
Memory Performance Optimization
Nuwan Jayasena

2 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

(Impending) Scaling Challenges in “Traditional” Technologies have Led to a
Golden Age of Innovation

Many-core processors,
accelerators etc.

Partitioned designs,
advanced packaging etc.

In-package memory,
processing near memory etc.

3 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Advanced Node Designs Challenge Traditional Views of Memory

▪ Intra-node non-uniform memory pools

⁃ Exacerbated by growing application memory capacity needs

⁃ Increased reliance on efficient use of caches and interconnects

▪ Manually choosing memory pools is often challenging for developers

⁃ Static placement can be sub-optimal

⁃ Also hampers code portability

malloc()

MPI rank

DDR HBM NVM

Node Organization Memory View

4 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Advanced Node Designs Challenge Traditional Views of Memory

▪ Intra-node non-uniform memory pools

⁃ Exacerbated by growing application memory capacity needs

⁃ Increased reliance on efficient use of caches and interconnects

▪ Manually choosing memory pools is often challenging for developers

⁃ Static placement can be sub-optimal

⁃ Also hampers code portability

Innovations in data management are necessary to realize full benefits of aggressive node organizations

malloc()

MPI rank

DDR HBM NVM

Node Organization Memory View

5 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Locality Management Requires Hardware-Software Collaborative Solutions

Understanding Data-Compute
Affinity

Enabling Software-guided Data
Placement Control

Memory-aware Data Structures
and Algorithms

6 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Locality Management Requires Hardware-Software Collaborative Solutions

Understanding Data-Compute
Affinity

Enabling Software-guided Data
Placement Control

Memory-aware Data Structures
and Algorithms

E.g., Memory access tracking with
Majority Element Algorithm

E.g., Morton Filter approximate set
membership data structure

7 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

POINT SOLUTION EXAMPLES

8 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Memory Access Tracking: Identifying Frequently Accessed Pages

▪ Software-only solution: periodically sample “accessed” bits in page table entries

⁃ Coarse-grain, statistical information only

▪ Naïve hardware solution: access counter associated with each OS page

⁃ Incurs storage for counters and overhead for updating them

⁃ System software has to periodically scan the counts and find frequently-accessed pages (usually by sorting)

▪ Wide range of solutions proposed in literature

[1] R.M. Karp and S. Shenker, ACM TODS, vol. 28, no. 1.

[2] M. Charikar et al., Theoretical Computer Science, vol. 312, no. 1.

▪ An elegant approach: majority element algorithm (MEA) [1][2] from data mining

⁃ Heuristic for finding most frequently occurring elements in a data stream

⁃ More precisely, finds a set of └1/θ┘ elements that includes all elements that occur θN or more
times

⁃ Where 0 > θ > 1 and N is the length of the data stream

⁃ E.g., if θ = 0.05 & N = 100, finds 1/0.05 = 20 elements that includes all elements that
occur 0.05x100 = 5 times or more

9 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Applying MEA for Memory Affinity Tracking

▪ Treat the sequence of pages accessed by a processor as a data stream

▪ Find the most frequently occurring page numbers in that stream

▪ Simple and low-overhead hardware implementation

⁃ Only as many counters (K) as the number of top memory pages to be
discovered

⁃ No separate pass to sort and find frequently accessed pages

10 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

MEA: A Free Lunch that You Can Have and Eat Too!

▪ Recency bias: MEA makes better predictions of future memory accesses than (an impractical) approach that counts
accesses to every OS page

FC: full counters (counter per OS page) with full sorting and selection

WL-HG: homogeneous workloads

WL-MIX: mixed workloads

See Prodromou et al., HPCA 2017

11 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Memory-aware Data Structures: Approximate Set Membership

▪ Approximate set membership data structures (ASMDSs) trade precision for space

⁃ Tunable false positive rate 𝜖 where increasing the bits per item reduces 𝜖

⁃ 𝜖 is dependent on the bits per item in the approximation not the original data size

⁃ E.g., encoding 4B items and 200MB items takes the same amount of space for a given 𝜖

▪ Wide-ranging usage

⁃ Genome sequencing, relational databases, file systems, key-value stores, web caching, networking etc.

Apple orange pear
approx., approx., approx.

