Evaluation of Active Storage Strategies for the Lustre
Parallel File System

Juan Piernas Jarek Nieplocha Evan J. Felix
Pacific Northwest National Pacific Northwest National Pacific Northwest National
Laboratory Laboratory Laboratory
P.O. Box 999 P.O. Box 999 P.O. Box 999

Richland, WA 99352
juan.piernascanovas@pnl.gov

ABSTRACT

Active Storage provides an opportunity for reducing the
amount of data movement between storage and compute
nodes of a parallel filesystem such as Lustre, and PVFS.
It allows certain types of data processing operations to be
performed directly on the storage nodes of modern paral-
lel filesystems, near the data they manage. This is possible
by exploiting the underutilized processor and memory re-
sources of storage nodes that are implemented using general
purpose servers and operating systems. In this paper, we
present a novel user-space implementation of Active Storage
for Lustre, and compare it to the traditional kernel-based
implementation. Based on microbenchmark and application
level evaluation, we show that both approaches can reduce
the network traffic, and take advantage of the extra com-
puting capacity offered by the storage nodes at the same
time. However, our user-space approach has proved to be
faster, more flexible, portable, and readily deployable than
the kernel-space version.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Systems and
Software; H.3 [Information Storage and Retrieval]: In-
formation Storage

General Terms

Design, Performance

1. INTRODUCTION

Recent improvements in storage technologies in terms of
capacity as well as cost effectiveness, and the emergence of
high-performance interconnects, have made it possible to
build systems of unprecedented power by connecting thou-
sands of compute nodes and storage nodes. However, for
large-scale scientific simulations that use these environments,
the efficient management of enormous and increasing vol-

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

SC'07 November 10-16, 2007, Reno, Nevada, USA

Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

Richland, WA 99352
jarek.nieplocha@pnl.gov

Richland, WA 99352
evan.felix@pnl.gov

umes of data remains a challenging problem. Despite the
improvements of storage capacities, the cost of bandwidth
for moving data between the processing nodes and the stor-
age devices has not improved at the same rate as the disk ca-
pacity. One approach to reduce the bandwidth requirements
between storage and compute devices is, when possible, to
move computation closer to the storage devices. Similarly
to the processing-in-memory (PIM) approach for random ac-
cess memory [16], the active disk concept was proposed for
hard disk storage systems [1, 15, 24]. The active disk idea
exploits the processing power of the embedded hard drive
controller to process the data on the disk without the need
for moving it to the host computer. Unfortunately, the ac-
tive disk ideas have not been fully adopted by the hard drive
vendors or led to practical implementations.

In recent years, several proprietary parallel/distributed
file systems (Google’s GFS [10], IBM’s GPFS [13], Panasas
ActiveScale File System [21], SGI’'s CXFS [27]), and open
source ones (Lustre [5], PVFS [4], RedHat’s GFS [22]), have
been developed to tackle the problem of data management
in the context of high-performance computing systems, and
other high data volume environments. Some of these file
systems, such as Google’s GFS, Lustre and PVFS, use main-
stream server computers as storage nodes, that is, computers
that contain significant CPU and memory resources, have
several disks attached to them, and run a general-purpose
operating system (usually Linux). In many cases, the server
nodes of the parallel file system are very similar or identi-
cal to the compute nodes deployed in a cluster, and offer
Giga-op/s of processing power. The combined computing
capacity of these hundreds, or even thousands, of storage
nodes can be considerable. However, it is not usually ex-
ploited due to the role of these nodes as I/O elements that
only store data.

One approach to take advantage of the underutilized CPU
time in the storage nodes is to extend the traditional active
disk concept to the parallel file systems of modern high-
performance architectures. We call this approach Active
Storage in the context of the parallel file systems. Two
important differences with respect to the previous work are
that (1) storage devices are now full-fledged computers, and
(2) they include a feature-rich environment provided typi-
cally by a Linux operating system. These two factors make
it possible to run regular application codes on the storage
nodes. On the other hand, by offloading some computing
tasks to the storage nodes, near to the data that they man-
age, Active Storage makes it possible to substantially reduce

the data movement across the network and, hence, the over-
all network traffic. More specifically, by performing data
processing at the source, data does not need to be moved
between filesystem servers and cluster compute nodes.

Active Storage is targeted at applications with I/O-intensive

stages that involve fundamentally-independent data sets. For
example, it can be used to process, either on-line or off-line,
output files from scientific simulation runs. Some examples
of tasks suitable for Active Storage include: compression
and archival of output files, statistical analysis of the out-
put data and storing the results in an external database,
indexing the contents of the output files, simple data trans-
formations such as unit conversion by multiplying a set of
numbers by a scalar, etc. By performing these operations in
the storage nodes, we not only achieve the aforementioned
benefits with respect to the resource usage, but also can ex-
onerate scientific application programmers from implement-
ing I/O tasks which are “oblivious” to the main application.
For the Active Storage concept to become widely adopted,
we need to develop low-overhead, scalable, and flexible im-
plementation mechanisms that allow applications to express
a variety of algorithms and related data processing patterns.

In this paper we present and evaluate two implementa-
tions of the Active Storage concept in the context of the
Lustre 1.6 file system. Lustre is a popular open source paral-
lel filesystem that, among others, has been selected by Cray
for their products, and will be available on their upcom-
ing petascale systems to be installed in the ORNL National
Leadership Computing Facility. The first implementation of
Active Storage considered in the present paper is based on
a previous implementation by Felix et al. [9] for an older 1.4
version of Lustre. This implementation relies on a kernel
module which interacts with other kernel modules of Lus-
tre. The second implementation considered in the paper is
our new contribution to the field, and it proposes a pure
user-space implementation of the Active Storage concept.
In both approaches, the application code runs in user-space,
like any other regular process.

