
A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 1

A Practical Approach to Performance
Analysis and Modeling of Large-Scale

Systems
Kevin J. Barker, Adolfy Hoisie, Darren J. Kerbyson

Fundamental & Computational Sciences Directorate

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 2

“ 20% of a project’s time is spent in trying
to understand what to build, 80% is spent

building it, and no time is spent trying to understand
deeply, how well the design decisions were made
in terms of performance delivered to users, and

hence, how to proceed on the next system design.”

- David Kuck,
 Kuck & Associates, Inc. and
 Univ. of Illinois, Emeritus

 “High-Performance Computing”
 Oxford U. Press, 1996

Introduction and Motivation

What is This Tutorial About?

  Performance modeling
–  Analytical techniques that encapsulate performance characteristics

of applications and systems and enable a predictive capability
–  Techniques developed at LANL
–  Emphasis on full applications
–  No dependence on specific tools

»  Although data collection is vital

  Applications of performance models: performance prediction
–  Tuning roadmap for current bottlenecks
–  Architecture exploration for future systems
–  Software / algorithm changes
–  System installation diagnostics: “Rational System Integration”
–  Result: replace benchmarks with models

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 3

What is This Tutorial Really About?

  Insight into performance issues

–  Performance modeling is the only practical way to obtain
quantitative information on how to map real applications to
parallel architectures rapidly and with high accuracy

  With this insight you become a more educated buyer/
seller/user of computer systems
–  Help you become a “performance skeptic”
–  Show how to integrate information from various levels of the

benchmark hierarchy
–  Show why “naïve” approaches sometimes don’t work

* Partial lists

Why Performance Modeling?

  Other performance analysis methods fall short in either
accuracy or practicality:
–  Simulation (UCLA, Dartmouth, UIUC)*

» Greatest architectural flexibility but takes too long for real
applications

–  Trace-driven experiments (UIUC, Barcelona)*
» Results often lack generality

–  Benchmarking (~ everybody)
»  Limited to current implementation of the code
»  Limited to currently-available architectures
» Difficult to distinguish between real performance and

machine idiosyncrasies

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 4

Why Performance Modeling?

  Parallel performance is a multidimensional space:
–  Resource parameters: # of processors, computation speed,

network size/topology/protocols/etc., communication speed
–  User-oriented parameters: Problem size, application input,

target optimization (time vs. size)
–  These issues interact and trade off with each other

  Large cost for development, deployment and maintenance
of both machines and codes

  Need to know in advance how a given application utilizes
the machine’s resources

Why Performance Modeling?

Model

System unavailable for measurement
Rapid design-space exploration.
 e.g. PERCS large-scale system performance

Which system should PNNL buy ?
Modeling used in procurements for almost a decade

Small scale (nodes) available
Predict large-scale system performance using
measurements @ small-scale

Is the machine working?
Performance should be as expected

Improvements
Quantify impacts prior to implementation

Runtime operation
The Performance Health Monitor:
Is the system healthy today?

Design

Procurement

Implementation

Installation

Optimization

Maintenance

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 5

Why Performance Modeling?

  Go beyond what traditional performance tools offer
  Traditional tools tell you “what program did” and “when it

did it” - profilers
  We are “tools-neutral”

–  You choose (TAU, PABLO, PARADYN, VAMPIR,
PAPIPROF, etc.)

  The performance model is the tool
–  But modeling cannot be fully automated

  Many uses
–  Isolate bottlenecks
–  Plan ahead with “What if?” scenarios by

varying problem size, network parameters,
computation speed, etc.

Why Performance Modeling?

  From the application-centric point of view: workload
characterization

  Is the application sensitive
–  to network bandwidth?
–  to network latency?
–  to computation speed?

  What would the speedup be if we used a different
parallel decomposition method?
–  Give an indication of performance improvement before

investing the effort to recode
–  Ultimately, performance-engineer applications from design

phase

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 6

Modeling Successes

  Machines
–  ASCI Q
–  ASCI BlueMountain
–  ASCI White
–  ASCI Red
–  CRAY T3E
–  Earth Simulator
–  Itanium-2 cluster
–  BlueGene/L
–  BlueGene/P (early design)
–  CRAY X-1
–  ASC Red Storm
–  ASC Purple
–  IBM PERCS
–  IBM Blue Waters
–  AMD-based clusters
–  Clearspeed accelerators
–  SiCortex SC5832
–  Roadrunner

  Codes
–  SWEEP3D
–  SAGE
–  TYCHO
–  Partisn
–  LBMHD
–  HYCOM
–  MCNP
–  POP
–  KRAK
–  RF-CTH
–  CICE
–  S3D
–  VPIC
–  GTC

Performance Modeling Process

  Basic approach:

Trun = Tcomputation + Tcommunication - Toverlap

Trun = f (T1-CPU , Scalability)

where T1-CPU is the single processor time
  We are not using first principles to model single-

processor computation time.
–  Rely on measurements for T1-CPU. May be:

»  time per subgrid,
»  time per cell,
»  calculated using measured rate and # of FLOPS per subgrid

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 7

Performance Modeling Process

  Simplified view of the process
–  Distill the design space by careful inspection of the code
–  Parameterize the key application characteristics
–  Parameterize the machine performance characteristics
–  Measure using microbenchmarks
–  Combine empirical data with analytical model
–  Iterate
–  Report results

  The huge design space requires careful choice of metrics
–  Reporting results itself requires a methodology.

  With all this in mind, here is the tutorial outline:

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 8

“Planet’s Largest Supercomputer Accepted
After Rigorous Tests”

- Headline, Los Alamos National Laboratory
Newsbulletin, date unknown

- “XYZ to Increase Price/Performance with the support
of the new 64-bit Intel Xeon”

- “Based on the 9.6 GHz XYZ processor, code named
XYZ, the new server family has achieved eight world
record benchmarks ”

Performance Metrics

Why the Great Interest in Performance
Metrics?

  Reliance on performance metrics is tempting because:
–  Metrics appear to allow performance to be distilled into a

single number
»  System X capable of peak performance of N Tflop/s

–  Metrics appear to allow rapid comparisons between
systems

»  System X achieves 30% higher performance on LINPACK
than System Y

–  Metrics appear to yield intuitive insight into system
performance

  However…

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 9

Be Skeptical of Performance Metrics

  There are so many metrics out there
–  Some indication of the complexity of parallel application

performance
  Creating metrics to describe parallel performance is hard

–  Metrics describe only aspects of total performance
»  Total system performance is impacted by many components

(compute speed, network performance, memory
performance, etc.)

»  But we are ultimately interested in achievable application
performance!

  Performance metrics are easily abused
–  E.g., Flop/s easily manipulated with problem size

  To get the full picture, a workload-specific performance
model is necessary!

micro-kernels

kernels

basic routines

stripped-down app

full app

Understanding IncreasesIntegration (reality)
Increases

Metrics Trade Realism for Understanding

Micro-kernels:
  Attempt to generalize performance

–  May represent characteristics of a large number of applications
  Are the easiest to understand and discuss

–  But this is a poor representation of reality!

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 10

Types of Metrics: Direct Measures

  Absolute time
–  Difference between start and finish

»  Measured as maximum dedicated wall-clock time over all
processors

  But what constitutes “dedicated?”
  Easiest metric to measure

–  Best performance measure for
»  Tracking performance improvements
»  Comparisons between systems for the same app
»  Historical comparison when the application is “frozen”

–  But tells us little about how well the resources are being used
»  Cannot be used to predict performance

  Due to architectural changes
  Due to software changes

»  Does not give any performance insight!

Types of Metrics: Direct Measures

Processing Rate: operations per unit time
–  Application-specific rates:

»  E.g., cells processed per unit time
»  Careful! Are we talking about compute time only or total time?

  May be difficult to separate computation and communication times
  Rates may change with system size due to parallel overheads
  Rates may also change with problem size due to memory effects

Beware of Flop/s – this is often unreliable!

GTC – Plasma modeling code: Stride
through memory varies with processor
count, incurring TLB miss penalties at 64
processors!

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 11

Types of Metrics: Indirect Measures

  Performance improvement
–  % Improvement in some metric due to some feature
–  Normalized time (be careful if you average)

  Efficiency
–  (typically observed rate / peak rate)

  Scalability / Speedup
–  Performance improvement due to parallelism

  Other indirect measures of performance
–  Cache hit/miss ratio, % vectorization, average vector length,

% parallel, etc.
  Difficult but important: Cost / performance

–  Cost too difficult to “measure” so we concentrate on performance
–  Should be actual cost / actual performance

Common Metrics: Flop/s

  Number of floating-point operations / time

  Problems:
–  Can be artificially inflated (by algorithm, code by compilation)
–  Single precision or double precision?
–  No convention for counting flops & flop instruction sets differ:

»  A = B * C + D? A = A + B * C A = B * C? A = B? A = A / B?
–  Need an unambiguous means to measure # of flops

»  Relates to workload hierarchy (easiest for lowest levels)
»  Still doesn’t work well for codes with small numbers of flops

  Use with care!
–  Not useful for comparing amongst machines
–  Not useful for comparing different apps
–  May be useful for providing utilization of a given machine

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 12

Common Metrics: Efficiency

  Measure of how well resources are being used
  Of limited validity by itself

–  Can be artificially inflated
–  Biased towards slower systems

  Example 1: Efficiency of applications

  Example 2: Efficiency of systems
–  SAGE (timing_b) on SGI Origin2000

»  (250 MHz, 500 MFLOPS Peak per CPU, 2 FLOPS per CP):
»  Time = 522 sec.; MFLOPS = 26.1 (5.2% of peak)

–  SAGE (timing_b) on Itanium-2
»  (900 MHz, 3600 MFLOPS Peak per CPU, 4 FLOPS per CP):
»  Time = 91.1 sec; MFLOPS = 113.0 (3.1% of peak)

Solver Flops Flops Mflop/s % Peak Time (s)
Original 64 % 29.8 x 109 448.8 5.6 % 66.351

Optimized 25 % 8.2 x 109 257.7 3.2 % 31.905

Speedup is only one characteristic of a program
 – it is not synonymous with performance.

In this comparison of two machines the code achieves
comparable speedups but one of the machines is faster.

48 40 32 24 16 8 0 0
250
500
750

1000
1250
1500
1750
2000

T3E
O2K T3E Ideal
O2K Ideal

Processors

Ti
m

e

Absolute performance:

Processors
6050403020100

0

10

20

30

40

50

60
T3E
O2K
Ideal

Sp
ee

du
p

Relative performance:

Common Metrics: Speedup

Machine A
Machine B
Ideal

Machine A
Machine A Ideal
Machine B
Machine B Ideal

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 13

Amdahl’s Law and Speedup

  Amdahl’s Law bounds the speedup due to any improvement
–  S = T/T’ = 1/[fv/r + (1-fv)]
–  Example: What will the speedup be if 20% of the exec. time is in inter-processor

communications which we can improve by 10X?
 S = T/T’ = 1/ [.2/10 + .8] = 1.22 (i.e., 22% speedup)

  Amdahl’s Law forces diminishing
returns on performance

–  Invest resources where time is spent
–  The slowest portion will dominate
–  Cannot sustain linear speedup

  Amdahl’s Law + Murphy’s Law: If
any system component can damage
performance, it will!

Ideal Scaling

99.9% Parallelizable

99% Parallelizable

90% Parallelizable

50% Parallelizable

Application Scaling

  Strong Scaling
–  Motivation

»  What is the largest # of procs I can effectively utilize?
»  What is the fastest time I can solve a given problem?

