

Tutorial Outline (the plan!)				
	Page	Duration		
Introduction and motivation		20 mins		
Performance metrics & pitfalls		30 mins		
Performance modeling methodology		40 mins		
COFFEE BREAK		30 mins		
Abstractions		30 mins		
Case Studies				
I: SWEEP3D		60 mins		
LUNCH BREAK		90 mins		
II: SAGE		30 mins		
III: DNS3D		30 mins		
Applications of modeling				
I: Rational system integration		30 mins		
COOKIE BREAK		30 mins		
II: Novel Architectures: Blue Waters		40 mins		
III: Performance comparison of large-scale systems		40 mins		
Conclusions, lessons learned, wrap-up		10 mins		

Modeling Successes	
 Machines ASCI Q ASCI BlueMountain ASCI White ASCI Red CRAY T3E Earth Simulator Itanium-2 cluster BlueGene/L BlueGene/P (early design) CRAY X-1 ASC Red Storm ASC Purple IBM PERCS IBM Blue Waters AMD-based clusters Clearspeed accelerators SiCortex SC5832 Roadrunner 	 Codes SWEEP3D SAGE TYCHO Partisn LBMHD HYCOM MCNP POP KRAK RF-CTH CICE S3D VPIC GTC
	Proudly Operated by Battelle Since 1965

Tutorial Outline (the plan!)				
	Page	Duration		
Introduction and motivation	20 mins			
Performance metrics & pitfalls		30 mins		
Performance modeling methodology		40 mins		
COFFEE BREAK		30 mins		
Abstractions		30 mins		
Case Studies				
I: SWEEP3D		60 mins		
LUNCH BREAK		90 mins		
II: SAGE		30 mins		
III: DNS3D		30 mins		
Applications of modeling				
I: Rational system integration		30 mins		
COOKIE BREAK		30 mins		
II: Novel Architectures: Blue Waters		40 mins		
III: Performance comparison of large-scale systems		40 mins		
Conclusions, lessons learned, wrap-up		10 mins		

Common Metrics: Efficiency							
•	 Measure of how well resources are being used Of limited validity by itself Can be artificially inflated Biased towards slower systems Fxample 1: Efficiency of applications 						
		Solver Flops	Flops	Mflop/s	% Peak	Time (s)	
	Original	64 %	29.8 x 10 ⁹	448.8	5.6 %	66.351	
	Optimized	25 %	8.2 x 10 ⁹	257.7	3.2 %	31.905	
•	 Example 2: Efficiency of systems SAGE (timing_b) on SGI Origin2000 » (250 MHz, 500 MFLOPS Peak per CPU, 2 FLOPS per CP): » Time = 522 sec.; MFLOPS = 26.1 (5.2% of peak) 						
	 SAGE (timing_b) on Itanium-2 » (900 MHz, 3600 MFLOPS Peak per CPU, 4 FLOPS per CP): » Time = 91.1 sec; MFLOPS = 113.0 (3.1% of peak) 						
					Proudly Operate	ed by Battelle Since 196	5

Tutorial Outline (the plan!)			
Introduction and motivation Performance metrics & pitfalls Performance modeling methodology	Page	Duration 20 mins 30 mins 40 mins	
COFFEE BREAK Abstractions Case Studies I: SWEEP3D		30 mins 30 mins 60 mins	
LUNCH BREAK II: SAGE III: DNS3D Applications of modeling		90 mins 30 mins 30 mins	
I: Rational system integration COOKIE BREAK II: Novel Architectures: Blue Waters III: Performance comparison of large-scale systems		30 mins <mark>30 mins</mark> 40 mins 40 mins	
Conclusions, lessons learned, wrap-up		10 mins	

- What if we ran on a 1,000,000-CPU system?
 Plug P=1,000,000 and suitable array sizes into the model
- What if the code were modified to use SIMD, vector, or fused multiply-add instructions?
 - Measure (or estimate) new T_{ma} and plug into model
 - What if our network had hardware support for collectives?
 - Estimate new $T_{sc}(L,P)$ and $T_{ga}(L,P)$ and plug into model

Model variations:

- Model improvements
 - Example: Taking cache effects into consideration
 - Hardware changes (larger/smaller cache) or input parameters (fewer/more cells per subgrid) determine if subgrid fits in cache
 - T_{ma} must be made to depend on subgrid size: T_{ma}(A/P)
- Code changes
 - Example: Breaking up the scatter into pieces and interleaving these smaller scatters with computation
 - T_{overlap} must represent communication/computation overlap