We have benchmarked two applications in three differ-
ent configurations: without Active Storage, with the kernel-
space implementation of Active Storage, and with the user-
space one. We have also analyzed the overall execution time,
the completion time from a client point of view, and the gen-
erated network traffic. The experimental results show that
both Active Storage approaches can reduce the network traf-
fic to near zero for some workloads, and can take advantage
of the extra computing capacity offered by the storage nodes
at the same time. However, our proposed user-space ap-
proach has proved to be more flexible, portable, and readily
deployable than the kernel-space counterpart. For example,
we have also ported it to the PVFS file system with minor
changes, and the results obtained have been similar to those
presented here. In addition, the proposed user-space ap-
proach is competitive with the traditional approach. For ex-
ample, for a bioinformatics application example running on
a Linux cluster with Myrinet and using four storage servers,
the execution time was reduced by 51.8% over the kernel
space approach, and 69.3% over the version of the code that
did not use Active Storage.

The rest of the paper is organized as follows. Section 2
provides an overview of work related to the active disks con-
cept. Section 3 describes the kernel-space approach of Active
Storage and its implementation in Lustre. Section 4 details

our user-space proposal and lists its main advantages over
the previous one. Experimental results regarding execution
time and network traffic are presented in Section 5. Conclu-
sions and some future directions appear in Section 6.

2. RELATED WORK

The idea of intelligent storage was developed by several
authors at the end of the 90’s, with some similar ideas pro-
posed even earlier in the 80’s in the database world [6]. The
original research efforts were based on the premise that mod-
ern storage architectures have progressed to a point that
there exist the real possibility of utilizing the unused pro-
cessing power provided by the drive controller itself. How-
ever, for numerous reasons, commodity disk vendors have
not offered the required software support and interfaces to
make intelligent storage practical and widely used.

Riedel et al. [24] propose a system, that they call Active
Disks, which takes advantage of the processing power on in-
dividual disk drives to run application-level code. Since they
propose to use the processors embedded in individual stor-
age devices to run both application and “core” drive codes,
they need to define a framework inside the drive to ensure
proper execution of code and safeguard the integrity of the
drive. Our work on Active Storage, however, focuses on par-
allel filesystems with commodity disk drives, general purpose
CPU, and operating systems.

Keeton et al. [15] present a computer architecture for deci-
sion support database servers that utilizes “intelligent” disks
(IDISKs). IDISKs use low-cost embedded general-purpose
processing, main memory, and high-speed serial communi-
cation links on each disk. Their proposal is similar to that
presented in the previous paragraph, although they also in-
clude a high-speed interconnect to overcome the I/O bus
bottleneck of conventional systems and provide a scalable
I/0 subsystem.

Acharya et al. [1] evaluate active disks architectures, and
propose a stream-based programming model which allows
disklets (disk-resident code of applications) to be executed
efficiently and safely on the processors embedded in the
disk drives. Disklets take streams as inputs and generate
streams as output. Files (and ranges of files) are repre-
sented as streams. In our Active Storage work, the process-
ing components also read and write data by using streams,
although, unlike disklets, they are full-fledged user-space
processes which, therefore, are only limited by the policies
enforced by the operating system.

By using the concept of active disks, and representing files
as objects, Lim et al. [17] propose an Active Disk File System
(ADFS) where many of the responsibilities of a traditional
central file server, such as authentication, pathname lookup,
and storage space management, are offloaded to the active
disks. These authors suggest that objects (files) can have
application-specific operations which can be run by disk pro-
cessors, so that only the results are returned to clients. How-
ever, they do not provide or implement the proper frame-
work to do that.

Another concept which profits the processing power of the
disk drives, and delegates more responsibilities to them, is
the object-based storage device (OSD) [11, 18]. The OSD’s
have become a key element in some recent parallel file sys-
tems (such as Lustre [5] and the Panasas File System [21]),
other industry products (IBM Storage Tank [12], EMC Cen-
tera [8], etc.), and new-design storage systems [20, 28]. The

User space Application

Kernel space ‘ LLITE ‘

| v ||

| osc |

Kernel space |

‘ OST ‘

‘ OBDfilter ‘

| disids |

(b) OST

Figure 1: Lustre layers in a client and storage node

interface of the object-based storage devices has been stan-
dardized recently [14, 23]. Some storage device manufactur-
ers, such as Seagate [26], are also developing object-based
storage devices.

By using the OSD concept, Schlosser and Iren [25] propose
to use and enhance the OSD interface in order to enable bet-
ter communication between database and storage systems.
The idea is that the database application should communi-
cate semantic information (e.g., the geometry of a relation)
and other quality of service requirements to the storage sub-
system, allowing it to make data allocation decisions on be-
half of the application. They also suggest that, with more
processing capability in the storage devices, it would be pos-
sible to delegate some database-specific tasks (e.g., indexing,
search and retrieval) to the OSDs, in an active disk fashion.

Du [7] merges the OSD and active disk concepts in order
to build the intelligent storage devices one. An intelligent
storage device is directly attached to the network (it contains
an IP stack and can be easily plugged into an IP network),
supports the OSD concept, supports the active disk concept
(it has an embedded processor and some amount of memory
which allow it to carry out some limited tasks), and imple-
ments a Global Unique ID (GUID) for each file (therefore, it
makes the management of distributed replicas much easier).