–  Global problem remains constant; subgrid size decreases with P
»  Memory requirements decrease with P - super-linear speedup?
»  Surface-to-volume ratio increases with P

  Weak Scaling
–  Want to use a larger machine to solve a larger problem in the same time
–  Global problem size grows proportionally with P

»  Per-node memory requirements stay constant
»  Surface-to-volume ratio may remain constant

–  Ideally, time to solution remains constant
»  Linear speedup possible, but only in terms of available parallelism
»  Other overheads may increase with P, e.g., collectives

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 14

Strong Scaling: Sweep3D

Manipulating problem sizes can also manipulate observed performance

Problem sizes should be
chosen to reflect

workload, not to portray
the machine in its best

light!

Weak Scaling: SAGE

  Weak scaling would indicate runtime should remain constant
  However, characteristics of SAGE prevent ideal weak scaling at small scale

–  SAGE is highly optimized; this is not a defect of the code
  Cannot rely on speedup (or any other metric) alone to understand

performance!

Ti
m

e
(s

ec
on

ds
)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 15

Common Pitfalls: Unrealistic Problem Size

  Is the problem you are studying sensible?
–  Beware of benchmarks that use unrealistically large problem

sizes
»  This tends to improve parallel efficiency (mask parallel

overheads with large amounts of computation)

  Is the problem being run in the appropriate scaling mode?
–  This will impact computation/communication ratio at large scale

  This is more than a quantitative difference
–  At scale, applications that are actually communication bound can

appear computation bound

Simple Metrics Don’t Give the Whole Story

  The problem is not the metrics themselves but how they
are used

  It is always dangerous to use a single metric by itself
–  This is especially true when examining relative

performance
» How does System A compare with System B?

–  Keep in mind that micro-kernels and benchmarks only
approximate reality

»  Application performance may be markedly different

To gain true insight into application performance, a
performance model is necessary

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 16

Summary

  Metrics can be useful for gleaning insight into system/application
performance
–  Distill complex performance information into a single number
–  Don’t necessarily represent reality, so be careful

  The large number of metrics indicates the complexity of analyzing
performance of parallel codes and systems

  Some common pitfalls:
–  Confusing speedup, flop rate, efficiency with absolute

performance
–  Ignoring Amdahl’s law by assuming sustainable linear speedup
–  Using an unrealistic problem size

  As you move further away from reality (i.e., micro-kernels instead of
applications), you must exercise more care in interpreting results!

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 17

What Makes Performance Prediction
Challenging?

1

10

1 10 100 1,000 10,000 100,000
Number of processes

Ite
ra

tio
n

tim
e

(s
)

(S
w

ee
p3

D
 o

n
R

oa
dr

un
ne

r)

Measured
Fit (y=1.72x0.1)

What’s the expected
iteration time of an
8192-process run?

Challenge #1
Performance
characteristics may
change at scale.
Challenge #2
Nonlinear behavior
may be caused by
either the system or
the application.

Curve fitting does not provide performance insight!

What is a Performance Model?

  Analytical expression of performance in terms of
application and system characteristics
–  May be embodied as mathematical formulas, Excel

spreadsheets, Perl scripts, etc. (It doesn’t matter.)
  Precise description of an application in terms of system

resources
–  Which resources substantially determine execution time?

   CPU speed/core count, network latency/bandwidth/topology,
memory hierarchy sizes/speeds, …

–  When is each resource used?
   during an iteration, between iterations, every nth iteration, …

–  What determines how much each resource is used?
   processor count, memory capacity,

physics modules included, …

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 18

Attributes of a Performance Model

  Succinctly encapsulates application behavior
–  Abstracts application into communication and computation

components
–  Focuses on first-order effects, ignoring distracting details

  Separates performance concerns
–  Inherent properties of application structure (e.g., data

dependencies)
–  System performance characteristics (e.g., MPI latency)

Performance
Prediction

Code
Model

System
Model

+

Code

System
+ Execution

problem

configuration

Approach for Modeling a System

  Focus on first-order effects
–  No need to know performance of each transistor, line of firmware, etc.
–  Concentrate on factors that impact application performance

  Split modeling effort into two components:
–  Single-processor execution time
–  Scaling properties

  Single-processor execution time
–  For simplicity, treated as an input to the performance model
–  May be determined by actual execution, simulation, estimates based on

similar processors, or other approaches
  Scaling properties

–  Core part of this tutorial
–  What aspects of a system are important at scale?
–  Processor count, network topology, messaging performance,

communication-offload capabilities,
scaling of collective operations

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 19

Approach for Modeling an Application

  Focus on first-order effects
–  No need to know performance of each line of code or CPU instruction
–  Concentrate on factors that impact performance

  Parameterize computation and communication patterns
–  Number of cells (or other unit of computation) per process?
–  Work per cell? Constant? Function of cell count?
–  Communication peers? 1D/2D/3D nearest neighbor? Gray code?
–  Bytes/messages per peer? Constant? Function of cell count?
–  Collective communication type/frequency? Reduction every iteration?

All-to-all every N iterations?
  White-box approach

–  Determine the above with instrumentation, profiling, and
experimentation

–  Confirm by examining source code
–  (If you’re the author, you may already know many

of the answers)

Commonly Encountered Application
Characteristics
  Single Program Multiple Data (SPMD) execution

–  Each process runs the same code but on different segments
(called subgrids) of a global data structure

  Local, logical neighbor communication
–  Boundary data at subgrid edges is communicated between

processes

  Occasional global (collective) communication
–  Reduce (or all-reduce) to determine convergence

criteria

Common Not common

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 20

Determine SW
parameters

A Performance Modeling Process Flow

Identification of application characteristics

Construct
(or refine)
application

model

Acquire
performance

characteristics

Micro-
benchmarks

Specifications

Future (promised)
performance

Combine Use
model

Test new configurations
(HW and/or SW)

Verify current
performance

Compare
systems

Propose
future
systems

…

Data structures

Decomposition

Memory usage

Parallel activities

Frequency of use

…

Run code
on system

Model can
be trusted

Validate
(compare
model to

measured)

Run b’marks
on system

Code

System(s)

A Time-Based View of Communication

  Model may need to know time for
an arbitrary-sized message

–  Avoid tables; generalize time with
Tmsg(L) = t0 + L / r∞

–  Caveat: May be a function of L:
   Tmsg(L) = t0(L) + L / r∞(L)

  Useful approach:
–  Use a piecewise, linear fit for Tmsg

  Often, a three-piece linear model
suffices

–  t0 dominates tB×L
–  t0 and tB×L are close
–  tB×L dominates t0

0 ≤ L ≤ 32 Tmsg(L) ≈ 5 µs
64 ≤ L ≤ 1024 Tmsg(L) ≈ 5 µs + 15L ns
L > 1024 Tmsg(L) ≈ 10µs + 3.4L ns Note: log-log scale

Tmsg(L) = t0 + L / r∞ (or t0 + tB × L)

Tmsg is the time to send a message of length L,
t0 is the start-up time (a.k.a. latency),
r∞ is the asymptotic peak bandwidth, and
tB is the asymptotic time per byte (1 / r∞)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 21

A Rate-Based View of Communication

  What message length yields half the
peak data rate (r∞/2)?

–  We call this value n½
  Solving r∞/2 = t0+ n½/r∞ for n½ gives us

n½ = t0⋅r∞
  n½ separates latency-bound

communication from bandwidth-bound
communication

  Implications in terms of the application’s
message sizes:

–  If n½ is small, a higher-bandwidth
network may improve performance

–  If n½ is large, a lower-latency
network may improve performance

–  If n½ is large, message aggregation
may improve performance

  A performance model can quantify each
of the preceding performance
improvements

n½

r∞

r∞/2

  Time is dominated by t0

  Reduce latency to most
improve performance

  Time is dominated
by 1/r∞

  Increase bandwidth
to most improve
performance

Other Factors Affecting Communication
Performance

  Intrasocket vs. intranode vs.
internode performance

–  Intrasocket usually slightly faster
than intranode and much faster
than internode

–  Internode communications may ∴
dominate performance

  Network channel sharing (NIC
contention)

–  Processors within a node share
external network connections

–  E.g., a node with 4 sockets,
4 cores/socket and a single 2GB/s
NIC may deliver <128MB/s per
processor if processors
communicate simultaneously

  Network topology and routing
–  Messages routed through the

network may collide
–  Increases effective Tmsg

–  Collision frequency depends on
application characteristics

  Uni- and bidirectional
communication

–  Bidirectional comm. may take
longer than equivalent
unidirectional comm.

  Collectives
–  Some may be supported in

hardware
–  Scaling properties vary by

collective (and implementation)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 22

Application Modeling: Data Decomposition

  Mapping subgrids to processes affects the number of
subgrid surfaces exposed between adjacent processes

  Example: Various decompositions of a 3-D grid, subgrid size = 8

More Complex Data Structures

Adaptive grids Unstructured grids

  Communication pattern is data set/partitioning dependent
  In our experience, these can be approximated by dense grids

–  e.g., with AMR surface increases by 2/3 power of volume
–  Irregular: approximate # of neighbors and communication volume

–  Mesh composed of quads, tets, etc.
–  Decomposed using partitioner, e.g., Metis

–  Cells refined into 2×2×2 smaller cells
–  Subgrids no longer regular

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 23

Identifying Communication Patterns

Logical communication
(2-D, cyclic in X, open in Y)

  Output from parallel-performance profiler
–  Symmetric iff equal data between processors in both directions
–  Major diagonal (±0) blank—processors do not send to themselves
–  1st off diagonal (±1): normal communications in X
–  3rd off diagonal (±3): wraparound in X (because Px = 4 here)
–  4th off diagonal (±4) communications in Y (again, because Px = 4)

So
ur

ce

Destination

0
2 1
3
4
5
6
7
8
9

10
11
12
13
14
15

0 2 1 3 4 5 6 7 8 9 10

11

12

13

14

15

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

Pattern representation

  Communication
pattern may be
an aggregate
over an iteration

  Tip: Examine the
pattern at each
communication
call point or,
even better, each
call stack

N4
P4 P5 P6 P7

P0 P1 P2 P3

P4

N0 N1 N2

N3 N5

N6 N7 N8

Application Modeling: Process Placement

P5 P6 P7

P0 P1 P2 P3

Application’s
spatial grid

(16×16 cells)

Application’s logical process layout
(4×2 processes)

Physical topology of hardware
(3×3 mesh)

(N.B.: subgrid
size is 4×8 cells)

Warning: It’s easy to confuse the
logical and physical layouts when
developing a model. Be careful!

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 24

Constant

f(# AMR steps,
 # load balances)

Also, f(#PEs)

Frequency of Operations and Scaling

size
words 1PE 2PE 4PE 8PE 16PE 32PE 64PE

1 358 547 555 546 562 558 582
2 0 400 0 0 0 0 0
3 10 10 10 10 10 10 10
4 0 0 431 0 0 0 0
8 0 0 0 393 0 0 0

14 10 10 10 10 10 10 10
16 0 0 0 0 455 0 0
32 0 0 0 0 0 437 0
64 0 0 0 0 0 0 530

  Frequency and/or size of operations can depend on:

–  Scale (# of processors and/or data set size)

–  Dynamic characteristics (e.g., in some cycles a load balance occurs)

  Example: allreduce (for SAGE)

Putting It All Together:
A (Very) Simple Performance Model
  “Application” to model: matrix-vector multiply
  Scatter columns of matrix A and elements of vector x from

process 0 to all other processes
  All processes multiply/accumulate their fragments of A and x to

produce a single vector per process (i.e., using a bunch of dot
products)

  All processes collectively sum (i.e., reduce) the values in each row
to produce vector b distributed across the first column of processes

  Process 0 gathers the fragments of b from the column 0 processes
to produce a complete b vector

A

x

b partial
products

multiply/
accumulate reduce

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 25

Putting It All Together:
A (Very) Simple Performance Model (cont.)