Tutorial Outline (the plan!)					
	Page	Duration			
Introduction and motivation		20 mins			
Performance metrics & pitfalls		30 mins			
Performance modeling methodology		40 mins			
COFFEE BREAK		30 mins			
Abstractions		30 mins			
Case Studies					
I: SWEEP3D		60 mins			
LUNCH BREAK		90 mins			
II: SAGE		30 mins			
III: DNS3D		30 mins			
Applications of modeling					
I: Rational system integration		30 mins			
COOKIE BREAK		30 mins			
II: Novel Architectures: Blue Waters		40 mins			
III: Performance comparison of large-scale systems		40 mins			
Conclusions, lessons learned, wrap-up		10 mins			

Abstractions Simplify Performance Model Components

Abstractions result in simplified performance model:

- Computation
 - Each subgrid contains the same number of cells
 - All cells are of the most computationally intensive material
 - All subgrids are square in shape
 - Per-cell cost derived from measuring compute times of subgrids of varying sizes
- Communication
 - Each subgrid is modeled with four neighbors in 2D
 - All boundaries are the same length
 - All boundary faces touch only a single material
 - Communication consists of boundary exchanges and collectives

Will such abstractions reduce the effectiveness of the performance model?

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

put Dec	ks:					
-	Input Deck	Oceans	Gri (X x Y	d Size x depth)	Resolution]
	Small	Pacific	450>	450x22	1/12 degree	1
	Medium	All	1500>	(1100x26	1/4 degree	1
	Large	All	4500>	3298x26	1/12 degree	
						4
achine F	Paramete	PEs/Node	Memory/	Node	Network	L NICs
ACHINE F Processor (PE) Type	Paramete Clock Speed	PES/Node	Memory/ PE	Node Count	Network Type	L NICs Nod
Achine F Processor (PE) Type HP Alpha EV 68	Paramete Clock Speed 833 MHz	PES/Node	Memory/ PE 2 Gbytes	Node Count 50	Network Type Quadrics QsNet	NICs Node 1
Processor (PE) Type HP Alpha EV 68 HP Alpha EV 68	Paramete Clock Speed 833 MHz 1.25 GHz	PES/Node 4 4	Memory/ PE 2 Gbytes 4 Gbytes	Node Count 50 126	Network Type Quadrics QsNet Quadrics QsNet	NICs Node 1

Tutorial Outline (the plan!)					
	Page	Duration			
Introduction and motivation		20 mins			
Performance metrics & pitfalls		30 mins			
Performance modeling methodology		40 mins			
COFFEE BREAK		30 mins			
Abstractions		30 mins			
Case Studies					
I: SWEEP3D		60 mins			
LUNCH BREAK		90 mins			
II: SAGE		30 mins			
III: DNS3D		30 mins			
Applications of modeling					
I: Rational system integration		30 mins			
COOKIE BREAK		30 mins			
II: Novel Architectures: Blue Waters		40 mins			
III: Performance comparison of large-scale systems		40 mins			
Conclusions, lessons learned, wrap-up		10 mins			

Multiple (Octant Proce	ssing			
	Originating Octant for Sweep	Delay (to next Sweep)			
	-i -j -k	1	_		
	-i -j +k	Py			
	-i +j -k	1			
	-i +j +k	P _x +P _y -1			
	+i -j -k	1			
	+i -j +k	Py			
	+i +j -k	1			
	+i +j +k	P _x +P _y -1			
	Total steps	2P _x +4P _y +2	_		
 Result: Pipeline length is 3 times longer than that of 1 octant for P_x = P_y (but much less than 8 times longer). Result: The pipeline length is asymmetric with respect rot the processor grid. 					

Tutorial Outline (the pla	n!)	
	Page	Duration
Introduction and motivation	-	20 mins
Performance metrics & pitfalls		30 mins
Performance modeling methodology		40 mins
COFFEE BREAK		30 mins
Abstractions		30 mins
Case Studies		
I: SWEEP3D		60 mins
LUNCH BREAK		90 mins
II: SAGE		30 mins
III: DNS3D		30 mins
Applications of modeling		
I: Rational system integration		30 mins
COOKIE BREAK		30 mins
II: Novel Architectures: Blue Waters		40 mins
III: Performance comparison of large-scale systems		40 mins
Conclusions, lessons learned, wrap-up		10 mins