Finally, Braam and Zahir [3] also mention a possible con-
nection between the idea of active disks and the Lustre file
system, but have not implemented it.

Some of the main shortcomings of the previous studies are:
they lack a real implementation, the processing capacity and
memory are limited to that available in the storage device,
the solution is specific to a problem or application, or the
code to run in the active disk is confined to a restricted
domain which is much less powerful than the one offered by
a general-purpose operating system.

Felix et al. [9], however, present a first real implemen-
tation of Active Storage for the Lustre file system. That
implementation provides a kernel-space solution with the
processing component parts implemented in the user space.
The kernel-space part is a module that integrates with other
Lustre modules in the storage nodes. The module makes a
copy of the data which arrives from the clients, and passes
it to the user-space component. This component then pro-
cesses the data, and write it back to the storage device via

the module. Since the code is run in the user-space of a
general-purpose operating system, on a computer with sig-
nificant CPU and memory resources, this solution does not
suffer the aforementioned problems.

Our proposal is based on the Active Storage concept, but
it offers a solution that is purely in user space. As the the
following sections of the paper show, this makes our ap-
proach more flexible, portable, and readily deployable than
the existing one, while it achieves the same, or even better,
performance. The portability advantages of our approach
are demonstrated not just for Lustre but also through a port
to the PVFS filesystem.

3. ACTIVE STORAGE IN KERNEL SPACE

Lustre [5] is implemented as a stack of Linux kernel mod-
ules which support the different objects that appear in a typ-
ical Lustre installation. In this layered architecture, a layer
can implement almost anything: a simple pass-through in-
spection layer, a security layer, or a layer which makes large
changes to the behavior of the file system. Our first ap-
proach for Active Storage exploits this modular structure of
Lustre to implement a new object (e.g., a new module) in
order to provide the desired functionality. This approach
is based on the Active Storage implementation by Felix et
al. [9], although there are some differences that will be de-
scribed later.

The classic Lustre client layers are shown in Figure 1-a.
The client sees a file system that supports POSIX seman-
tics for reading and writing files. Once the kernel system
calls are made, the kernel passes control to the llite layer.
This mostly translates the basic Virtual File System (VFS)
calls into work orders for the rest of the system. It has di-
rect communication with the Meta Data Client (MDC), the
ManaGement Client (MGC), and the Logical Object Vol-
ume (LOV) modules. The LOV layer is responsible for dis-
patching the data related calls to the set of Object Storage
Clients (OSC) that are available. It performs these duties
based on striping information obtained from the Meta Data
Server (MDS). The OSC layer packages up the requests and
sends them to the Object Storage Servers (OSS), serving the
Object Storage Targets (OST) that are specified, over the
Portals Network Abstraction Layer (NAL) [2].

The OSS’s serve a set of OST’s. These targets relate di-

Processing

component

User space

NAL

Kernel space

Active |
Storage |
Module
T
r OBDfilter i
| wdiskss ||

Figure 2: Kernel-space implementation of Active
Storage in Lustre

rectly to the underlying available disk file systems, as we
can see in Figure 1-b. The OST layer receives the requests
from the NAL, and feeds them down to the OBD filter layer.
This OBD filter wraps the Lustre disk file system, Idiskfs (a
particular version of the Linux Ext3 file system), so that it
looks like an Object Based Disk.

The Active Storage (AS) layer is attached between the
OST layer and the OBD filter layer. Once in place, the mod-
ule acts like a pass-through module, with roughly the same
behavior as the OBD filter, until such time an Active Stor-
age task is requested. To initiate the Active Storage process,
a client application will create empty files, and then send a
special command to the file system specifying the Object
ID’s of all input and output files, along with information re-
lating to the type of processing needed, and parameters for
this processing.

Figure 2 shows the processing that takes place as a file is
written, according to the processing pattern supported by
the current implementation. For example, the client would
create two empty files A and B, and then send an AS link-
ing command. Once this takes place, a device is allocated to
an AS process. The Active Storage device module interfaces
with a processing component (PC) on the OSS. The process-
ing component is implemented as a standard Linux process
that runs on behalf of the user. This process is spawned at
the time when the link is made. A small helper process is
started that sets up the correct interface, and then starts
the PC. After the processing component completes its work
and exits, the helper process cleans up the interface files and
then terminates.

Once the files have been created, linked, and the process-
ing component initialized, the remote client will start writing
data to file A, using normal file API calls. The Active Stor-
age layer sees this data, and passes it directly to the OBD
filter layer. It also makes a copy, which is sent to the Ac-
tive Storage device layer. When the processing component
calls a read () operation on the device interface, it will either
get the waiting data, or will block until new data become

available. Once the processing component has completed
its work, any output is written out by calling write() on
the AS device. The AS device layer receives these writes,
and feeds them to the OBD filter layer. These writes will
all appear in file B. Therefore, the original (unprocessed)
data appears in file A, and the results of the AS processing
component appear in file B.

The processing component accesses the input and output
files as streams, much in the same way as in the Felix’s
implementation, which in turn resembles the approach de-
scribed in [1]. One difference between the Felix’s implemen-
tation and ours is that our processing components determine
the transfer size for the input stream, rather than being re-
stricted to receive only one block at a time. By using bigger
sizes, it is possible to reduce the number of context switches
and improve the performance. Another difference is that
our implementation guarantees the byte order in the input
stream. In the Felix’s proposal, the processing component
must take care of the byte order, what makes its implemen-
tation more difficult.

