Finance	
(Portfolio	model)		

Slide	images:	SuiteSparse	Matrix	Collection,	sparse.tamu.edu	

/* SpMM from LOBCG on symmetric matrix */
for(i =0; i < n ; i ++) {
 for (j = index [i]; j < index [i +1]; j ++)
 for(k =0; k < m ; k ++);
 y [i][k]+= A [j]* x [col [j]][k];
 /* transposed computation exploiting symmetry*/
 for (j = index [i]; j < index [i +1]; j ++)
 for(k =0; k < m ; k ++)
 y [col [j]][k]+= A [j]* x [i][k];
}

Code	A:		
Multiple	SpMV	computations	
(SpMM),	7	lines	of	code	

Code	B:	Manually-optimized	SpMM	from	LOBCG,	
2109	lines	of	code		

Data	Transformation:	
Convert	Matrix	Format	
CSR	!	CSB	
11	different	block	sizes/
implementation	

Parallelism:	
Thread-level	(OpenMP	
w/schedule)	

Parallelism:	
SIMD	(AVX2)	

Other:	
Indexing	simplification	

Question:	Can	a	compiler	
generate	Code	B	starting	with	
Code	A?	

Answer:	YES	(rest	of	talk)	

4	

Optimizing	Dense	Linear	Algebra	
–	COMPUTE	BOUND	

•  Exploit	all	forms	of	parallelism	to	
approach	peak	flop	rate	

•  Exploit	locality	of	reused	data	in	
cache	and	registers	

•  Hide	latency	of	initial	cold	misses	

Optimizing	Sparse	Linear	Algebra	–	
BOUND	BY	DATA	MOVEMENT	

•  Maximize	memory	bandwidth	
utilization	

•  Manage	load	imbalance	
•  Memory	access	pattern	

unpredictable	–	try	to	hide	latency	

•  Select	best	sparse	matrix	
representation	-	depends	on	
nonzero	pattern	

These	optimizations	are	usually	architecture	specific.	

5	

•  Inspector/Executor:	Integrate	runtime	
optimization	based	on	input	data	into	
generated	code	

•  Integration:	Incorporate	into	the	Sparse	
Polyhedral	Framework	(SPF)	

•  Data	dependent:	Support	parallelization	in	
the	presence	of	data	dependences	

6	

PARALLEL	SCHEDULE	

DATA	REPRESENTATION	
•  Format:	Convert	from	one	to	another	

format	(e.g.,	CSR	to	BCSR)	

•  Value:	Use	mixed	precision	data	values	

/* SpMM from LOBCG on symmetric matrix */
for(i =0; i < n ; i ++) {
 for (j = index [i]; j < index [i +1]; j ++)
 for(k =0; k < m ; k ++);
 y [i][k]+= A [j]* x [col [j]][k];
 /* transposed computation exploiting symmetry*/
 for (j = index [i]; j < index [i +1]; j ++)
 for(k =0; k < m ; k ++)
 y [col [j]][k]+= A [j]* x [i][k];
}

Code	A	!Code	B	

7	

•  Mathematically	represents	loop	nest	computations	
and	transformations	applied	to	them	

•  Enables	composition	of	transformations	and	
correct	code	generation	

•  Abstractions	representing	loop	nest	computations	
–  Iteration	spaces	as	integer	sets	of	points	
–  Transformations	as	relations	on	iteration	spaces	
–  Statement	macros	as	function	of	loop	index	variables	
– Underlying	dependence	graph	to	reason	about	safety	of	
transformations	

8	

Stage	1	:	

Extract	Loop	Bounds	
and	Construct	
Iteration	Spaces	

Stage	2	:	 Stage	3	:	

Code	generation	

Input	Code:	
for(i=0;	i	<	n;	i++)	
s0:	a[i+4]=b[i+4];	

Iteration	Space	(IS):	
s0	={[i]	:	0	≤	i	<	n}	

Affine	Loop	
Transformation	(T)		

Input	IS:	
{[i]	:	0	<=	i	<=	n}	

Output	IS:	
{[i]	:	4	≤	i	<	n	+	4}	

T_inv		=	{[i]![I-4]}	

T_inv	modifies	array	
subscripts.	Then,	
Polyhedra	Scanning		

Output	Code:	
for(i=4;	i	<	n	+	4;	i++)	

s0:	a[i]=b[i];	