  What parameters affect this application’s performance?
–  Ax, Ay: # of columns and rows in A (→ # of elements in x and in b)
   (For convenience, let A ≡ Ax⋅Ay be the total # of elements in matrix A)
–  Px, Py: # of processes across and down (logical arrangement)
   (For convenience, let P ≡ Px⋅Py be the total # of processes)
–  Tma: Time to perform a single multiply-accumulate
–  Tsc(L,P): Time to scatter L doublewords to each of P processes
–  Tred(L,P): Time to reduce L doublewords from each of P processes
–  Tga(L,P): Time to gather L doublewords from each of P processes

Ay=10, Py=2

Ax=32, Px=8

A

x

b

  Start with the “fundamental equation of modeling”:
–  Trun = Tcomputation + Tcommunication – Toverlap

  Determine computation time
–  Each process is assigned Ax/Px columns and Ay/Py rows
–  All process work in parallel (SPMD-style), so the time for each process is also the

time for all processes
–  # of multiply-accumulates per process = (Ax/Px)(Ay/Py) = A/P
–  Therefore, Tcomputation = Tma⋅A/P

  Determine communication time
–  Process 0 must scatter subgrids of A and x to all P-1 other processes
–  Scatter time = Tsc(A/P, P-1) + Tsc(Ax/Px, P-1)
–  Each row of processes must reduce Ay/Py values to process column 0
–  Reduction time = Tred(Ay/Py, Px-1)
–  Process 0 must gather a subvector of b from the processes in column 0
–  Gather time = Tga(Ay/Py, Py-1)
–  Therefore, Tcommunication = Tsc(A/P, P-1) + Tsc(Ax/Px, P-1) +
   Tred(Ay/Py, Px-1) + Tga(Ay/Py, Py-1)

  Determine overlap of communication and computation: none

Modeling Matrix-Vector Multiplication

Ax/Px
(=4)

Ay/Py
(=5)

A/P=20

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 26

Sample Matrix-Vector Multiplication Model
“What If?” Analyses
  What if we ran on a 1,000,000-CPU system?

–  Plug P=1,000,000 and suitable array sizes into the model
  What if the code were modified to use SIMD, vector, or fused multiply-add

instructions?
–  Measure (or estimate) new Tma and plug into model

  What if our network had hardware support for collectives?
–  Estimate new Tsc(L,P) and Tga(L,P) and plug into model

Model variations:

  Model improvements
–  Example: Taking cache effects into consideration
–  Hardware changes (larger/smaller cache) or input parameters (fewer/more cells per

subgrid) determine if subgrid fits in cache
–  Tma must be made to depend on subgrid size: Tma(A/P)

  Code changes
–  Example: Breaking up the scatter into pieces and interleaving these smaller

scatters with computation
–  Toverlap must represent communication/computation overlap

Summary of Our Approach to Performance
Modeling
  Separation of:

–  Application factors (as identified from a functional point of view)
–  System factors (what it costs to perform certain functionality)

  Separation of:
–  Single-processor issues: normally measured or otherwise stated
–  Multiprocessor issues: scalability, parallel operations

  Application factors
–  Decomposition of global data structure into per-process units
–  Scaling behavior
–  Parallel activity (determined by looking at communication profiles,

e.g., using a communication matrix)
–  Frequency of various operations (boundary exchanges,

collectives, etc.)
  System factors

–  Typically measured using microbenchmarks
or stated for future hypothetical machines

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 27

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

Predictive Accuracy in the Presence of
Simplifying Abstractions

Goals for performance modeling :
–  Predictive capability

»  Variations in component performance (network, processor, etc.)
»  Variations in system size
»  Variations in network architecture/topology

–  Simplicity
»  Performance models should capture only those elements which

actually impact application performance
–  Accuracy

»  How well do the model’s predictions compare against measured
runtimes on current systems?

Ttotal = Nitr · max (Ncell·Tcomp + Tcomm – Toverlap) PEs

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 28

Things Aren’t Always So Simple

Certain application characteristics are problematic
–  Irregular domain partitioning

»  “Strange” boundaries between processors affect
communication volume and neighbor count

» Computation impacted by properties of local elements (e.g.,
material type)

»  Varying cell counts across processors
–  Global domain properties

» Ocean simulations with islands of land
–  Adaptivity

» Neighbor relationships, boundary sizes, and local cell counts
all vary over time

How to Model Such Applications?

  We will look at two applications (Krak and HYCOM)
–  Computation and communication requirements

»  Vary across processors
»  Remain static for length of run
»  Are determined by characteristics of input deck and are unknown in

advance
–  Communication patterns (i.e., neighbor sets) are determined at runtime
–  Input domain itself may be irregular (e.g., holes in the input as in

HYCOM)

  One approach is to develop a model for each processor in the
system
–  Very labor intensive, particularly at large scale
–  Many factors are not known in advance, making model development

impossible
–  Would have to reformulate model for each processor count

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 29

Better Approach: Abstraction

  Idea is to develop a single model
–  Describe all processors in the system…
–  …even though each may process a different workload

  Abstraction trades off potential model accuracy for
predictive capability

  Often relies on making key observations about
application characteristics at large scale
–  Predictions tend to become more accurate as processor

count increases
–  This is OK, as we are generally interested in modeling

performance at large scale

Case Study #1: Krak

  Production hydrodynamics code developed at LANL
–  Simulates forces propagating through objects composed of multiple materials
–  >270K lines of code, >1600 source files
–  Object-oriented Fortran dialect

  Typically executes in strong-scaling mode (fixed global domain size)

  Objects mapped onto grid
–  Grid composed of “cells”
–  Cell defined by “faces”
–  Faces connect “nodes”
–  “Ghost nodes” on PE boundary

  Processing flow moves through series
of time-steps that calculate object
deformation caused by high-energy
forces

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 30

Krak Input Description:
Irregular Subgrids and Multiple Materials

  Three grid sizes studied
–  Small : 3,200 Cells
–  Medium : 204,800 Cells
–  Large : 819,200 Cells

  Cells contain one of three material
types
–  Aluminum
–  Foam
–  High Explosive (HE) Gas

  Regular grid decomposed into
irregular subgrids (colors – shown
for 16 processors)

  Metis partitioning optimized for
edge-cuts leads to irregular domain
shapes and sizes

Before Rotation After Rotation

Krak Performance Model

  Performance models separate application runtime into
components:
–  Computation

»  Per cell computation cost of each material
» Number of cells of each material in each sub-grid

–  Communication
»  Boundary length between sub-grids
» Collectives

  These are determined by the exact partitioning of the input
spatial grid, which cannot be known in advance

  Any resulting model would not satisfy goals of simplicity and
predictive ability

  Complexity can be managed with abstraction

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 31

Key Observations: Strong Scaling Behavior
at Large Scale

Due to Strong Scaling:
1.  Sub-grids become more homogeneous as system size

increases (figure below)
2.  Assuming each sub-grid to be square is reasonable at large

system sizes

Small System Size Large System Size

Abstractions Simplify Performance Model
Components

  Computation
–  Each subgrid contains the same number of cells
–  All cells are of the most computationally intensive material
–  All subgrids are square in shape
–  Per-cell cost derived from measuring compute times of subgrids of

varying sizes
  Communication

–  Each subgrid is modeled with four neighbors in 2D
–  All boundaries are the same length
–  All boundary faces touch only a single material
–  Communication consists of boundary exchanges and collectives

Will such abstractions reduce the effectiveness of the performance model?

Abstractions result in simplified performance model:

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 32

Performance Model Validation

  Measurements taken on 256 node (dual-socket, dual-core 2.0GHz Opteron)
cluster connected with Infiniband

  Assuming homogeneous material distribution more realistic for large
processor counts

  Error less than 3% at 512 processors
  Communication overheads overwhelm benefits of

increased parallelism at large processor counts

Medium Problem Size Large Problem Size

Case Study #2: HYCOM Ocean Model

  Hybrid vertical (depth) coordinate
scheme

–  Transitions smoothly from deep ocean
to shallow coastal regions

  Parallel data decomposition:
–  3D spatial grid partitioned into “tiles”

along 2 horizontal dimensions
–  Any tile consisting solely of land is

removed
–  Each processor assigned a single

(whole or partial) ocean tile
  Strong scaling mode reduces time to

solution for larger PE counts
  Approx. 25K lines of Fortran code

504 Processors

5107 Processors

“A Performance Model and Scalability Analysis of the
HYCOM Ocean Simulation Application”, Kevin J. Barker
and Darren J. Kerbyson, Proc. Of IASTED PDCS 2005

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 33

HYCOM Performance Model

Again, performance model has two primary components:
  Computation

–  Simple relative to Krak
» Computational cost dictated by largest subgrid
»  Subgrid size is known in advance

–  Fractional subgrids incur idle time
  Communication

–  Interprocessor communication required to exchange boundary
information between subgrids

–  Regular communication pattern is disturbed by land in the input
region

Where do we need abstraction?

Modeling HYCOM Communication

  2D Boundary Exchanges
–  Neighbor count varies with tile layout and gaps
–  Msg sizes scale with size of subgrid boundary
–  Neighbor relationships do not span gaps
–  Size of boundary faces often leads to large

messages, even at large scale
  “Software Reductions”

–  Step 1: Processors communicate with head of row
–  Step 2: Heads of rows communicates with “root”

processor
–  How many processors are in each row or column?

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 34

Modeling HYCOM Communication

What abstraction can be applied to simplify the model?
  Suppose we discount the presence of land

–  Global domain completely covered by ocean
–  Each processor now has 4 immediate neighbors
–  Each row consists of an equal number of cells
–  All subgrid boundaries are the same size

  Key observation is that messages are bandwidth bound,
even at large scale

Remember, goal is not to model each processor
but to model the performance of the parallel

system

Model Validation

Input Decks:

Machine Parameters:

Input Deck Oceans Grid Size
(X x Y x depth)

Resolution

Small Pacific 450x450x22 1/12 degree

Medium All 1500x1100x26 1/4 degree

Large All 4500x3298x26 1/12 degree

Processor
(PE) Type

Clock
Speed

PEs/Node Memory/
PE

Node
Count

Network
Type

NICs/
Node

HP Alpha
EV 68

833 MHz 4 2 Gbytes 50 Quadrics
QsNet

1

HP Alpha
EV 68

1.25 GHz 4 4 Gbytes 126 Quadrics
QsNet

1

Intel
Itanium II

1.3 GHz 2 1 Gbyte 30 Quadrics
QsNet

1

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 35

Model Validation

HP Alpha EV 68 HP Alpha EV 68 (2) Intel Itanium II

System Input Mean Error (%)
Alpha EV 68 Small 17

Medium 12

Alpha EV 68 (2) Medium 7.7

Large 7.9

Itanium II Small 5.6

Medium 8.5

Single baroclinic + 2 barotropic
steps is minimum iteration size

Model typically accurate to
within 10% of measurement

Conclusions

  Scientific applications are often not regularly partitioned
–  3rd party partitioning software
–  Inconsistencies in global domain caused by inhomogeneous

features
–  Irregular communication patterns

  Iteration time of loosely synchronous applications will be determined
by the slowest process

  Assuming regularity can simplify modeling process
–  Computational load across cells is homogeneous
–  Interprocessor communication pattern is the same everywhere

  Accuracy is not negatively impacted, particularly at large scale
–  Irregularity approximates regularity at large scale