Since the processing component has full access to the nor-
mal Linux environment, it has access to most of the operat-
ing system services, such as network, and local file systems.
Therefore, its communication is not confined to the kernel
module. For example, it could store the output results in an
external database server.

4. ACTIVE STORAGE IN USER SPACE

The underlying idea of Active Storage is that the pro-
cessing power of the storage nodes can be used to perform
computing tasks on data which is read from and written to
local files. This can be completely done in user space if the
storage nodes are also clients of the parallel file system. In
that way, the storage nodes can access to all the files in the
file system and, specifically, to the files stored locally.

The initial implementation of Active Storage was done in
kernel space for the Lustre 1.4 series, which did not support
using a storage node as a Lustre client at the same time.
This constraint, however, has been removed from the Lustre
1.6 version.

4.1 Design and Implementation

Figure 3 depicts our new approach. In order to build an
Active Storage system, there must be one background pro-
cess per OST, which plays the same role as the processing
component of the kernel-space approach. Each background
process reads from a file, does some processing, and then
writes out the result to another file. Both the input and out-
put files are stored in the corresponding local OST server.
As we can see, the input files contain the output data pro-
duced by the remote clients (in our case, the remote clients
run in compute nodes which are neither the MDS server, nor
one of the OST servers).

The program to be run by the processing components (i.e.,
the background processes), is specified by every Active Stor-
age job. The program can belong to a generic “library” of
Active Storage programs, or can be particular to the paral-
lel application running in the compute nodes. It would also
be possible to run several processing components per node,
with different programs, and perform multiple data conver-
sions on the output data produced by the remote nodes (the
1R—1W processing pattern, described in Table 1, would be
very useful in this case).

Network Interconnect

%

Remote
process

OST &
Lustre client

OST &
Lustre client

Remote
Lustre client

MDS &
MGS

Figure 3: User-space implementation of Active Storage in Lustre

One important point of the user-space approach is the
synchronization between the remote clients and the process-
ing components. If the input file in an OST is empty, or if
the file pointer has reached the end of the file, the processing
component in that OST must wait for more data. On the
other hand, if the remote client is finished, and is not going
to send more data, the processing component must know
that to complete its job and exit.

In order to simplify the implementation of the processing
components, we have built a library which contains functions
that hide the synchronization details between the remote
and local processes. Some of the functions in this library
are asopen, asread, aseof, and asclose. These functions
have the same interface as the corresponding fopen, fread,
feof, and fclose counterparts, and behave in the same way.
These functions constitute what we call the ASFILE inter-
face. Although this library creates a new API that the pro-
grammers must know and use, it is easy to get familiar with
it because it is pretty similar to the existing FILE interface.

In both the kernel- and user-space implementations of Ac-
tive Storage, we must be able to select the OST where to
store every file used by the processing components. This is
because each pair of input and output files should be located
in the same OST. The Lustre 1fs command (with the set-
stripe option), and the 1lapi_file_create function of the
Lustre API, fulfill this requirement. Other parallel file sys-
tems, however, lack this function, and should be enhanced
to properly deploy Active Storage on them. This is the case
of PVFS [4] *.

The user-space approach has some important usability
advantages over the kernel-space implementation of Active
Storage. First, the development of application code for the
AS processing components in user-space is much easier than
in kernel-space, where debugging, for example, is very dif-
ficult for most scientific application programmers. Second,
porting from one parallel file system to another is greatly
simplified, as long as the target file system has some basic
features (like the ability of specifying the layout of a file, as
we have mentioned above). And third, the processing com-
ponents have an overview of the entire file system; therefore,

!There exists some preliminary work in this regard, but it
is not included in the official branch yet.

it is easy to develop new processing patterns, to access other
files in the file system (i.e., configuration files), to discover
the layout of a file across the OST’s (this information can
be used by a processing component to know which portions
of a striped file are stored in its corresponding OST), etc.

Our current user-space implementation, as showed in Fig-
ure 3, has an additional advantage over the kernel one. The
advantage is that the processing components are not in the
data paths from the remote clients to the OST’s, so they do
not become a bottleneck. In the kernel-space implementa-
tion, however, if the clients send data to the OST’s faster
than the processing components can treat them, they will
have to wait once the main memory of the corresponding
OST’s gets full (remember that the Active Storage module
has to make a copy of the data written by the remote clients
before letting it go forward to the disk).

As we can see, all the above makes our proposed user-
space approach more flexible, portable, and readily deploy-
able than the kernel-space counterpart. For example, it has
been possible to port it to the PVFS file system with minor
changes (related to the way file layouts are specified). The
kernel-space approach had required to modify the server-
part components of PVFS. Moreover, the experimental re-
sults described in section 5 also show that the user-space
approach provides a better performance. This is because
it takes advantage of the buffer cache of the operating sys-
tem, so it is able to overlap CPU and I/O operations more
efficiently.

It is important to realize that our approach is different to
running a parallel application on the storage nodes in several
ways. Firstly, there are not interactions among the process-
ing components (although they could be certainly possible).
Secondly, the data traffic to be processed by every process-
ing component is entirely local. And thirdly, the execution
is data-driven.