System	Number of Configurations tested	Maximum Processors tested	Maximum error (%)	Average error (%)
ASCI Blue (SGI O2K)	13	5040	12.6	4.4
ASCI Red (Intel Tflops)	13	3072	10.5	5.4
ASCI White (IBM SP3)	19	4096	11.1	5.1
ASCI Q (HP AlphaServer ES45)	24	3716	9.8	3.4
TC2K (HP AlphaServer ES40)	10	464	11.6	4.7
T3E (Cray)	17	1450	11.9	4.1
Roadrunner (Opteron & Cell)	15	6120	6.0	3.8
Dawn (Blue Gene/P)	17	144K	9.8	4.8
Lobo (AMD Barcelona)	15	4352	6.8	3.9

Tutorial Outline (the plan!)		
Introduction and motivation	Page	Duration
Performance metrics & nitfalls		
Performance modeling methodology		40 min
COFFEE BREAK		30 mins
Abstractions		30 min:
Case Studies		
I: SWEEP3D		60 min
LUNCH BREAK		90 min :
II: SAGE		30 min
III: DNS3D		30 min
Applications of modeling		20 min
		30 min
II: Novel Architectures: Blue Waters		40 min
III: Performance comparison of large-scale systems		40 min
Conclusions, lessons learned, wrap-up		10 min

Tutorial Outline (the pla	n!)	
Introduction and motivation Performance metrics & pitfalls	Page	Duration 20 mins 30 mins 40 mins
COFFEE BREAK		30 mins 30 mins 30 mins
Case Studies I: SWEEP3D LUNCH BREAK		60 mins 90 mins
II: SAGE III: DNS3D		30 mins 30 mins
Applications of modeling I: Rational system integration COOKIE BREAK		30 mins 30 mins
II: Novel Architectures: Blue Waters III: Performance comparison of large-scale systems		40 mins 40 mins
Conclusions, lessons learned, wrap-up		10 mins

Applications of Modeling			
More than any other time in history, mankind faces a cross-roads. One path leads to despair and utter hopelessness. The other, to total extinction. Let us pray we have the wisdom to choose correctly.			
Pacific Northw NATIONAL LABC Proudly Operated by Battelle Sin	vest oratory ince 1965		

ASCI Q Performance Data: History						
٠	 Measured ASCI Q performance from the first nodes manufactured to the full sized machine 					
	 Installed in stages 					
	 2 upgrades during installation: PCI bus (33MHz to 66MHz), and Processor (1.0GHz to 1.25GHz with increased L2 cache). 					
	Date	# Nodes	Comments			
	March '01	8	First ES45 cluster available (HP Marlborough)			
	9 th Sept '01	128	First machine at LANL, 33MHz PCI bus			
	24 th Sept '01	128	Some faulty H/W replaced			
	24 th Oct '01	128	O/S patch improved Quadrics Performance			
	4 th Jan '02	512	PCI bus @ 66MHz (but not on all nodes)			
	2 nd Feb '02	512 All @ 66MHz PCI, some nodes configured out				
	20 th April '02	512	All nodes available and running			
	13 th June '02	2	First 1.25GHz nodes (HP Marlborough)			
	20 th Sept '02	1024	QA testing (1.25GHz processors)			
	25 th Nov '02	1024	QB Performance variability testing			
_	25 th Jan '03	1024	QB Performance optimization			
_	1 st May '03	2048	QA+QB combined testing (20Tflop peak)			

Tutorial Outline (the plan!)				
	Page	Duration		
Introduction and motivation	-	20 mins		
Performance metrics & pitfalls		30 mins		
Performance modeling methodology		40 mins		
COFFEE BREAK		30 mins		
Abstractions		30 mins		
Case Studies				
I: SWEEP3D		60 mins		
LUNCH BREAK		90 mins		
II: SAGE		30 mins		
III: DNS3D		30 mins		
Applications of modeling				
I: Rational system integration		30 mins		
COOKIE BREAK		30 mins		
II: Novel Architectures: Blue Waters		40 mins		
III: Performance comparison of large-scale systems		40 mins		
Conclusions, lessons learned, wrap-up		10 mins		

Our (current) assumed communication parameters					
		Latency	Bandwidth		
	QCM -> Hub (W)	0.05us	15 + 15 GB/s		
	Intra-drawer (LI)	0.1us	15 + 15 GB/s		
	Intra-SN (Ir)	0.2us	4 + 4 GB/s		
	Inter-SN (D)	~0.3us	7 + 7 GB/s		
 Note this is only for small message latencies (per hop) and large-message bandwidths. Currently ignores detail which will be available closer to actual hardware delivery. Above does not include MPI software stack (0.5us) 					
Note that these numbers are for illustration purposes only and does not reflect actual performance characteristics of Blue Waters.					