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 36

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

Case Studies

Three case studies chosen from many applications that have
been modeled

1) Sweep3D
–  Deterministic SN Transport

 Structured mesh
 2-D data decomposition
 Pipelined wavefront processing

2) SAGE
–  Hydrodynamics code

 Structured Adaptive mesh
 1-D data decomposition

3) DNS3D
–  Direct numerical turbulence simulation

Structured 3D mesh
2-D data decomposition

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 37

Case Study I: SN Transport

  Solve the particle transport equation, where the density distribution of
particles N(x, E, Ω, t) is the unknown

  Use discrete directions Ω
–  SN has N*(N+2) total directions spread out in 3-dimensions
–  e.g., S6 has 48 total directions, or 6 directions per octant

  SWEEP3D code: 1-group, Cartesian-grid kernel
(http://www.c3.lanl.gov/par_arch/Software.html)

"Performance and Scalability Analysis of Teraflop-Scale Parallel Architectures Using
Multidimensional Wavefront Applications", A. Hoisie, O. Lubeck, H. Wasserman, Int. J.
of High Performance Computing Applications, Sage Science Press, 14(4), Winter 2000

Cell Update

3 inflows & 3 outflows
cell balance equation(s)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 38

SN Wavefronts (Sweeps)

1-D

2-D 3-D grid with 2-D Partition

3-D Spatial Grid Using 2-D Decomposition

  2-D decomposition results in a PE holding a several contiguous columns of
data (diagram shows top view of 3-D spatial grid)

  Processor utilization is limited by the number of wavefronts (directions) from a
corner point (quadrant)
–  for S6 transport, only 6 wavefronts per octant (12 per quadrant)

Ω

PE

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 39

3D Wavefront with 2D Partition

3D Wavefront with 2D Partition

2D Domain decomposition with “blocking”

Blocking in “z” Leads to
tradeoff: Parallel Efficiency vs.
Communication Intensity

z
x

y

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 40

Pipelined wavefront abstraction:

 for each octant
 for each angle-block
 for each z-block
 receive west
 receive north
 compute sub-grid
 send east
 send south
 end for
 end for
end for

Wavefront Abstraction with Message Passing

  Nsweep wavefronts “scan” the processor grid.

  Each scan requires
 Ns steps.

  There’s a delay of d between scans.

  The total number of steps, S, for all wavefronts is

  The challenge is to find Ns and d.

  For SN: Nsweep = zblocks * angleblocks * octants

Basic Pipeline Model

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 41

Communication Pipeline

Tcomm = [2(Px + Py - 2) + 4(Nsweep - 1)] * Tmsg

7

1 2 3
15 14 13

11 10 9

 7 6 5

 3 2 1

12

 8

 4

 0

2

4

6

4 6 8

6 8 10

8 10 12

3 5

5 7 9

7 9 11

Px

Py

Processor Nodes
Message Numbers

Computation Pipeline

PX

PY
Y

N+1 N

Tcomp = [(Px + Py - 1) + (Nsweep - 1)] * Tcpu

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 42

 (Py-1)*Px procs have South neighbors: all send
 (Py-1)*Px procs have North neighbors: all receive
 (Px-1)*Py procs have East neighbors: all send
 (Px-1)*Py procs have West neighbors: all receive
==
 Nmsg = [(Py-1)*Px + (Px-1)*Py] pairs of send/receives

A) T = Nmsg * Tmsg + (Px * Py)* Tcpu

B) T = Px * Py *2* Tmsg + (Px * Py)* Tcpu

Do you see any problem with any of these 2 alternative approaches?

Alternative Modeling Approaches?

A) is a (wrong) upper bound. B) is a (wrong) lower bound. Both fail to
accurately describe the overlap in communication and computation. Both fail
to account for the delays due to the different repetition rates of the two types
of wavefronts. Both are wrong…but don’t feel bad if you almost agreed to
one of them…we struggled with this for quite some time.

Px

Py

Trace Analysis with One Wavefront

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 43

Trace Analysis with Two Wavefronts

Trace Analysis with Two Wavefronts

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 44

Combining Pipelines

Ttotal = Tcomp + Tcomm ?

Tcomp = [(Px + Py - 1) + (Nsweep - 1)] * Tcpu

Tcomm = [2(Px + Py - 2) + 4(Nsweep - 1)] * Tmsg

30 20 10 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Measured
Model

Px + Py

Ti
m

e
(s

ec
on

ds
)

Validation: Strong Scalability

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 45

30 20 10 0 0
10
20
30
40
50

Time 1000
Time 500
Time 100
Time 10

Model 1000
Model 500
Model 100
Model 10

SWEEP for Several
K Block Sizes

Px + Py

Ti
m

e
(s

ec
on

ds
)

Blocking Strategies

  Larger block sizes lead to increased computation / communication
ratio.

  For wavefront algorithms smaller blocks yield higher parallel
efficiency.

SN Transport on Clusters of SMPs

  Goal: understand how decreased connectivity affects
algorithmic performance.
–  Obvious latency / BW effects, but is this the whole story?

  Obvious relevance to many large-scale systems

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 46

Summary So Far...

  SWEEP3D results assumed that a logical processor
mesh can be imbedded into the machine topology
such that
–  each mesh node maps to a unique processor and
–  each mesh edge maps to a unique router link.

  This is required to maintain the concurrency of
communications within a wavefront.

  We now examine cases with reduced connectivity.
  Q: What happens to d and Nsteps ?

) () () (sweep s N F I d I N S + =

Cluster of SMPs: “Pipeline with Bottlenecks”
Model

?

"A General Predictive Performance Model for Wavefront Algorithms on
Clusters of SMPs“, A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and
H. Alme, In Proc. of ICPP, Toronto, Canada, August 2000.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 47

Sx

S
y

m

n

Ly

Lx

Cluster of SMPs: Notation

Sx = Sy = 8; Lx = Ly =1

16

21

32

37

18

23

34

39

20

25

36

41

22

27

38

43

24

29

40

45

26

31

42

47

28

33

44

49

30

35

46

51

32

37

48

53

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 48

L >= S / 2 ?
yes

MPP case

no

S >= 4* L +1 ?
yes

SI =2Sy +2Sx + [int((I-1)/L)]*S for I=1,2L+1,4L+1

SI =2Sy +2Sx +4(L-1)+5+[int((I-1)/L)-1]S for I=L+1,3L+1,5L+1…

SI =2Sy+2Sx+4(I-1) +[int((I-1)/L)]
 for I=1,Nsweeps

Total communication time =
 [SI + (m-2)*2Sx +(n-2)*2Sy + 2(Sx-1)+2(Sy-1)]*Tmsg

L = min(Lx,Ly)
S = max(Sx,Sy)
I: wavefront index

no

Cluster Model

  Model so far represents
sweeps generated by angle/k-
block loops

  Application consists of
multiple octants, multiple
iterations

  Iteration dependence added
as multiplicative term

  Multiple octants

–  extends the pipeline length

–  include dependences
between octants.

Pipelined wavefront abstraction:

for each octant
 for each angle-block
 for each z-block
 receive east
 receive north
 compute subgrid
 send west
 send south
 end for
 end for
end for

Extending to Multiple Octants

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 49

 -i -j +k

 -i -j -k
-i

-j

2 3 1 4

Multiple Octant Processing

5

 -i +j -k

 -i +j +k

6

+j

7 8 9 10 11 12 13

 +i -j -k

 +i -j +k
14 15 16

+ i
-j

17 18

+i +j -k

 +i +j +k

19 20

+ i

+j

21 22 23 24 25 26

Multiple Octant Processing

  Result: Pipeline length is 3 times longer than that of 1 octant
for Px = Py (but much less than 8 times longer).

  Result: The pipeline length is asymmetric with respect
to the processor grid.

Originating Octant
for Sweep

Delay (to next Sweep)

-i -j -k 1
-i -j +k Py

-i +j -k 1
-i +j +k Px+Py-1
+i -j -k 1
+i -j +k Py

+i +j -k 1
+i +j +k Px+Py-1

Total steps 2Px+4Py+2

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 50

Validation: Multiple Octant Processing

Compaq ES40 Cluster (4 Processors per SMP)
Model Parameters include:

 Tcell = 120ns
 Ts = 11µs
 TB = 3.4ns (for message size of 12000 bytes)

Lessons from SWEEP3D Model

  Development of application microkernel benchmarks
was important:
–  Create a version of the code with computation eliminated
–  Create a version of the code with communication

eliminated

  Work from the inside to the outside of the loop nest

  Model communication/computation/overlap

  Validate

  Re-iterate as new factors come into play

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 51

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 52

  SAGE – SAIC’s Adaptive Grid Eulerian hydrocode

  Hydrodynamics code with Adaptive Mesh Refinement
(AMR)

  Applied to: water shock, energy coupling, hydro
instability problems, etc.

  Represents a large class of production ASCI
applications at Los Alamos

  Routinely run on 1,000s of processors

  Scaling characteristic: Weak

  Data Decomposition (Default): 1-D (of a 3-D AMR
spatial grid)

Case Study II: Hydrodynamics

"Predictive Performance and Scalability Modeling of a Large-Scale Application", D.J. Kerbyson,
H.J. Alme, A. Hoisie, F. Petrini, H.J. Wasserman, M. Gittings, in Proc. SC, Denver, 2001

SAGE Uses:
Example Meteor Impact on Water

One-kilometer iron asteroid struck with an impact equal to about 1.5 trillion
tons of TNT, and produced a jet of water more than 12 miles high

Wave velocities for the largest asteroid will be roughly 380 miles an hour.
Initial tsunami waves are more than half a mile high, abating to about two-
thirds of that height 40 miles in all directions from the point of impact.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 53

  SAGE consists of many repeated ‘stages’ per cycle:

Processing Flow in SAGE

n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4

n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4

n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4

Gather (1+)

Compute

Scatter (1+)

–  Gather: obtain boundary data from remote PEs
–  Compute: computation specific to a ‘stage’

(computations for all stages are considered together in a single PE timing)
–  Scatter: update boundary data on remote PEs

  Also, several collectives occur during each cycle (Allreduce)

  Total grid volume ~ E ⋅ P (Weak-scaling)
–  Volume is constrained by the side of the spatial cube being even

  Boundary exchanges occur in all three dimensions
–  in Z: largest boundary exchange depends on size of spatial cube!
–  in Y: depends on side of spatial cube
–  in X: constant at 4 elements

  N.B. the communication costs increase with scale

  Decomposition determines boundary sizes between sub-grids
–  Amount of traffic for gather/scatter communications

  SAGE uses 1-D ‘slab’ decomposition, with some idiosyncrasies:
  First B blocks of 2x2x2 cells

assigned to PE1 …
 (E = numcells_PE = B*8)

PE
1
2
3
4

SAGE Data Decomposition (1-D Slab)

X

Y
Z

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 54

1 2

2PEs

1 2 3 4 5 6 7 8

8PEs

... 1

2
3

4

5
2

3

64PEs 1

4

5
2

3

4

6

7

7

8

9
...

256PEs

  The spatial grid is a cube by default
  Due to weak scaling, the size of the spatial grid grows with the no. of PEs
  Hence, the communication surface in Z also grows (up to a point)

SAGE Data Decomposition (1-D Slab)

  At a certain scaling point, a single foil of cells is held on more than one
processor which limits the communication traffic

  However, distance between processors increases!

Communication surface in Z = (E⋅P)2/3

A Bit of Algebra: Scaling Analysis

  The total volume is: V = E·P = L3

  The volume of each sub-grid is: E=l·L2

 where P is the number of PEs, l is the short side of the slab (in the Z dimension)
and L is the side of the slab in X and Y directions (assuming a cubic grid)

  The surface of the slab, L2, in the X-Y plane is: L2 = V2/3 = (E·P)2/3
 i.e. communication grows with the number of processors!