A regular parallel application should be carefully imple-
mented in order to achieve the same properties, and the
implementation could be even impossible. A first problem
is that there is not always an interconnect which makes the
communication between different OST’s possible (although,
obviously, the OST’s must be able to communicate with the
remote clients and the MDS/MGS server). A second one is

Client data
stream

Active

Storage >®

(a) Processing pattern 1W—0

Client data
stream

Active

Storage
=C

O
=
(b) Processing pattern IW—#W

Figure 4: Two possible processing patterns in Active Storage

Table 1: Processing patterns for active storage in a parallel file system

Pattern Description
1IW — 2W [Data will be written to the original raw file. A new file will be created that will receive the data after
it has been sent out to a processing component.
1IW — 1W [Data will be processed, then written to the original file
1R — 1W | Data that was previously stored on the OBD can be re-processed into a new file.
W — 0 Data will be written to the original file, and also passed out to a processing component. There is no
return path for data, the processing component will do ‘something’ with the data.
IR — 0 Data that was previously stored on the OBD is read and sent to a processing component. There is no
return path.
1IW — #W [Datais read from one file and processed, but there may be many files that are output from the processing
component.
#W — 1W [There are many inputs from various files being written as outputs from the processing component.

that the application should be aware of the file distribution.
The number of files per OST can change during the course of
the time, and files can be unevenly distributed. Therefore,
the number of “processing components” of the parallel appli-
cation per OST’s should be variable, and could change from
run to run, or even during the same run. And a third prob-
lem is that users do not usually have permission to access
the storage nodes. Hence, they can not run any application
on them.

4.2 Striped Files

Many applications split files across several OST’s in order
to profit the aggregate bandwidth provided by the storage
nodes. Although the specific treatment of the striped files
by Active Storage is out the scope of this paper, we would
like to comment some possible approaches.

In the user-space implementation of Active Storage, the
processing components see all the files stored in the parallel
file system. Moreover, if a processing component can read a
file, it can read it entirely, either if the file is striped or not.

To process a striped file, Active Storage launches a pro-
cessing component per each OST used by the file, and every
processing component processes the file chunks stored in its
OST. If the file records are not chunk-aligned, each process-
ing component processes only those records which start in
one of its local chunks. In the latter case, the 1/O operations
will be “almost” entirely local.

With respect to the visibility of the chunks, there are two
options: the processing components can see all the chunks of

a file, or they can see their local chunks as a single, contigu-
ous file. The latter can be transparently provided by Active
Storage by using a solution like that proposed by Mitra et
al. [19] for their non-intrusive, log-based I/O mechanism.
This transparent approach also allows Active Storage to use
programs which know nothing about striped files as process-
ing components.

In the kernel implementation, the Active Storage module
only deals with objects (there is an object per file which
stores all the file’s chunks in the corresponding OST). It
does not see whole files or other files. Therefore, the module
(and, in turn, the processing components) can not access to
chunks stored in other OST’s. This restriction also limits the
applicability of the kernel implementation to striped files.

4.3 Processing Patterns

In the examples above, we have showed the basic opera-
tion of the processing pattern supported by both our current
kernel- and user-space implementations. We refer to this
pattern as 1W—2W. However, other types have been con-
ceptualized, and will be eventually available in upcoming re-
leases. Figure 4 graphically shows two processing patterns,
and Table 1 shows a few more. The symbolic description
uses W for writes, R for reads, and numbers, or the # sign,
for more that one data stream. The left side of the symbolic
name specifies input, and where it originates. Inputs can be
read from disk (R), or be copied from a data stream being
written (W). Outputs can be to the disk (W), or as a data
stream being sent to a reading process (R).

Network Interconnect

A

¥

-y

OSTO OST3

Remote
Lustre client

MDS &
MGS

Figure 5: Lustre configuration without Active Storage. Both output files (A and B) are striped across all the

OSTs with a stripe size of 128 KB.

Table 2: Technical features of every node in our
system under test.

CPU 2 x Itanium 2 at 1 Ghz

RAM 6 GB

NIC Dual-Link Myrinet NIC (M3F2-
PCIXE-2)

Hard disk (OS) HP MAN3367MC (36.40 GB)
Hard disk (Lustre) | MAXTOR ATLAS10K4_73SCA
(73.56 GB)

(O Linux 2.6.9

Lustre 1.5.95 (1.6betab)

The above processing patterns suppose that the informa-
tion is shipped from the remote clients to the processing
components. If the information must travel in the opposite
direction, and we do not want to (or can not) modify the
code of the remote client, then the solution is a little more
complex. This solution is out of the scope of the present
paper, and remains as future work.

5. EXPERIMENTAL RESULTS

In order to prove the advantages of our Active Storage
proposal in user-space for parallel file systems, we have com-
pared our kernel- and user-space implementations with the
Lustre configuration depicted in Figure 5, which does not
use Active Storage at all. As we can see, our system under
test has 1 compute node, 1 MDS/MGS server, and 1, 2, or
4 OST’s. All nodes have the same hardware and software
elements. Table 2 shows the technical features of every node.

Without Active Storage, a process P1 in the compute node
(remote client) produces a file of “unprocessed” data which is
stored in the Lustre file system (in our case, this process is a
cp or dd command which copies an existing file to the parallel
file system). This file of unprocessed data is the “input”
file of a second process P2 which, after some processing,
produces an “output” file with processed data.

With Active Storage, the process P2 becomes our “pro-
cessing component”, and an instance is run on every OST.
Now, the process P1 is a shell script which remotely launches

the processing components, then copies the files to be pro-
cessed to the storage nodes, and finally waits on the pro-
cessing components to finish.