Is pear an element of {S}?
probably true

false

12 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Background: Cuckoo Filters

▪ Buckets are associative collections of slots (similar to cuckoo hash tables)

▪ Each slot stores a “fingerprint”, a short hash of a single data element

▪ Multiple (typically 2) hash functions to map data items to candidate buckets

0010 1011 1011 0000

1000 1100 0000 0000

1010 1010 1101 0010

0001 0101 1000 0000

0100 0101 1111 1011

0110 0111 0001 1010

0111 1111 1011 0100

0

1

2

3

4

5

6

Bucket

Slot

Fingerprint

13 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Morton Filters: Decoupling Memory Storage from Logical Structure

0

1

2

3

4

5

1 3 1 2 0 1 h g f e d c b a

MF block
store a

c b

d

g f e

h

OTA FCA Fingerprints (FSA)

Sample block with compressed format

025 4 3 2 1 0 345

Fingerprint storage array
(FSA): compressed array of
fingerprints of the bucket

Logical bucket

14 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Morton Filters: Decoupling Memory Storage from Logical Structure

0

1

2

3

4

5

1 3 1 2 0 1 h g f e d c b a

MF block
store a

c b

d

g f e

h

OTA FCA Fingerprints (FSA)

Sample block with compressed format

025 4 3 2 1 0 345

Fingerprint storage array
(FSA): compressed array of
fingerprints of the bucket

Fullness counter array (FCA):
number of occupied slots in
each bucket of the block

Logical bucket

15 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Morton Filters: Decoupling Memory Storage from Logical Structure

0

1

2

3

4

5

1 3 1 2 0 1 h g f e d c b a

MF block
store a

c b

d

g f e

h

OTA FCA Fingerprints (FSA)

Sample block with compressed format

Logical bucket

025 4 3 2 1 0 345

Fingerprint storage array
(FSA): compressed array of
fingerprints of the bucket

Fullness counter array (FCA):
number of occupied slots in
each bucket of the block

Overflow tracking array
(OTA): bit-vector indicating
primary bucket overflows

16 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Memory-centric Optimizations Provide Significant Benefits

MF: Morton Filter

CF: Cuckoo Filter

ss-CF: Semi-sorting Cuckoo Filter

RSQF: Rank and Select Quotient Filter

Additional Metrics Morton Filters Improvement over CF

Negative Lookup Throughput 1.3x to 2.5x

Insertion Throughput 0.9x to 15.5x

Deletion Throughput 1.3x to 1.6x

See Breslow & Jayasena, VLDB 2018

Morton Filters outperform state-of-the art ASMDSs by > 1.6x-2.4x for positive lookups at similar false positive rates

17 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

CALL FOR GENERALIZED SOLUTIONS

18 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Capture Application Knowledge About Data Access Behaviors

▪ Need APIs to capture domain/application knowledge about data access behaviors

⁃ Along with better access to high-level hardware metrics

▪ Which data structures are likely to have frequent reuse?

⁃ Can we be even more nuanced and capture reuse distance expectations?

⁃ More portable than dictating which cache levels to bypass

▪ Which data has predictable access patterns? Which ones don’t?

⁃ Can drive allocation, placement, and access optimizations

⁃ More general than prefetch hints

▪ Which data structures have high spatial locality?

⁃ Which ones have dense access patterns?

⁃ What is the degree of sparsity?

▪ Which data structures are accessed concurrently?

⁃ Can we reduce or eliminate interference in memory accesses?

19 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Need System Capabilities to Exploit Domain Knowledge

▪ System software and hardware intelligence and capabilities to
exploit domain/application information

▪ Different memory pools within the same memories with different
characteristics

⁃ Different degrees of cacheability, prefetch aggressiveness etc.

⁃ Optimized for different access patterns

⁃ Different OS page sizes

⁃ Tailored distribution granularity among memory
channels, banks, etc.

▪ Placement of concurrently accessed data structures to reduce
interference

⁃ Partition groups of memory channels, banks etc.

20 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Making Software (More) Aware of Memory Organization

▪ Memory pool awareness is already available up in
practical forms

▪ Advanced node architectures can benefit from software
awareness of more detailed memory organization
characteristics

⁃ Help hardware memory schedulers

⁃ Reduce hot spots and distribute traffic in hardware

⁃ Reduce hardware cost of over-designing memory
system

▪ Query hardware memory organization at boot time
(firmware)

▪ Data layout optimizations at allocation time (system
software)

▪ Data placement and addressing optimizations at run-time
(system software and hardware)

⁃ Hardware support for software distribution of
accesses across memory channels

21 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

Summary

▪ Hardware scaling trends are driving an explosion of new solutions

⁃ Many of which introduce new memory considerations

▪ It’s time for software to take a more active role in optimizing memory performance

▪ Specific point solutions have demonstrated significant solutions

▪ Major research opportunity for hardware-software collaborative solutions for data management with potentially huge
payoffs

22 | IA^3 2020 | Memory Performance Optimization

[AMD Official Use Only - Internal Distribution Only]

DISCLAIMER AND ATTRIBUTIONS

© 2020 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC, Radeon Instinct and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

Disclaimer:

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information
contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard
version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this
information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person
of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR
ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