  Partitioning in 1-D results in L/(2P) ‘foils’ of width 2 on each PE:

(E·P)1/3/2P = (E/8P2)1/3

  When this has a value less than one, a processor will contain less than a single

foil, i.e. when P > SQRT(E/8) the number of processors involved in boundary
exchange increases!

  Also, there is a maximum distance between the processors that hold a foil,
termed the “PE Distance” (PED)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 55

Scaling Characteristics

Surface split across PEs: P >√(E/8)

(e.g., for E = 13,500 P > 41)

PE distance = (8P2/E)1/3

ii) PE Distance i) Surface size in Z
Represents the size of boundary
transfers between processors

Minimum logical distance between
processors for boundary transfers

  PE distance determines the no. of out-of-node communications
that take place on single a gather-scatter

  The max. no. communications equals the no. PEs in a node

  For example, on ASCI Blue Mountain:

4

8 SMPs

12 ...
8 SMPs

12 ... 4
128node SMP
n HiPPi links

2

PE

  PE distance results in many PEs communicating across a small
number of links:

Effect of Network Topology

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 56

Line1 Chip1 Line1 Chip2 Line2 Chip1 Line2 Chip2 Line3 Chip1 Line3 Chip2 Line4 Chip1 Line4 Chip2 Line5 Chip1 Line5 Chip2 Line6 Chip1 Line6 Chip2

Line 7 Chip1 Line7 Chip2 Line8 Chip1 Line8 Chip2 Line9 Chip1 Line9 Chip2 Line10 Chip1 Line10 Chip2 Line11 Chip1 Line11 Chip2 Line12 Chip1 Line12 Chip2

A
1-

6

B
1-

6

A
7-

12

B
7-

12

A
12

-1
8

B
12

-1
8

A
19

-2
4

B
19

-2
4

A
25

-3
0

B
25

-3
0

A
30

-3
6

B
30

-3
6

A
37

-4
2

B
 4

xI
/O

A
43

-4
8

B
37

-4
0

A
49

-5
4

B
41

-4
6

A
55

-6
0

B
47

-5
2

A
61

-6
6

B
53

-5
8

A
67

-7
2

B
59

-6
4

LO
2-

FE

LO
2-

SN

B
 2

xI
/O

A
73

-7
8

B
65

-7
0

A
79

-8
4

B
71

-7
6

A
85

-9
0

B
77

-8
2

A
91

-9
6

B
83

-8
8

B
89

-9
4

A
97

-1
00

B
95

-1
00

A
10

1-
10

6

B
10

1-
10

6

A
10

7-
11

2

B
10

7-
11

2

A
11

3-
11

8

B
11

3-
11

8

A
11

9-
12

4

B
11

9-
12

4

A
12

5-
13

0

B
12

5-
13

0

A
13

1-
13

6

B
13

1-
13

6

A
 4

xI
/O

A
 2

xI
/O

LO
1-

FE

  On a fat-tree network, the PE distance effect is smaller:
–  smaller nodes (typically 4 processors per node)
–  Also fat tree network enables communication between nodes with

approximately equal performance

4 processor SMP
  PE distance has maximum effect when all cores

communicate out of SMP node.

  The important aspects for the model are:
–  Number of processors/cores per node

–  Number of communication channels per node

Effect of Network Topology (cont.)

Performance Model for SAGE

  Encapsulates code characteristics
  Parameterized in terms of:

–  Code (e.g., cells per PE), Mapping,
–  System (CPU speed, communication latency & bandwidth, memory etc.)

Tcycle(P,E) = Tcomp(E) + TGScomm(P,E) + Tallreduce(P) + Tmem(P,E)

Computation

Gather & Scatter
Communications

Allreduce Comms

In-Box SMP
Memory Contention

Memory contention per cell on P PEs.

Cells per PE
Size of boundaries in X, Y & Z

Time to process E cells
Latency and Bandwidth
Communication Links per SMP
#PEs, & #PEs per SMP box

Tmem(P)×

E Application
Surfaces in X, Y, Z Mapping

Tcomp(E)×

Lc
×, Bc

×

CL†
P†, PSMP

† System

† System specification
× Measured /
 Benchmarked

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 57

Initial Validation

  Validated on large-scale platforms:
–  ASCI Blue Mountain (SGI Origin 2000)
–  CRAY T3E
–  ASCI Red (intel)
–  ASCI White (IBM SP3)

–  Compaq Alphaserver SMP clusters

Validation Summary

System Number of
Configurations

tested

Maximum
Processors

tested

Maximum
error
(%)

Average
error
(%)

ASCI Blue (SGI O2K) 13 5040 12.6 4.4

ASCI Red (Intel Tflops) 13 3072 10.5 5.4

ASCI White (IBM SP3) 19 4096 11.1 5.1

ASCI Q (HP AlphaServer ES45) 24 3716 9.8 3.4

TC2K (HP AlphaServer ES40) 10 464 11.6 4.7

T3E (Cray) 17 1450 11.9 4.1

Roadrunner (Opteron & Cell) 15 6120 6.0 3.8

Dawn (Blue Gene/P) 17 144K 9.8 4.8

Lobo (AMD Barcelona) 15 4352 6.8 3.9

  Model is highly accurate (typically error < 10%)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 58

Lessons from SAGE Model

  Thorough understanding of data-decomposition leads to
explanation of scaling effects

  Repetition of primary operations:
–  Boundary gather/scatters

  Computation encapsulated into a single processor time even
though computation in stages varies

  Dependence on the node size – leading to contention in inter-node
communications

  Model has not changed since development even though code is
under active development
–  Even though frequency of operations and single processor time has

changed, and

–  Also represents several derivatives of the code

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 59

Direct Numerical Simulation (DNS3D)

  NSF petascale application for Blue Waters
–  Simulation of homogeneous turbulence in 3D

  Performance predictions were a part of NSF proposal
  Petascale problem set-up:

–  12,288 x 12,288 x 12,288 grid
–  Requires 10,000 iterations
–  Target runtime is 40 hours on full Blue Waters system

  Implementation chosen was DNS3D
–  Iterative:

»  Each time-step uses a 4-stage Runge-Kutta (RK) stepping scheme
–  Use of inbuilt FFT routines

»  Other libraries possible (e.g. FFTW)

DNS3D processing flow

  An RK stage consists of 3x 3D-FFTs and 6x inverse 3D-FFTs
  Total of 12 + 24 3D-FFTs per time-step
  For modeling purposes we are not concerned with the precise

ordering of operations but rather combine computation activities
together, and communication activities together
(assuming no communication/computation overlap)

For each time-step
 For each RK stage 1..4
 Inverse 3D FFT (3 variables)
 Spectral computation
 Inverse 3D FFT (3 variables)
 Real-space computation
 3D FFT (3 variables)

 Spectral computation
 RK time stepping

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 60

General principle of a 3D-FFT:
Done as sequence of 1D-FFTs

  Unit of computation is a 1D-FFT
  Three steps:

–  1D-FFTs across X
–  1D-FFTs across Y
–  1D-FFTs across Z

  Assuming nx × ny × nz grid points
there are:
–  ny × nz 1D-FFTs of size nx
–  nx × nz 1D-FFTs of size ny
–  nx × ny 1D-FFTs of size nz

X
Y

Z nx

nz

ny

Parallel Decomposition done in 2D
to reduce communication

  px × pz processors
  nx / px by nz / pz

“pencils” per processor
  All 1D-FFTs along “pencils” are

local to a processor (no
communications)
–  need transpose between 1D-

FFTs to ensure pencil locality
  Three steps:

–  1D-FFT
»  transpose

–  1D-FFT
»  transpose

–  1D-FFT

X
Y

Z px

pz

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 61

Outline of DNS3D Model

 Titeration = Tcomp + Ttranspose + Tcollective

where

 Tcomp – sequential time to process bundle of pencils
 Ttranspose – time for 32 Y↔Z & 36 Y↔X and transposes
 Tcollective – time for a single collective per iteration

 (small and ignored later)

Note that there is an additional I/O component for dumping
data to disk. In the default setup this occurs every 200
iterations.

Computation time

  Computation time split into two parts
–  The 1D-FFTs (non linear with #grid_points, ngp)
–  Spectral, real-space, & RK computation (linear with the

#grid_points)

 Tcomp = 4 × Npencils × (ny × TRK(ny) + 9 ×)

where Npencils = (nx / px) × (nz / pz)

  Note forward and inverse FFTs assumed similar performance
  Parameters TRK(x), and T1D_FFT(x) can be either measured on the target

platform at small scale or by obtained by simulation

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 62

Measuring T1D_FFT(s)

  Example on an 8-processor node (or 8-core processor)
  Need to be careful when measuring T1D_FFT(s)

1.  if global problem nx = ny = nz = s fits into a nodes memory then measure
2.  otherwise need to have a reduced number of pencils: nx` × ny × nz `

where ny = s (FFT size of interest)

  nx = ny = nz = s
  All 1D-FFTs equal size

  nx` × ny × nz` (ny = s)
  1D-FFTs not equal size
  Need to isolate FFTs

X
Y

Z

Transpose time

  Transpose time consists of two
components

 Ttranspose = Tlocal + Tremote

  where Tlocal is for local copies and
Tremote is for communication costs
(and buffer reads / writes)

Volume Y ↔ X Y ↔ Z

Local

Remote

X
Y

Z

Example: X <-> Y transpose

 1 V
px p

. 1 V
pz p

.

(px-1) V
 px p

. (pz-1) V
 pz p

.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 63

Communication matrix:
Example measured from a 16x16 processor run

  Symmetric about major diagonal
–  Equal communication sent / received

  Matrix for full iteration
–  Y ↔ Z transposes are the “boxes”

along the major diagonal
–  Y ↔ X transposes are the other

diagonals
–  Note: MPI task allocation done in Z then X

dimensions

  Diagonals represent a logical “shift”
–  Pi -> Pi + d

  Communication pattern can also indicate
approach for good mapping

–  Want to minimize inter- vs. intra-node
communications

Receiver

Sender

Contention in Network Impacts on
Communication Performance

Two main sources:
1.  Number of cores sharing a NIC
2.  Contention in network when messages collide (share a channel)

  Shift: Pi -> Pi + d
  where d = 1..128

  Infiniband Cluster
  node = 4-cores

  Typical: contention generally
increases with shift distance

  Optimized: max of 4
(bottleneck is node-size, PEs)

B
et

te
r

C
on

te
nt

io
n

Ti
m

e(
µs

)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 64

Modeling Transpose Time

 Ttranspose = Tlocal + Tremote

 Tlocal = (V / P). Ttranspose(nx, ny, nz)
 Tremote = 32.Tshift(Y↔X) + 36.Tshift(Y↔Z)

  Tlocal is measured on a small (single-chip) run
–  Assumed to be the time for the transpose excluding intra-chip comms

  Tshift() = average of the shift communication times
–  For Y↔X d = 1..px-1
–  For Y↔Z d = px .. px*pz step px

  Can use modeled contention factors if measurements not possible
–  For Infiniband can be optimized
–  Some observations for BlueWaters later …

Validation to 512 Cores Showed High Accuracy

  Testbed: 256 node cluster
–  dual-socket dual-core Opteron,
–  4x SDR Infiniband

  Problem setup:
–  Weak scaling: V = 128*128*128 on one processor-core
–  Power of two core counts