We have used a microbenchmark that we call DSCAL,
and an application called AMINOGEN, to perform the pro-
cessing job. The former reads an input file which contains
doubles, one per line, and multiply every number by a scalar
which is passed as a program argument. The resulting dou-
bles are written to the output file, one per line. The latter
is a proteomics application aimed at enhancing the process
of identifying amino acid polymers (proteins) in experimen-
tal samples obtained at the Mass Spectrometry Facility of
the Environmental Molecular Sciences Laboratory (EMSL)
at PNNL. Mass-spectroscopy based proteomics produces a
very accurate measurement of protein fragments based on
their mass-to-charge ratio (m/z). For each m/z peak in an
experimental spectrum, one needs the list of corresponding
candidate sequences having the correct mass. AMINOGEN
produces this list for each spectral peak using its m/z value,
its range of uncertainty, and knowledge of the masses of
each amino acid residue. The m/z and tolerance pairs are
in the input file, while the resulting amino acid sequences,
along with their m/z values, are stored in the corresponding
output file.

For DSCAL, the input file is 1 GB in size, and contains
almost 121 million doubles stored as strings, one per line.
This application produces an output file whose size is around
1.7 GB. In the AMINOGEN case, the input file contains
4 pairs of mass and tolerance which add up to 44 bytes.
The generated output file, however, has a size of 14.2 GB.
Without Active Storage, both input and output files are
striped across all the OST’s by using a stripe size of 128
KB. With Active Storage, every file is split into as many
subfiles as available OST’s, all of them having roughly the
same size.

In the next subsections, we present the results obtained.
Every number is the average of 3 runs. The standard devi-
ations are small, and most of them are smaller than 1% of
the mean. Both DSCAL and AMINOGEN have been run
for the three aforementioned configurations of Lustre: with-
out Active Storage, with the kernel-space implementation

1200 : .
woFo —

1000 No AS (1 client) —+—
AS (kernel space)

900 - AS (user space) ------

800 | i

700 |- i

600 i

Time (in seconds)

300 | T

200 L L
1 2 3 4

Number of OST's

(a) DSCAL

600 T T
No AS (1 client) —+—

550 AS (kernel space) 1
500 - AS (user space) -2k |

450 |- |
400 |- |
350 |- |
s |
e |
200 - % _
150 | _
100 | 37
50 I |

Time (in seconds)

Number of OST’s

(b) AMINOGEN

Figure 6: Overall execution time for DSCAL and AMINOGEN.

of Active Storage, and with the user-space one. We have
also used 1, 2, and 4 OST’s in order to show the potential
scalability of our proposal.

We are aware that our Lustre configuration without Ac-
tive Storage only uses one node to perform the processing
tasks, while the other two Active Storage configurations use
up to four node to do the same work. Therefore, the latter
can obviously be faster than the former. However, what our
configurations prove is that there are cases where the work to
do can be easily parallelized by Active Storage, which lever-
ages the processing power provided by the storage nodes,
and reduce the network traffic and I/O latency and the same
time, what improves the overall system performance.

On the other hand, it is also worth to note that cases like
that described by the configuration without Active Storage
are not uncommon. For example, these cases arise when
a set of files must be compressed before storing them in a
tertiary storage system, or when some modifications must
be performed on hundreds or thousands of existing files 2.

5.1 Overall execution time

Figure 6 shows the overall execution time for every bench-
mark and configuration. This is the time to carry out the
entire job, either in the client or in the OST’s, and it also
includes the time taken to transfer data from the client to
the OST’s.

In the DSCAL application, the completion time for the
three configurations of Lustre is roughly the same when
there is 1 OST. When there are 2 and 4 OST’s, the com-
pletion time is respectively divided by 2 and 4 for the two
Active Storage implementations, and basically remains the
same with the No Active Storage configuration (actually, the
time in this case decreases a little as the number of OST’s in-
creases, because the input and output files are striped, and
the aggregate I/O bandwidth is bigger). Therefore, these
results clearly show the scalability that we can expect to
achieve with Active Storage.

The netCDF Operator Homepage, http://nco.
sourceforge.net, provides a good example of programs to
perform operations on existing netCDF files.

In the AMINOGEN case, we can say the same about the
results obtained by two configurations: without Active Stor-
age, and with the user-space implementation of Active Stor-
age. That is, the execution time is quite similar when there
is 1 OST (although it is smaller with Active Storage because
it does not have to transfer 14.7 GB across the network), and
is roughly divided by 2 and 4 for the Active Storage config-
uration when there are respectively 2 and 4 OST'’s.

The results for the kernel-space implementation of Active
Storage, however, are quite different. In this case, the overall
execution time is 79.9%, 106.8%, and 107.4% greater than
that obtained by the user-space counterpart when there are
1, 2, and 4 OST’s, respectively.

The main reason for this poor performance is that the
kernel-space approach does not use the available buffer cache
of the storage node, nor does it implement its own cache
(however, Lustre clients, such as our user-space approach,
use the buffer cache provided by the operating system). By
not using the buffer cache, the overlap of CPU and I/O
operations is very small (or it does not exist at all). This
represents a serious performance degradation in high 1/0
workloads like AMINOGEN. Also note that implementing a
buffering mechanism inside the processing components only
helps to reduce the number of system calls, but it does pro-
vide an overlap of CPU and I/O operations by itself.

Another reason for the low performance of the kernel im-
plementation is that the I/O operations are carried out by
only one kernel thread, whereas the user-space counterpart
takes advantage of the different I/O kernel threads used by
Lustre in the storage nodes.

5.2 Completion time in the client

Another interesting result is the completion time in the
client, i.e., the time that the client takes part in the job
and, therefore, the time that it must wait before doing other
things. Tables 3 and 4 show these times for DSCAL and
AMINOGEN.