T	=	{[i]![i+4]}	

9	

for	(i=0;	i	<	n;	i++)	
					for	(j=index[i];	j<index[i+1];	j++)	
											y[i]+=a[j]*x[col[j]];	

Non-affine	
subscript	

Non-affine					
loop	bounds	

10	

col:						Column	for	element	in	A	
index:	First	location	from	row	i	in	A	

Most	Polyhedral	Compilers	

for	(i=0;	i	<	n;	i++)	
		for	(j=index[i];	j<index[i+1];	j++)	
					s0:	y[i]+=a[j]*x[col[j]];	

Can’t	represent	bounds	for	loop	j	
Observations:	
• index	is	invariant	within	loop	nest	
• some	loop	transformations	may	be	
safe	if	index	can	be	represented	

Uninterpreted	function:	
Represent	index	as	a	function	in	relations	
[Pugh	and	Wonnacott,	TOPLAS	1998]	

Extend	to	support	
• Loop	bounds	
• Parameters	beyond	loop	indices	
• Transformations	
• Code	generation	

11	

for	(i=0;	i	<	n;	i++)	
			for	(j=index[i];j<index[i+1];j++)	
									s0:		y[i]+=a[j]*x[col[j]];	

IS	=	{[i,j]	:	0	≤	i	<	n	∧	index_(i)	≤	j	<	index_(i+1)}	

Represent	j	loop	bounds	
as	uninterpreted	functions	

	for	(i	=	0;	i	<=	n;	i	++)		
				for	(jj=index[i];	jj<index[i+1];	jj+=4)		
								for	(j	=	jj;	j	<min(index[i+1],	jj	+	4);	j++)		
								 						y[i]	+=	(a[j]	*	x[col[j]]);	

Now	tiling	is	possible!	

Ttile	=	{[i,j]->[i,jj,j]	|exists	(a	|	jj	=	4a∧ a	≥	0
 ∧ jj	≤	j	<	jj	+	4)}	

12	

[CGO14]	Venkat	et	al.	

13	

Runtime	information	is	needed	for	many	
optimizations	to	understand	memory	access	
pattern	and	sparse	matrix	nonzero	structure	
•  Inspector	analyzes	indirect	accesses	at	
runtime	and/or	reorders	data	

•  Executor	is	the	reordered	computation		
Original	concept:	Mirchandaney	and	Saltz,	ICS	1988	

Both	inspector	and	executor	are	generated	
at	compile	time,	but	inspector	examines	
input	matrix	once	at	runtime.	

Inspector	Code:	
Matrix	Format	
Conversion	/	
Runtime	

Parallelization		

Executor	Code:	
Iterate	using	

New	
Representation	

Similar	to	
sparse	matrix	
libraries	like	
OSKI,	PETSc	

14	

1	 5	

7	 2	

3	 6	

0	 4	
A	(in	CSR):																	[1	5	7	2	3	6	4]	
nonzeros	only	

A	(in	BCSR):	
2x2	blocks	

Specialize	matrix	representation	for	nonzero	structure	
•  Compressed	Sparse	Row	(CSR)	is	a	general	structure	that	is	
widely	used	

•  Blocked	Compressed	Sparse	Row	(BCSR)		
•  Uses	fixed	size	dense	blocks	if	any	elements	are	nonzero	

•  Pads	with	explicit	zeros	if	not	in	CSR	representation;		0	computation	
retains	meaning	

•  Code	for	dense	block	is	very	efficient;	Profitable	if	padding	is	limited	

16	

A:	

1	 5	

7	 2	

3	 6	

0	 4	
i

k	

BCSR	

for	(i=0;	i	<	n;	i++)	
		for	(j=index[i];	j<index[i+1];	j++)	
					s0:	y[i]+=a[j]*x[col[j]];	

Original	code:		

make-dense(s0,col[j])	

for	(i=0;	i	<	n;	i++)	
	for(k=0;	k	<	n;	k++)	
		for	(j=index[i];	j<index[i+1];	j++)	
					if(k==col[j])		 		
								s0:	y[i]+=a[j]*x[col[j]];	

compact-and-pad(s0,	kk,	A)	

tile(0,2,c,counted)	
tile(0,2,r,counted)	

for	(ii=0;	ii<n/r;	i++)		
		for	(kk=0;	kk<n/c;	kk++)	
				for	(i=0;	i	<	r;	i++)	
						for(k=0;	k	<	c;	k++)	
								for	(j=index[ii*r+i];	j<index[ii*r+i+1];	j++)	
										if((kk*c+k)	==col[j])		 		
														s0:	y[ii*r+i]+=a[j]*x[kk*c+k];	

[PLDI15]	Venkat	et	al.	