»  round-robin scaling of px, pz

»  round-robin scaling of nx, ny, nz

  Sub-grid shape varies with scale
–  Gets longer and narrower

»  (nx / px) × ny × (nz / pz)
–  1D-FFT sizes increase with scale

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 65

1D-FFT sizes vary with scale

  Time for 1-D FFTs measured

  On testbed:
–  Increase with size
–  Some 2nd-order effects also

  FFT sizes used increases at
distinct scale for our problem
setup:
–  (nx / px) × ny × (nz / pz)
–  round-robin px, pz

–  round-robin nx, ny, nz

  Leads to interesting time
curve with FFT size

4096
2048
1024
512
256
128
64
32
16
8
4
2
1

Core-count

1D-FFT size

32

64

128

256

512

1024

2048

4096

8192

16384

Validation shows high accuracy

  High accuracy observed
–  Errors: 3.9% (max), 2.2% (avg)

  Component times shows increase in FFT times with scale

Measurement vs. modeled iteration time Component Times

Ite
ra

tio
n

Ti
m

e
(s

)

C
om

po
ne

nt
 T

im
e

(%
)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 66

Performance Exploration Using the Model:
1) Use of other FFT libraries

  Consider impact on change in T1D_FFT from our baseline testbed
–  Not specific to a particular FFT implementation
–  But rather used as a guide to see if such a change is

worthwhile

  1D-FFT times assumed to be
faster by between 10-50%

  Graph shows improvement in
iteration time compared with
baseline

  Form of curves reflects the
measured 1D-FFT times for the
current implementation

R
el

at
iv

e
pe

rfo
rm

an
ce

 (%
)

Performance Exploration Using Model:
2) Optimized communications
  Possibility of overlapping some communication with computation

–  During last stage of FFT (remember log(N) stages), resultant data
could start be communicated as part of the transpose

–  Requires optimization of the implementation
–  Is it valuable to undertake such optimizations ?

  Assumptions:
–  Each stage of a 1D-FFT takes

constant time
–  Communication can be 100%

overlapped during last stage
of FFT

–  Performance improvement
relative to testbed baseline R

el
at

iv
e

pe
rfo

rm
an

ce
 (%

)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 67

DNS3D summary

  Non-linear effects pose interesting modeling factors
–  Size of 1D-FFTs increase with scale
–  Number of FFTs per core decreases
–  Cannot measure compute-cost on a sub-grid at small-scale and

add in communication costs for large-scale

  Significant communication
–  Two types of transpose
–  Nearly all data for FFT is communicated to neighbors (most

non-local)

  Modeling shows high accuracy

  Model currently in use to examine options for Blue Waters
–  We will also use it as a part of the performance

acceptance testing

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 68

 Applications of Modeling

More than any other time in history, mankind faces a
cross-roads. One path leads to despair and utter
hopelessness. The other, to total extinction. Let
us pray we have the wisdom to choose correctly.

- Woody Allen

Rational System Integration

  When introduced, ASCI Q was the largest production ASCI
system:
–  20Tflops peak performance
–  2048 HP AlphaServer ES45 nodes
–  8192 Alpha EV68 processors, operating at 1.25GHz (2-fp per cycle)

  HP/Compaq was announced as supplier of ASCI Q in August
2000

  Majority of nodes were in production by end of 2002

Question (circa 2001) :
 What level of performance will ASCI Q achieve?

Answer:
 Use performance modeling!

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 69

ASCI Q at Los Alamos

ASCI Q Performance Data: History

  Measured ASCI Q performance from the first nodes
manufactured to the full sized machine
–  Installed in stages
–  2 upgrades during installation: PCI bus (33MHz to 66MHz), and

Processor (1.0GHz to 1.25GHz with increased L2 cache).

Date # Nodes Comments
 March ’01 8 First ES45 cluster available (HP Marlborough)
 9th Sept ’01 128 First machine at LANL, 33MHz PCI bus
24th Sept ’01 128 Some faulty H/W replaced
24th Oct ’01 128 O/S patch improved Quadrics Performance
 4th Jan ’02 512 PCI bus @ 66MHz (but not on all nodes)
 2nd Feb ’02 512 All @ 66MHz PCI, some nodes configured out
20th April ’02 512 All nodes available and running
13th June ’02 2 First 1.25GHz nodes (HP Marlborough)
20th Sept ’02 1024 QA testing (1.25GHz processors)
25th Nov ’02 1024 QB Performance variability testing
25th Jan ’03 1024 QB Performance optimization
 1st May ’03 2048 QA+QB combined testing (20Tflop peak)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 70

Performance Expectations Provided by Models

  Predictions made in April ’01
  Further predications made for PCI upgrade, and CPU upgrade

 Late 2001: Early 2002: upgraded PCI

 → Model used to validate measurements!

1024-Node Performance (Late 2002)

  Performance consistent across both phases of ASCI Q
(each with 1024 nodes)

  Measurements were ~80% longer than model

There is a difference
WHY ?

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 71

Model Includes Known Factors

  Model includes:
–  Computation characteristics of application

–  Communication requirements

–  Scaling characteristics

  Model approach is iterative: as new (understood) factors come into
play they must be incorporated

  Without a model then it would not be possible to identify if there is
a problem or not!

  If there are some unknown factors then we need to:
–  Identify

–  Understand

–  Model

–  And possibly optimize the application/system

Sherlock Holmes
and the case of

The Missing Supercomputer Performance

“[W]hen you have eliminated the impossible,
whatever remains, however improbable,

must be the truth.”

Quotation

Sir Arthur Conan Doyle

“The Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Processors of ASCI Q”,
F. Petrini, D.J. Kerbyson, S. Pakin, in Proc. of IEEE/ACM SC03,
Phoenix, AZ, November 2003.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 72

Using Fewer PEs Per Node

  Performance using 1, 2, 3, and 4 PEs per node
–  reduces the number of compute processors available

Using Fewer PEs Per Node (2)

  Measurements match model almost exactly for 1,
2, and 3 PEs per node!

Performance issue only occurs when using 4 PEs per node

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 73

Performance Variability (1)

  Cycle time varies from cycle to cycle

Performance Variability (2)

  Histogram of cycle time over 1000 cycles
  Over factor of 4 in range (0.75s → 3s)

Performance issue has variability (some cycles are not affected!)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 74

SAGE Performance Components

  Examine components of SAGE:
–  Put/Get (point-to-point boundary exchange)
–  Collectives (allreduce, broadcast, reduction)

Performance issue seems to occur only on collective operations

Delays Observed by a Micro-Benchmark

  Simple computation benchmark took exactly 1ms to execute

  Executed 1million iterations per processor

  Histogram plotted of time actually taken per node (= 4 PEs)

Fr
eq

ue
nc

y

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 75

Unknown Factor was Caused by the OS

  An application is usually a sequence of a computation followed by
a synchronization (collective):

.

.
  But if an event happens on a single node then it can affect
 all the other nodes

“Computational Noise”

Effect Increases with Scale

  The probability of a random event occurring increases
with the node count.

.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 76

After OS Refinements

  Performance ASCI Q now within ~10% of our expectation

  Without a model we would not have identified (and solved) the poor
performance!

Rational System Integration - Summary

  Models predicted ASCI Q performance in advance of installation

–  Based on single node performance, network performance, and knowledge
of application factors

  Models can provide valuable performance data

  Do not believe everything you measure!

  Where possible have at least two data points for the same
performance point from different sources

–  If there is a difference: diagnose and identify source of problem

Without modeling, it may have taken longer
to realize there was a problem with ASCI Q!

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 77

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

An Overview of Blue Waters for Modeling

Key Aspect: Relay experiences on the reasoning for a new
architecture when performance modeling

  Blue Waters: Innovative design
–  Different to current high end systems
–  Not a mesh, Not a Fat-tree, Not accelerated

  Large Core-count (> 200K)
  Large peak (multi peta-flop)
  Deep System Hierarchy

–  Communications
»  Differences in channel bandwidths and latencies

–  Task mapping

Note: This information is based on the view from our perspective.
It is NOT an official view of either IBM or NCSA.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 78

Model

System unavailable for measurement
Explored PERCS large-scale system performance
and influenced design

Which system should NSF buy? (Power7)
Modeling provided predictions for proposed BW system

Small scale (nodes) available
Predict large-scale system performance using
measurements @ small-scale

Is the machine working?
Performance should be as expected

Improvements
Quantify impacts prior to implementation

Runtime operation
Is the system healthy today?

Design

Procurement

Implementation

Installation

Optimization

Maintenance

PE
R

C
S

B
lu

e
W

at
er

s

We have been collaborators on HPCS
PERCS since 2003

Performance Modeling – IBM PERCS

  Modeling used to explore and guide design of PERCS using
application suite (HPCS phase 1 & 2)

  Design feedback loop got used with increasing speed
  Explored numerous configurations and options

PERCS
simulator Application(s)

Simulated
run-time

(1PE, 1chip)

System Design
Network topology

Latency
Bandwidth
Contention …

cores per chip
Performance

Model

Large-scale
Performance
Predictions

IBM

LANL

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 79

Processor Hierarchy

  Processor = 8x Power7 cores
–  on-chip shared L3 cache
–  2x memory controllers supporting 8 channels DDR3 memory

  Quad-Chip-Module (QCM) = 4x Processors
–  Single socket
–  Direct communication channels between all 4 processors
–  Connection to communications Hub (Torrent)

  Drawer = 8x (QCM + Hubs)
–  Each Hub has a connection to each Hub on the same board

  SuperNode = 4x Boards
–  Each Hub has a connection to each other Hub on other boards in the

Supernode
  System = up to 513x SuperNodes

–  Each SN has a connection to each other SN

Core

Processor

QCM

SuperNode

8c

32c

32 QCMs
1024c

Fully-connected

Fully-connected

Logical View:
Communication Hierarchy

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 80

System = up to 513 Supernodes

. .
. . . .

. .

. .
. . . .

. .

•  One channel between
any two SNs
•  (8 in example)

•  Communication from
one SN to another can
be done through an
intermediate SN
•  Two stage comms

Fully-connected

Communication Hierarchy provided by Hubs

W (x4): local P7 QCM
Ll (x7): local SN, same drawer
Lr (x24): local SN, same SN
D (max 16): distant SN

To
 lo

ca
l P

7
(Q

C
M

)

To other SuperNodes

To
 o

th
er

 H
ub

s
(s

am
e

dr
aw

er
)

To other Hubs
(other drawer, same SN)

Hub x4

x24

x7

 max 16

Ll

Lr

D

W

~1TB/s throughput

Bandwidth Latency

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 81

Communication parameters for Modeling

  At present we have no measurements from hardware and
can only assume parameter values

–  Bandwidths
–  Latencies
–  Collectives

  Values may vary depending on message size
  These will be firmed up over time

Our (current) assumed communication
parameters

  Note this is only for small message latencies (per hop)
and large-message bandwidths. Currently ignores detail
which will be available closer to actual hardware delivery.