Without Active Storage, the completion time in the client
is equal to the overall execution time, because the client
must carry out the computational job. However, with Ac-

Table 3: Completion time in the client (in seconds)
for DSCAL.

1 OST | 20STs | 4 OSTs
NOAS 1132.63 | 1117.90 | 1109.97
AS (kernel space) 29.64 12.96 6.17
AS (user space) 30.61 13.39 6.29

Table 4: Completion time in the client (in seconds)
for AMINOGEN.

1 OST | 2 OSTs | 4 OSTs
NOAS 320.53 | 303.12 304.90
AS (kernel space) <1 <1 <1
AS (user space) <1 <1 <1

tive Storage, the completion time is only the time required
to transfer the input file data from the client to the storage
nodes, since the job is performed by the processing compo-
nents in the OST’s.

For DSCAL, the completion time in the client decreases
as the number of OST’s increases. The input file is split
into as many portions as OST’s, and all portions are trans-
ferred in parallel. Therefore, the more OST’s, the higher the
bandwidth to transfer data from the client to the OST’s (the
input file is cached in the main memory of the client before
every run, so the transfer time does not include the time
required to read the input file from disk, which is invariable
with the number of OST’s).

For AMINOGEN, the completion time in the client is the
time to transfer 44 bytes or less, and is very small (less than
1 second).

These results highlight another important advantage of
Active Storage: as work is offloaded to the OST’s, the re-
mote clients can be assigned to other tasks, and the entire
computation can proceed faster.

5.3 Network traffic

The third analysis that we have carried out is the network
traffic during the run of every benchmark. We have analyzed
the network traffic in the client and the OST’s, although we
will only show here the amount of bytes sent and received
in total in the client NIC, because it represents quite well
the overall network traffic. This information is displayed in
Tables 5 and 6.

With Active Storage, the network traffic is mainly due to
the transfer of the input file from the client to the OST’s.
In the DSCAL application case, the input file is 1 GB in
size. The final amount of bytes sent and received is greater
than 1 GB because of the overhead of the Myrinet and Lus-
tre protocols, and because our interconnect is shared with
other nodes in the cluster (there are 25 nodes altogether).
In the AMINOGEN case, the input file has only 44 bytes,
so the network traffic is very small, and it is mainly due to
the overhead incurred by the protocols and to unrelated net-
work traffic (note that the network traffic decreases with the
number of OST’s because the overall execution time also de-
creases; this also explains why the network traffic is lower in
the user-space implementation than in the kernel one, since
the former is faster than the latter).

Without Active Storage, the network traffic is much higher
due to the fact that both the input and output files must be

Table 5: Network traffic (in MB) for DSCAL.

1 OST | 2 OSTs | 4 OSTs
NOAS 2837.03 | 2840.03 | 2839.44
AS (kernel space) | 1086.12 | 1063.33 | 1050.82
AS (user space) 1084.10 | 1062.43 | 1050.09

Table 6: Network traffic (in MB) for AMINOGEN.

10OST | 20STs | 4 OSTs
NOAS 14778.00 | 14808.06 | 14847.85
AS (kernel space) 22.28 15.77 7.20
AS (user space) 12.12 7.69 4.02

sent across the network. This is especially true for AMINO-
GEN, where the total amount of bytes sent and received is
almost 15 GB. Note that the network traffic does not in-
clude the read of the input file to be processed by the client
from the OST’s. This is obvious for DSCAL, where the to-
tal amount of bytes transferred is much less than 3789 MB,
which is the sum of one write (1 GB) and read (1 GB) of the
input file, and one write (1.7 GB) of the output file. The
reason is that the compute node has enough RAM to cache
the whole input file. Therefore, with less RAM or bigger
files, the network traffic could be higher.

In our system under test, the interconnect does not be-
come a bottleneck because the number of nodes is very small
(up to 6, including the MDS/MGS server). However, in a
production cluster, with thousands of nodes, and files of hun-
dreds of gigabytes, the situation could be different. In this
case, Active Storage could make a big difference because it
can substantially reduce the network traffic.

6. CONCLUSIONS

Despite the impressive progress of computer technology in
processor, network and storage areas, efficient management
of high volumes of data remains to be a challenging prob-
lem in many high-performance computing centers. By tak-
ing advantage of the underutilized CPU time of the storage
nodes in modern parallel filesystems, Active Storage hold a
promise of helping to address the challenge for some appli-
cations that perform simple processing of the data stored
in parallel filesystems such as Lustre or PVFS. The current
paper described a new implementation of the Active Storage
concept based on a pure user-space approach, and compared
it to the existing kernel-space implementation.

The experimental results obtained prove that both im-
plementations are able to take advantage of the extra com-
puting power provided by the storage nodes, scaling up the
performance of data-intensive applications, and significantly
reduce the overall network traffic at the same time, what can
prevent a network bottleneck. For example, for a bioinfor-
matics application example, running on a Linux cluster with
Myrinet and using four storage servers, the execution time
was reduced by 51.8% over the kernel space approach, and
69.3% over the version of the code that did not use Active
Storage.

In addition to offering competitive performance, the user-
space implementation appears to be more flexible, portable,
and readily deployable than the kernel-space counterpart.
For example, after developing this implementation for Lus-

tre, we were able to adopt it with relatively small effort to
work with PVFS. We are extending the user-space approach
to provide a friendly environment for programmers, to add
more processing patterns, and to easily support file striping
across several storage nodes.