17	

•  (Lower)	Triangular	(Forward)	Solve	

•  Rows	cannot	be	processed	in	parallel	

•  x[0]	has	to	be	computed	before	x[1]	
					x[1]	has	to	be	computed	before	x[2]…	

•  Outer	i	loop	cannot	be	parallelized	

18	

Dense	

1 0 0 0

9 2 0 0

3 7 10 0

4 8 5 12

Dependence	
Graph	

0 1

2 3

•  Sparse	(Lower)	Triangular	
(Forward)	Solve	Kernel		

•  Some	rows	can	be	
processed	in	parallel	

•  Parallel	wavefront	
scheduled	computation						
(i	loop	partially	parallel)	

19	

Inspector	builds	
dependence	graph	

1 0 0 0

0 10 0 0

0 5 7 0

9 0 6 8

0 1

2

3

Wavefront 0

Sparse	

Parallelism	is	dependent	on	input	
structure	

Executor	traverses	
wavefronts	

Dependence	
graph	

Wavefront 2

Wavefront 1

[SC16]	Venkat	et	al.	 [PLDI19]	Mohammadi	et	al.	

20	

0	

0.5	

1	

1.5	

2	

2.5	

3	

Sp
ee
du

p	
ov
er
	O
SK

I	

Matrices	

BCSR	Inspector	Speedup	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Pe
rf
or
m
an

ce
/G

FL
O
PS
	

Matrices	

BCSR	Executor	Performance	

CHiLL	

OSKI	

Inspector	Code	is	1.5x	faster	
than	OSKI	

Executor	Code	within	1%	of	
performance	of	OSKI	

21	

22	

0	

10	

20	

30	

40	

50	

60	

tm
t_
sy
m
	

nd
24
k	

cr
an
ks
eg
_2
	

of
fs
ho

re
	

H
oo

k_
14
98
	

af
_s
he

ll3
	

Em
ili
a_
92
3	

Fl
an
_1
56
5	

bm
w
cr
a_
1	

G
eo

_1
43
8	

in
lin
e_
1	

St
oc
F-
14
65
	

ec
ol
og
y2
	

G
3_
ci
rc
ui
t	

th
er
m
al
2	

ap
ac
he

2	

pa
ra
bo

lic
_f
em

	Pe
rf
or
m
an

ce
(G
B/
s)
	

Symmetric	Gauss	Seidel		
Relaxation	

Serial	

MKL	

Generated	

23	

24	

25	

Intel	i7-4770	(Haswell)	CPU,	8	OpenMP	threads	

26	

•  Baseline	CHiLL		
performance	falls	short	of	
manual	implementation			
•  Further	optimization	
reduces	data	movement	of	
index	arrays	(short	vectors)	
•  #pragma	simd	for	vector	
execution	of	innermost	
loop	

Optimized	Code	A	outperforms	
Code	B!	

Inspector/Executor	 Polyhedral	Support	for	Indirection	

Sparse	Data	Representations	Compilers	for	Sparse	Computations	

Mirchandaney,	Saltz	et	al.,	ICS	1988	
Rauchwerger,	1998	
Basumallik	and	Eigenmann,	PPoPP	2006	
Ravishankar	et	al.,	SC	2012	

SIPR:	Shpeisman	and	Pugh,	LCPC	1998	
Bernoulli:	Mateev	et	al.,	ICS	2000	
taco:	Kholstad	et	al.,	OOPSLA	2017,	PLDI	
2020	

Sublimation:	Bik	and	Wijshoff,	TPDS	1996	
Ding	and	Kennedy,	PLDI	1999	
Mellor-Crummey	et	al.,	IJHPCA	2004	
LL:	Gilad	et	al.,	ICFP	2010	
van	der	Spek	and	Wijshoff,	LCPC	2010		

Omega:	Pugh	and	Wonnacott,	TOPLAS	1998	
SPF:	Strout	et	al.,	LCPC	2012	

Prior	work	did	not	integrate	all	of	these	optimizations,	and	
mostly	did	not	compose	with	other	optimizations.		