  Above does not include MPI software stack (0.5us)

Latency Bandwidth
QCM -> Hub (W) 0.05us 15 + 15 GB/s
Intra-drawer (Ll) 0.1us 15 + 15 GB/s
Intra-SN (lr) 0.2us 4 + 4 GB/s
Inter-SN (D) ~0.3us 7 + 7 GB/s

Note that these numbers are for illustration purposes only and does
not reflect actual performance characteristics of Blue Waters.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 82

Routing Considerations

  Intra-SN
–  Direct Routing
–  Each Hub has direct connection to each other

  Inter-SN
–  Two possible operation modes:

1.  Direct Routing
  Each SN pair has a single channel between them

2.  Indirect Routing
  Use a middle SN “C”, when routing from SN “A” -> SN “B”
  Take advantage of many of the channels from a SN

–  In the following we assume case 2

Routing (continued)

  Inter-SN

Ll → D → Ll | Lr → D → Ll/Lr

Src middle dest

•  First step (Ll) enables use of any Hub in same drawer
•  8*max16 = max 128 D links available (i.e. a max of 128 middle SNs)

•  Middle step (Ll | Lr) routing to correct D-link exit
•  Only one D link to destination SN

•  Last step routes within destination SN to dest Hub/core

Note: the maximum available D-links depends on system size

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 83

Communication Cost

  Ll = latency, Bi = bandwidth on link I, S= message size

  Sum latencies in the multi-hop routing
  Use the min bandwidth of the links used (max time)

  Straightforward. But …
–  Above only for single message without striping

Tmsg = L + S / B

Tmsg = ∑ Li + max (S / Bi)

Communication Cost with striping

  Ni = number channels of type i
–  For inter-node:

» Hub → 7 other Hubs (7x Ll)
» Hub → 128 other Hubs (128 x D)
»  But then fan into destination

–  In actual fact bandwidth limited by P7 → Hub Bandwidth
–  Also note message striped into 2KB packets

  Reasonably straightforward. But …
–  Above only for large single message with striping

Tmsg = ∑ Li + max ((S / Ni) / Bi)

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 84

Communication Pattern Cost

  Ci = contention (# of messages going over same channel)

  Value of Ci depends on communication pattern and also
mapping

  Look at some examples:
–  2D decomposition
–  Subset of All-to-all (e.g. DNS3D)

  We show what should be achieved, could be used to
identify inefficiencies in practice

Tmsg = ∑ Li + max (Ci . (S / Ni) / Bi)

2D Example

  1024 cores in an SN
  2D: 32x32 processes

–  4x2 per P7 processor
–  2x2 x (4x2) per QCM =8x4
–  4x8 QCMs

1.  Intra-SN
–  +X-dim: C = 4 on Ll channels
–  +Y-dim: C = 8 on either Ll or Lr

  Note dependence on mapping

32

32

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 85

2D Example (continued) Inter-node: +X

32

32

Src Dest 8/128

8/128

8/128

8/128

…

…

169

8/128
8/128

+X Dim

1.  Intra-SN
–  C = 4 on Ll channels

2.  Inter-SN
–  C = 2x 8/128 on D
–  C = 4 + 8/128 on Ll
–  C = 8/128 on Lr

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 86

32

32

Src Dest 32/128

32/128

32/128

32/128

…

…

2D Example (continued)
Inter-node: +Y

32/128

32/128

+Y Dim

1.  Intra-SN
–  C = 8 on Ll channels
–  C = 8 on Lr channels

2.  Inter-SN
–  C = 2x 32/128 on D
–  C = 8 + 32/128 on Ll

 = 8 + 32/128 on Lr

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 87

All-to-all example: intra-node

  1024 cores in an SN
–  All-to-all between all cores
–  C.f. one of the transpose in

DNS3D
  C = 32x32 on each Ll
  C = 32x32 on each Lr

All-to-all example: inter-node

  1024 cores in an SN
–  All-to-all between all cores
–  C.f. other transpose in DNS3D

  C = #SN x1024 on D
  Best case using direct routing . .

. . . .
. .
. .

. . . .
. .

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 88

Summary Modeling Blue Waters

  We have provided a view of the Blue Waters processor and
communication hierarchy
–  Focused on aspects impacting communication performance
–  Task layout and resulting communication contention
–  2D example: intra- and inter-node communications
–  All-to-all performance

  Actual communication performance of Blue Waters not yet determined
  We are in the process of modeling several applications for Blue Waters

for:
–  pre-delivery performance prediction
–  To assist with application and system optimizations
–  As tools for performance acceptance testing of the system

  Part of on-going performance modeling of the Power7 (since 2003)
  Stay tuned, it’s going to be interesting !

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 89

Large-Scale System Comparison

  Performance models can be used to compare the performance
of large systems
–  Measurement is not always possible

»  Access may be limited
»  Systems may not yet be available (e.g., in the procurement of

a future system)
–  Predict performance of a workload on a set of systems and

compare
–  Determine the system characteristics that most limit performance

  We compare performance of three supercomputers on a realistic
workload combining benchmarking and modeling

  The applications and their models for the workload considered,
Sweep3D and SAGE, were described earlier

Systems Under Consideration

  Lobo: Conventional cluster
–  Commodity processors and network

  Dawn: Traditional massively parallel processor
–  Second-generation Blue Gene (Blue Gene/P)
–  Specially modified processors, custom networks
–  Pros: abundant parallelism, low-latency communication
–  Cons: weak processor cores, limited bandwidth

  Roadrunner: Hybrid, accelerated cluster
–  Commodity processors and network plus enhanced commodity

processors as accelerators
–  Pros: immense peak performance per node, abundant

parallelism
–  Cons: severely unbalanced communication-to-computation

performance (few GB/s per flop/s) → significant NIC contention

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 90

Lobo Node Architecture

  Quad-socket, quad-core CPUs
–  AMD Barcelona 8354 @ 2.2 GHz

  32 GB of memory per node
–  2 GB/core

M
em

or
y M

em
ory

Opteron Opteron

Opteron Opteron

M
em

or
y M

em
ory

InfiniBand NIC

Lobo System Architecture

…

136
nodes

…

InfiniBand fat tree

  2 SUs × 136 nodes/SU × 4 sockets/node × 4 cores/
socket = 4,352 cores (38.3 peak Tflop/s)

  4x DDR InfiniBand (2 GB/s per link per direction)
  One 288-port InfiniBand switch

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 91

Dawn Node Architecture

  Single-socket, quad-core CPUs
–  PowerPC 450d @ 850 MHz

  4 GB of memory per node
–  1 GB/core

PowerPC

M
em

or
y Torus NIC

Tree NIC

Sync NIC

Dawn System Architecture

  72 × 32 × 16 nodes × 4 cores/node = 147,456 cores (501.3 Tflop/s)
  425 MB/s per torus link per direction × 6 links/node = 2.6 GB/s per

direction per node

…

…

…

…

…
…
…
…

… …

…

…

…

…
…
…
…

…

…

…

72 nodes

32 nodes

16 nodes

Barrier network

Tree network

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 92

Roadrunner Node Architecture

  Dual-socket, dual-core CPUs
–  AMD Opteron 2210 @ 1.8 GHz

  4 Cell/B.E. accelerators (one per CPU core)
–  PowerXCell 8i @ 3.2 GHz

  32 GB of memory per node
–  4 GB/Opteron core + 4 GB/Cell socket

Memory

Opteron Opteron

M
em

 M
em

InfiniBand NIC

Cell Cell Cell Cell

Memory

Roadrunner System Architecture

  17 CUs × 180 nodes/CU × {2,4} sockets/node ×
{2,9} cores/socket = 122,400 cores (1,393 peak Tflop/s)

  4x DDR InfiniBand (2 GB/s per link per direction)
  2 levels of InfiniBand (intra- and inter-CU)

…

180
nodes

…

InfiniBand reduced fat tree

17 CUs

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 93

Summary of Architectural Characteristics

Feature Lobo Dawn RR

Cores/node 16 4 40

Nodes/system 272 36,864 3,060

Cores/system 4,352 147,456 122,400

Memory/node (GB) 32 4 32

Streams mem. BW/socket (GB/s) 7.4 10.0 22.2

Streams mem. BW/node (GB/s) 18.8 10.0 88.9

Network BW/node/dir. (GB/s) 2 2.5 (÷6) 2

Peak performance (Tflop/s) 38 501 1,393
(44 Base)

No one system is clearly superior → use performance models to compare

Model Accuracy

  Maximum modeled error excluding outlying “rogue”
points

Lobo Dawn Roadrunner

SAGE

Sweep3D

< 7% < 10% < 4%

< 14% < 4% < 8%
< 11% Hybrid

Non-Hybrid

VPIC < 6% < 1% < 4%
< 8% Hybrid

Non-Hybrid

Partisn < 6% < 12% < 4%

FYI, two other applications we also looked at:

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 94

Measuring Application Performance

SAGE Sweep3D

  Roadrunner Base > Dawn on SAGE
  Dawn > Roadrunner Hybrid on Sweep3D
  Can we use modeling to explain this discrepancy?

Using Modeling to Identify Performance
Bottlenecks

Lobo Dawn Roadrunner

SA
G

E
Sw

ee
p3

D

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 95

Using Modeling to Identify Performance
Bottlenecks

  SAGE transmits a large volume of large messages
  Lobo and Roadrunner Base (same IB fat-tree network)

gradually lose performance to bandwidth
  Dawn’s limited link bandwidth and susceptibility to

network contention in the torus rapidly let bandwidth
dominate performance

Lobo Dawn Roadrunner
SA

G
E

Using Modeling to Identify Performance
Bottlenecks

Lobo Dawn Roadrunner

Sw
ee

p3
D

  Sweep3D transmits a large number of small/medium-sized messages;
also, pipeline effects limit parallel efficiency

  Would expect latency to dominate; in fact,
–  Few networks are bandwidth-optimized for Sweep3D’s message sizes
–  Lobo is 50-50 compute/bandwidth due to NIC contention (16 procs)
–  Dawn spends 50% of its time stalled waiting for data (pipeline effects)
–  Roadrunner required different blocking at 2K procs; data aggregation

helped with pipelining effects, but deep comm. hierarchy hurts perf.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 96

Using Modeling to Identify Performance
Bottlenecks

Lobo Dawn Roadrunner
SA

G
E

Sw
ee

p3
D

Summary

  Performance is workload-dependent
  Different systems → different bottlenecks

–  SAGE is compute-bound on Lobo and Roadrunner Base but
bandwidth-bound on Dawn

–  Sweep3D is compute-bound on Dawn and Roadunner Base but
communication bound on Roadrunner Hybrid and 50-50 compute/
communicate on Lobo

  Different applications → different bottlenecks
–  Dawn is bandwidth-bound on SAGE but compute-bound on Sweep3D

  Modeling can help explain performance measurements
–  Dawn has more processors than Roadrunner Base, but Roadrunner

Base is faster on SAGE
»  Model shows Dawn’s relatively poor bandwidth limits its

performance
–  Roadrunner Hybrid has higher per-node peak than Dawn, but Dawn is

faster on Sweep3D
»  Model shows Roadrunner Hybrid is bottlenecked by

communication

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 97

Tutorial Outline (the plan!)

 Page Duration
Introduction and motivation 20 mins
Performance metrics & pitfalls 30 mins
Performance modeling methodology 40 mins
 COFFEE BREAK 30 mins
Abstractions 30 mins
Case Studies
 I: SWEEP3D 60 mins
 LUNCH BREAK 90 mins
 II: SAGE 30 mins
 III: DNS3D 30 mins
Applications of modeling
 I: Rational system integration 30 mins
 COOKIE BREAK 30 mins
 II: Novel Architectures: Blue Waters 40 mins
 III: Performance comparison of large-scale systems 40 mins

Conclusions, lessons learned, wrap-up 10 mins

“Some people have a way with words,
and other people...not have way.”

- Steve Martin

“If you’ve enjoyed this program just
half as much

as we’ve enjoyed doing it, then we’ve enjoyed
doing it twice as much as you.”

- Monty Python

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 98

Summary

  Modeling and predicting the performance of large-scale
applications on HPC systems is one of the great
challenges for computer science

  The predictive capability you have seen in this tutorial is
currently being used for a variety of tasks at PNNL and
elsewhere within DOE

  Our goal is to establish performance engineering as a
standard practice

Performance Engineering

Performance-engineered system: The components
(application and system) are parameterized and
modeled, and a constitutive model is proposed and
validated.