7. ACKNOWLEDGMENTS

The research described in this paper was supported by the
Department of Energy, Office of Advanced Scientific Com-
puting Research at the Pacific Northwest National Labora-
tory, a multiprogram national laboratory operated by Bat-
telle for the U.S. Department of Energy under Contract
DE-ACO06-76RL01830. We would also like to thank the
anonymous reviewers for the feedback on this papers, and
Chris Oehmen and Tim Carlson for the support provided at
PNNL.

8. REFERENCES

[1] A. Acharya, M. Uysal, and J. Saltz. Active disks:
Programming model, algorithms and evaluation. In
Proc. of the ACM ASPLOS Conference, pages 81-91,
October 1998.

[2] P. J. Braam, R. Brightwell, and P. Schwan. Portals
and networking for the lustre file system. In Proc. of
IEEFE Intern. Conf. on Cluster Computing, 2002.

[3] P. J. Braam and R. Zahir. Lustre technical project
summar. Attachment A to RFP B514193 Response,
July 2001.

[4] P. H. Carns, W. B. Ligon III, R. B. Ross, and
R. Thakur. PVFS: a parallel file system for linux
clusters. In Proc. of 4th Annual Linur Showcase and
Conference, October 2000.

[5] Cluster File Systems Inc. Lustre: A scalable,
high-performance file system. Available at
www. lustre. org, 2002.

[6] D. J. DeWitt and P. Hawthorn. A performance
evaluation of database machine architectures. In Proc.
of the Int. Conf. Very Large Data Bases (VLDB),
pages 199-214, September 1981.

[7] D. H. Du. Intelligent storage for information retrieval.
In Proc. of the International Conference on Next
Generation Web Services Practices (NWeSP’05),
pages 214-220, 2005.

[8] EMC. Centera. http: //www. emc. com/ products/
systems/ centera. jsp, 2007.

[9] E. J. Felix, K. Fox, K. Regimbal, and J. Nieplocha.
Active storage processing in a parallel file system. In
Proc. of the 6th LCI International Conference on
Linuz Clusters: The HPC Revolution, April 2006.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In Proc. of the 19th ACM
Symposium on Operating Systems Principles
(SOSP’03), pages 29-43, October 2003.

[11] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri,

E. Riedel, D. Rochberg, and J. Zelenka. File server
scaling with network-attached secure disks. In Proc. of
the 1997 ACM SIGMETRICS International
Conference on Measurement and Modeling of
Computer Systems, pages 272—284, June 1997.

[12] IBM. Storage Tank. http: //www. almaden. ibm. com/
StorageSystems/projects/ storagetank, 2007.

[13] IBM Corp. General parallel file system. http: //wuww.
almaden. 1bm. com/StorageSystems/projects/ gpfs,
2007.

[14] INCITS Technical Committee T10. Scsi object-based
storage device commands (OSD). working draft,
revision 10. Awvailable at http: //www. t10. org/ ftp/
t10/drafts/ osd/ osd-r10. pdf, July 2004.

[15] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A
case for intelligent disks (IDISKs). In SIGMOD
Record, 24(7):42-52, September 1998.

[16] P. M. Kogge, J. B. Brockman, T. Sterling, and
G. Gao. Processing in memory: Chips to petaflops. In
Workshop on Mixzing Logic and DRAM: Chips that
Compute and Remember (at ISCA’97), June 1997.

[17] H. Lim, V. Kapoor, C. Wighe, and D. H. Du. Active
disk file system: A distributed, scalable file system. In
Proc. of the 18th IEEE Symposium on Mass Storage
Systems and Technologies, San Diego, pages 101-115,
April 2001.

[18] M. Mesnier, G. Ganger, and E. Riedel. Object-based
storage. IEEE Communications Magazine,
41(8):84-90, August 2005.

[19] S. Mitra, R. R. Sinha, and M. Winslett. An efficient,
nonintrusive, log-based I/O mechanism for scientific
simulations on clusters. In Proc. of IEEE
International Conference on Cluster Computing, 2005.

[20] R. A. Oldfield, A. B. Maccabe, S. Arunagiri,

T. Kordenbrock, R. Riesen, L. Ward, and P. Widener.
Lightweight I/O for scientific applications. Sandia
National Laboratories. Technical Report
SAND2006-3057, May 2006.

[21] Panasas. The panasas activescale file system (PanFS).
http: //www. panasas. com/panfs. html, 2007.

[22] Red Hat Inc. Global file system.
http: // www. redhat. com/ software/ rha/ gfs, 2007.

[23] E. Riedel. Object based storage (OSD) architecture
and systems. Available at
http: //www. snia. org/ education/ tutorials/
2006/ fall/ storage/Object-based_ Storage. pdf,
October 2006.

[24] E. Riedel, G. Gibson, and C. Faloutsos. Active storage
for large-scale data mining and multimedia. In Proc.
of the 24th Int. Conf. Very Large Data Bases
(VLDB), pages 6273, 1998.

[25] S. W. Schlosser and S. Iren. Database storage
management with object-based storage devices. In
Proc. of the First International Workshop on Data
Management on New Hardware (DaMoN), June 2005.

[26] Seagate. The advantages of object-based storage —
secure, scalable, dynamic storage devices. Available at
www. seagate. com/ docs/ pdf/ whitepaper/ tp_536.
pdf, April 2005.

[27] SGI. Infinitestorage shared filesystem cxfs.
http: //www. sgi. com/products/ storage/ tech/
file_ systems. html, 2007.

[28] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proc. of the 7th Conference
on Operating Systems Design and Implementation
(0OSDI’06), pages 307-320, November 2006.