Tutorial Outline (the plan!)			
	Page	Duration	
Introduction and motivation		20 mins	
Performance metrics & pitfalls		30 mins	
Performance modeling methodology		40 mins	
COFFEE BREAK		30 mins	
Abstractions		30 mins	
Case Studies			
I: SWEEP3D		60 mins	
LUNCH BREAK		90 mins	
II: SAGE		30 mins	
III: DNS3D		30 mins	
Applications of modeling			
I: Rational system integration		30 mins	
COOKIE BREAK		30 mins	
II: Novel Architectures: Blue Waters		40 mins	
III: Performance comparison of large-scale systems		40 mins	
Conclusions, lessons learned, wrap-up		10 mins	

Feature	Lobo	Dawn	RR
Cores/node	16	4	40
Nodes/system	272	36,864	3,060
Cores/system	4,352	147,456	122,400
Memory/node (GB)	32	4	32
Streams mem. BW/socket (GB/s)	7.4	10.0	22.2
Streams mem. BW/node (GB/s)	18.8	10.0	88.9
Network BW/node/dir. (GB/s)	2	2.5 (+6)	2
Peak performance (Tflop/s)	38	501	1,393
			(44 Base)

Summary of Architectural Characteristics

Model Accuracy					
 Maximum modeled error excluding outlying "rogue" points 				11	
		Lobo	Dawn	Roadrunner	
S	SAGE	< 7%	< 10%	< 4%	
S	Sweep3D	< 14%	< 4%	< 8% < 11%	Non-Hybrid Hybrid
FYI, two other applications we also looked at:					
v	/PIC	< 6%	< 1%	< 4% < 8%	Non-Hybrid Hybrid
P	Partisn	< 6%	< 12%	< 4%	\checkmark
Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965					

Summary
 Performance is workload-dependent
 Different systems → different bottlenecks
 SAGE is compute-bound on Lobo and Roadrunner Base but bandwidth-bound on Dawn
 Sweep3D is compute-bound on Dawn and Roadunner Base but communication bound on Roadrunner Hybrid and 50-50 compute/ communicate on Lobo
 Different applications → different bottlenecks
 Dawn is bandwidth-bound on SAGE but compute-bound on Sweep3D
 Modeling can help explain performance measurements
 Dawn has more processors than Roadrunner Base, but Roadrunner Base is faster on SAGE
» Model shows Dawn's relatively poor bandwidth limits its performance
 Roadrunner Hybrid has higher per-node peak than Dawn, but Dawn is faster on Sweep3D
» Model shows Roadrunner Hybrid is bottlenecked by communication Proudly Operated by Battelle Since 1965

Tutorial Outline (the plan!)				
	Page	Duration		
Introduction and motivation		20 mins		
Performance metrics & pitfalls		30 mins		
Performance modeling methodology		40 mins		
COFFEE BREAK		30 mins		
Abstractions		30 mins		
Case Studies				
I: SWEEP3D		60 mins		
LUNCH BREAK		90 mins		
II: SAGE		30 mins		
III: DNS3D		30 mins		
Applications of modeling				
I: Rational system integration		30 mins		
COOKIE BREAK		30 mins		
II: Novel Architectures: Blue Waters		40 mins		
III: Performance comparison of large-scale systems		40 mins		
Conclusions, lessons learned, wrap-up		10 mins		

Some Publications Sweep3D A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, H. Alme, "A General Predictive Performance Model for Wavefront Algorithms on Clusters of SMPs," In Proc. of ICPP, Toronto, Canada, August 2000. A. Hoisie, O. Lubeck, H. Wasserman, "Performance and Scalability Analysis of Teraflop-Scale Parallel Architectures Using Multidimensional Wavefront Applications", The International Journal of High Performance Computing Applications, Sage Science Press, 14(4), Winter 2000. A. Hoisie, O. Lubeck, H. Wasserman. Scalability Analysis of Multidimensional Wavefront Algorithms on Large-Scale SMP Clusters. In Proc. of Frontiers of Massively Parallel Computing '99, Annapolis, MD, February 1999. SAGE D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, H.J. Wasserman, M. Gittings, "Predictive Performance and Scalability Modeling of a Large-Scale Application," in Proc. of IEEE/ ACM SC01, Denver, November 2001. Tycho / UMT2K D.J. Kerbyson, S.D. Pautz, A. Hoisie, "Predictive Modeling of Deterministic Sn Transport", in Performance Analysis for Parallel and Distributed Computing, Kluwer, 2003. M. Mathis, D.J. Kerbyson, "A General Performance Model of Structured and Unstructured Mesh Particle Transport Computations", J. Supercomputing, Vol. 34, No. 2, pp. 181-199, 2005.