Predictions are made based on the model. The model is
meant to be updated, refined, and further validated as
new factors come into play.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 99

Capabilities and Limitations

  We do:
–  Model full applications
–  Validate on systems with thousands of CPUs

  We do not:
–  Model / predict single-CPU time
–  Account for memory contention within an SMP

»  Could be done empirically
–  Account for non-algorithmic comm/comm and comm/comp overlap
–  Account for operating system effects within the application model

»  These are measured and modeled separately
»  We still have a dedicated, single-application view

  Throughput, scheduling issues modeled separately
–  Model / predict I/O performance

Final Thoughts

  Application / architecture mapping is the key - not lists of basic
machine characteristics (speeds & feeds)

–  Kernels alone do not characterize the performance of a supercomputer

  Performance studies need to address a specific workload

  Performance and scalability modeling is an effective “tool” for
workload characterization, system design, application optimization,
and algorithm-architecture mapping

–  The model is the tool

  Back-of-the-envelope performance predictions are risky (outright
wrong?), given the complexity of analysis in a multidimensional
performance space

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 100

  Previous colleagues at LANL
–  Kei Davis
–  Michael Lang
–  Scott Pakin
–  Jose Carlos Sancho
–  Harvey J. Wasserman

  Thanks to:
–  US Department of Energy

  Note: Any benchmark results presented herein reflect our
workload. Results from other workloads may vary.

Acknowledgements and Disclaimers

Supplemental Material

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 101

Some Publications

Sweep3D

SAGE

Tycho / UMT2K

A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, H. Alme, "A General Predictive Performance
Model for Wavefront Algorithms on Clusters of SMPs," In Proc. of ICPP, Toronto,
Canada, August 2000.

A. Hoisie, O. Lubeck, H. Wasserman, "Performance and Scalability Analysis of Teraflop-
Scale Parallel Architectures Using Multidimensional Wavefront Applications", The
International Journal of High Performance Computing Applications, Sage Science Press,
14(4), Winter 2000.

A. Hoisie, O. Lubeck, H. Wasserman. Scalability Analysis of Multidimensional Wavefront
Algorithms on Large-Scale SMP Clusters. In Proc. of Frontiers of Massively Parallel
Computing ’99, Annapolis, MD, February 1999.

D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, H.J. Wasserman, M. Gittings, "Predictive
Performance and Scalability Modeling of a Large-Scale Application," in Proc. of IEEE/
ACM SC01, Denver, November 2001.

D.J. Kerbyson, S.D. Pautz, A. Hoisie, "Predictive Modeling of Deterministic Sn Transport", in
Performance Analysis for Parallel and Distributed Computing, Kluwer, 2003.

M. Mathis, D.J. Kerbyson, “A General Performance Model of Structured and Unstructured
Mesh Particle Transport Computations", J. Supercomputing, Vol. 34, No. 2, pp. 181-199,
2005.

Resource Management

System Modeling and Comparisons
D.J. Kerbyson, A. Hoisie, H.J. Wasserman, "A Performance Comparison between the Earth

Simulator and other Top 5 Terascale Systems on a characteristic ASCI Workload", to
appear Concurrency & Computation Practice and Experience, Vol.17, No. 10, pp.
1219-1238, 2005.

D.J. Kerbyson, A. Hoisie, H.J. Wasserman, “A Comparison Between the Earth Simulator and
AlphaServer Systems Using Predictive Application Performance Models," in Proc.
IPDPS, Nice, France, April 2003.

D.J. Kerbyson, H.J. Wasserman, A. Hoisie, "Exploring Advanced Architectures using
Performance Prediction", in Innovative Architecture for Future Generation High-
Performance Processors and Systems, IEEE Computer Society Press, 2002, pp. 27-37

E. Frachtenberg, D. Feitelson, F. Petrini, J. Fernandez.”Flexible CoScheduling: Mitigating
Load Imbalance and Improving Utilization of Heterogeneous Resources”, in Proc.
IPDPS, Nice, France, April 2003. Best Paper Award.

E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, S. Coll. "STORM: Lightning-Fast
Resource Management", In Proc. IEEE/ACM SC2002, Baltimore, MD, November 2002

E. Frachtenberg, F. Petrini, S. Coll, W. Feng, "Gang Scheduling with Lighweight User-Level
Communication. In Proc. ICPP2001, Wksp on Scheduling and Resource Management
for Cluster Computing, Valencia Spain, September 2001.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 102

Network Architecture
D. Addison, J. Beecroft, D. Hewson, M. McLaren, F. Petrini. “Quadrics QsNet II: A network

for Supercomputing Applications” In Hot Chips 14, Stanford, CA, August 2003
S. Coll, F. Petrini, E. Frachtenberg, A. Hoisie, “Performance Evaluation of I/O Traffic and

Placement of I/O Nodes on a High Performance Network.” In Wksp on Communication
Architecture for Clusters 2002 (CAC '02), IPDPS, Fort Lauderdale, FL, April 2002.

F. Petrini, S. Coll, E. Frachtenberg, A. Hoisie, L. Gurvits,"Using Multirail Networks in High-
Performance Clusters.” In IEEE Cluster 2001, Newport Beach, CA, October 2001

F. Petrini ,W. Feng, A. Hoisie, S. Coll, E. Frachtenberg., “The Quadrics Network (QsNet):
High-Performance Clustering Technology.” In Hot Interconnects 9, Stanford University,
Palo Alto, CA, August 2001.

F. Petrini, S. Coll, E. Frachtenberg, A. Hoisie, "Hardware and Software Based Collective
Communication on the Quadrics Network. In IEEE International Symposium on
Network Computing and Applications 2001 (NCA 2001), Boston, MA, October 2001

System Integration
F. Petrini, D.J. Kerbyson, S. Pakin, “The Case of the Missing Supercomputer Performance:

Achieving Optimal Performance on the 8,192 Processors of ASCI Q”,
in Proc. of IEEE/ACM SC03, Phoenix, AZ, November 2003. Best Paper Award.

D.J. Kerbyson, A. Hoisie, H.J. Wasserman, "Verifying Large-Scale System Performance
During Installation using Modeling", in Hardware/Software Support for Parallel and
Distributed Scientific and Engineering Computing, Kluwer, 2003.

K. Davis, A. Hoisie, G. Johnson, D.J. Kerbyson, M. Lang, S. Pakin, F. Petrini, "A
Performance and Scalability Analysis of the BlueGene/L Architecture", to appear in
Proc. SuperComputing, Pittsburgh, November 2004.

D.J. Kerbyson, M. Lang, G. Patino, H. Amidi, "An Empirical Performance Analysis of
Commodity Memories in Commodity Servers", in Proc. of ACM Workshop on
Memory System Performance, Washington DC, June 2004.

D.J. Kerbyson, A. Hoisie, S. Pakin, F. Petrini, H. J. Wasserman, "A Performance
Evaluation of an Alpha EV7 Processing Node", Int. Journal of High Performance
Computing Applications, Vol. 18, No. 2, Sage Publications, 2004, pp. 199-209.

System Performance Analysis

Performance Analysis - Book
S. Goedecker and A. Hoisie, "Performance Optimization of Numerically Intensive Codes

(Software, Environments, Tools), Paperback - 173 pages, 2001, Society for Industrial
& Applied Mathematics; ISBN: 0898714842

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 103

About the Authors

Adolfy Hoisie is a Laboratory Fellow, Director of the Center for Advanced Architectures, and
the Leader of HPC at the Pacific Northwest National Laboratory. He joined PNNL in 2010 after
spending 13 years at Los Alamo National Laboratory. From 1987 to 1997, he was a researcher
at Cornell University. His area of research is performance analysis and modeling of systems
and applications. He has published extensively, lectured at numerous conferences and other
important events in his area worldwide. He was the winner of the Gordon Bell Award in 1996,
and co-author to the recently published SIAM monograph on performance optimization.

Darren Kerbyson is a Laboratory Fellow at the Pacific Northwest National Laboratory. He
received his BSc in Computer Systems Engineering in 1988, and PhD in Computer Science in
1993 both from the University of Warwick (UK). Prior to joining PNNL in 2010 he was the lead
of the Performance and Architecture Lab at Los Alamos National Laboratory for almost 10
years. He was previously a senior member of faculty in Computer Science at the University of
Warwick in the UK. His research interests include performance evaluation, performance
modeling, and performance optimization of applications on high performance systems as well
as image analysis. He has published over 130 papers in these areas over the last 20 years.
He is a member of the IEEE Computer Society.

About the Authors (cont.)

Kevin Barker joined the HPC group at the Pacific Northwest National Laboratory in 2010. He
previously spent 5 years as a member of the Performance and Architecture Lab (PAL) team at
Los Alamos National Laboratory. His current research interests include developing
performance modeling methodologies and tools for HPC systems and workloads as well as
understanding how current and future architectures impact workload performance. He has
published papers in the areas of dynamic load balancing, HPC middle-ware systems,
performance modeling, and future network architectures. He received his B.S. in computer
science from North Carolina State University in 1997, his M.S. in computer science from the
University of Notre Dame in 2001, and his Ph.D. in computer science from the College of
William and Mary in 2004.

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 104

Glossary

  bandwidth
–  The rate at which data can be

transfered from one process to
another, often measured in MB/s

  cell
–  A unit of application data (e.g., an

array element); may correspond
to a physical entity (e.g., an atom)

  CPU core
–  The minimal unit of hardware

capable of computation
  (global) grid

–  An application’s primary data
structure, distributed across all
processes; may correspond to a
physical entity (e.g., a 3-D
volume of particles)

  grid point
–  See cell

  latency
–  The time from when a sending

process initiates a message
transfer to when a destination
process receives it, often
measured in µs

–  (May imply a minimally sized
message transfer)

  NIC (network interface controller)
–  A communication endpoint; a

node’s entry point into the
interconnection network

  node
–  A component of a parallel system

containing at least one CPU, NIC,
and memory subsystem

Glossary (cont.)

  PE (processing element)
–  See process

  performance model
–  A formal expression of an

application’s execution time in
terms of the execution times of
various system resources

  process
–  A software construct capable of

performing computation; has its
own, private memory space

  processor
–  A socket
–  A CPU core
–  A process

  socket
–  A hardware package containing

at least one CPU core and also
typically caches, a memory
interface, and signaling pins to
connect to memory, other
sockets, and I/O

  strong scaling
–  When increasing the process

count, keeping the application’s
global grid size constant (and ∴
reducing the subgrid size
proportionally); represents using
parallelism to reduce execution
time while keeping accuracy
constant

  subgrid
–  A single process’s subset of the

global grid

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 105

Glossary (cont.)

  surface-to-volume ratio
–  The ratio of the number of cells at

one process that must be
communicated to another
process divided by the total
number of cells at that process;
lower ratios indicate higher
computational efficiencies

  weak scaling
–  When increasing the process

count, increasing the
application’s global grid size
proportionally (and ∴ keeping the
subgrid size constant); represents
using parallelism to increase
accuracy while keeping time
constant

Performance Modeling

“Prediction is difficult - especially for
the future.”

- Y. Berra

“The future will be just like the
present - only more so.”

- Groucho Marx

A Practical Approach to Performance Analysis
and Modeling of Large-Scale Systems

IEEE Cluster, Heraklion, Greece 2010

Kevin J. Barker, Adolfy Hoisie, and Darren J. Kerbyson 106

Case Studies

“One good, solid hope is worth
a carload of certainties”

- The Doctor, Dr. Who