27	

•  Inspector/Executor:	Integrate	runtime	
optimization		from	input	data	into	generated	
code	

•  Integration:	Incorporate	into	Sparse	Polyhedral	
Framework	(SPF)	

•  Data	dependent:	Parallelize	w/	data	
dependences	

28	

PARALLEL	SCHEDULE	

DATA	
REPRESENTATION	

•  Format:	Convert	from	one	to	another	format	
(e.g.,	CSR	to	BCSR)	

•  Value:	Use	mixed	precision	data	values	

DATA		
LAYOUT/STORAGE	

•  Physical	Order:	Reorder	in	memory	to	improve	
reuse,	reduce	data	movement	(e.g.,	Morton	order)	

•  Data	Footprint:	Reduce	footprint	and	speed	up	
data	movement	using	temporaries	

DEPLOY	
•  Implement:	Domain-specific	compiler	technology	

in	Multi-Level	Intermediate	Representation	(MLIR)	
compiler,	part	of	LLVM	Foundation	

[PLDI20]	Sparse	Computation	Data	Dependence	Simplification	for	Efficient	Compiler-Generated	Inspectors	

M.	Mohammadi,	T.	Yuki,	K.	Cheshmi,	E.	Davis,	M.	Hall,	M.	Dehnavi,	P.	Nandy,	C.	Olschanowsky,	A.		Venkat,		M.	Strout	
[TACO19]	Data-Driven	Mixed	Precision	Sparse	Mat\rix	Vector	Multiplication	for	GPUs	
K.	Ahmad,	H.	Sundar,	M.	Hall,	ACM	TACO,	Dec.	2019.	
[SC16]	Automating	Wavefront	Parallelization	for	Sparse	Matrix	Computations	
Anand	Venkat,	Mahdi	Soltan	Mohammadi,	Jongsoo	Park,	Hongbo	Rong,	Rajkishore	Barik,	Michelle	Strout	and	Mary	
Hall	(SC	2016),	Best	Paper	Finalist.	
[IA^3	16]	Compiler	Transformation	to	Generate	Hybrid	Sparse	Computations	

H.	Zhang,	A.	Venkat,	M.	Hall,	(IA^3	Workshop	2016).	
[IPDPS16]	Synchronization	Trade-offs	in	GPU	Implementations	of	Graph	Algorithms	
Rashid	Kaleem,	Anand	Venkat,	Sreepathi	Pai,	Mary	Hall	and	Keshav	Pingali	(IPDPS	2016)	
[PLDI15]	Loop	and	Data	Transformations	for	Sparse	Matrix	Code	
Anand	Venkat,	Mary	Hall	and	Michelle	Strout	(PLDI	2015)	
[CGO14]	Non-affine	Extensions	to	Polyhedral	Code	Generation	

Anand	Venkat,	Manu	Shantharam,	Michelle	Strout	and	Mary	Hall	(CGO	2014)	
[IMPACT16]	Combining	Polyhedral	and	AST	Transformations	in	CHiLL	
Huihui	Zhang,	Anand	Venkat,	Protonu	Basu	and	Mary	Hall	(IMPACT	2016)	

[LCPC16]	Optimizing	LOBPCG:	Sparse	Matrix	Loop	and	Data	Transformations	in	Action	
K.	Ahmad,	A.	Venkat	and	M.	Hall,	LCPC	2016.	

[IMPACT18]	Abstractions	for	Specifying	Sparse	Matrix	Data	Transformations	
Payal	Nandy,	Mary	Hall,	Michelle	Strout,	Mahdi	Mohammadi,	Cathie	Olschanowsky,	Eddie	Davis	

[PIEEE18]	The	Sparse	Polyhedral	Framework:	Composing	Compiler-Generated	Inspector-Executor	Code		
M.	Strout,	Mary	Hall,	Cathie	Olschanowsky,	Proceedings	of	the	IEEE,	2018.	29	