Network Architecture

- D. Addison, J. Beecroft, D. Hewson, M. McLaren, F. Petrini. "Quadrics QsNet II: A network for Supercomputing Applications" In *Hot Chips* 14, Stanford, CA, August 2003
- S. Coll, F. Petrini, E. Frachtenberg, A. Hoisie, "Performance Evaluation of I/O Traffic and Placement of I/O Nodes on a High Performance Network." In Wksp on Communication Architecture for Clusters 2002 (CAC '02), IPDPS, Fort Lauderdale, FL, April 2002.
- F. Petrini, S. Coll, E. Frachtenberg, A. Hoisie, L. Gurvits,"Using Multirail Networks in High-Performance Clusters." In IEEE Cluster 2001, Newport Beach, CA, October 2001
- F. Petrini ,W. Feng, A. Hoisie, S. Coll, E. Frachtenberg., "The Quadrics Network (QsNet): High-Performance Clustering Technology." In Hot Interconnects 9, Stanford University, Palo Alto, CA, August 2001.
- F. Petrini, S. Coll, E. Frachtenberg, A. Hoisie, "Hardware and Software Based Collective Communication on the Quadrics Network. In IEEE International Symposium on Network Computing and Applications 2001 (NCA 2001), Boston, MA, October 2001

System Integration

- F. Petrini, D.J. Kerbyson, S. Pakin, "The Case of the Missing Supercomputer Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q", in Proc. of IEEE/ACM SC03, Phoenix, AZ, November 2003. Best Paper Award.
- D.J. Kerbyson, A. Hoisie, H.J. Wasserman, "Verifying Large-Scale System Performance During Installation using Modeling", in Hardware/Software Support for Parallel and Distributed Scientific and Engineering Computing, Kluwer, 2003.

About the Authors

Adolfy Hoisie is a Laboratory Fellow, Director of the Center for Advanced Architectures, and the Leader of HPC at the Pacific Northwest National Laboratory. He joined PNNL in 2010 after spending 13 years at Los Alamo National Laboratory. From 1987 to 1997, he was a researcher at Cornell University. His area of research is performance analysis and modeling of systems and applications. He has published extensively, lectured at numerous conferences and other important events in his area worldwide. He was the winner of the Gordon Bell Award in 1996, and co-author to the recently published SIAM monograph on performance optimization.

Darren Kerbyson is a Laboratory Fellow at the Pacific Northwest National Laboratory. He received his BSc in Computer Systems Engineering in 1988, and PhD in Computer Science in 1993 both from the University of Warwick (UK). Prior to joining PNNL in 2010 he was the lead of the Performance and Architecture Lab at Los Alamos National Laboratory for almost 10 years. He was previously a senior member of faculty in Computer Science at the University of Warwick in the UK. His research interests include performance evaluation, performance modeling, and performance optimization of applications on high performance systems as well as image analysis. He has published over 130 papers in these areas over the last 20 years. He is a member of the IEEE Computer Society.

Pacific Northwest

Proudly Operated by Battelle Since 1965

Glossary	
 bandwidth The rate at which data can be transfered from one process to another, often measured in MB/s cell A unit of application data (e.g., an array element); may correspond to a physical entity (e.g., an atom) CPU core The minimal unit of hardware capable of computation (global) grid An application's primary data structure, distributed across all 	 grid point See <i>cell</i> latency The time from when a sending process initiates a message transfer to when a destination process receives it, often measured in µs (May imply a <i>minimally sized</i> message transfer) NIC (network interface controller) A communication endpoint; a node's entry point into the interconnection network
processes; may correspond to a physical entity (e.g., a 3-D volume of particles)	 node A component of a parallel system containing at least one CPU, NIC, and memory subsystem

965

Case Studies	
"One good, solid hope is worth a carload of certainties" - <i>The Doctor, Dr. Who</i>	
Proudly C	Pacific Northwest NATIONAL LABORATORY perated by Battelle Since 1965