
On-demand Connection Management for
OpenSHMEM and OpenSHMEM+MPI

Sourav Chakraborty, Hari Subramoni, Jonathan Perkins,
Ammar A. Awan, and Dhabaleswar K. Panda

Presented by: Md. Wasi-ur- Rahman

Department of Computer Science and Engineering
The Ohio State University

•  Introduction
•  Motivation
•  Problem Statement
•  Design Details
•  Experimental Results
•  Conclusion

HIPS '15

Overview

2

Current Trends in HPC

•  Supercomputing systems scaling rapidly
–  Multi-core architectures and
–  High-performance interconnects

•  InfiniBand is a popular HPC interconnect
–  224 systems (44.8%) in top 500

•  PGAS and hybrid MPI+PGAS models
becoming increasingly popular

•  Supporting frameworks (e.g. Job
Launchers) also need to become more
scalable to handle this growth

Stampede@TACC

SuperMUC@LRZ

Nebulae@NSCS

HIPS '15 3

Parallel Programming Models

•  Key features of PGAS models –
–  Simple shared memory abstractions
–  Light weight one-sided communication
–  Easier to express irregular communication

•  Different approaches to PGAS –
–  Languages – UPC, CAF, X10, Chapel
–  Library – OpenSHMEM, Global Arrays

HIPS '15 4

P1	 P2	 P3	

Shared	 Memory	

P1	 P2	 P3	

Memory	 Memory	 Memory	

P1	 P2	 P3	

Memory	 Memory	 Memory	

Logical	 shared	 memory	

Shared	 Memory	 Model	

OpenMP	
Distributed	 Memory	 Model	 	

MPI	 (Message	 Passing	 Interface)	

ParAAoned	 Global	 Address	 Space	 (PGAS)	

Global	 Arrays,	 UPC,	 OpenSHMEM,	 CAF,	 …	

Hybrid (MPI+PGAS) Programming
•  Application sub-kernels can be re-written in MPI/PGAS

based on communication characteristics
•  Benefits:

–  Best of Distributed Computing Model
–  Best of Shared Memory Computing Model

•  Exascale Roadmap[1]:
–  “Hybrid Programming is a practical way to

 program exascale systems”

[1] The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011,
International Journal of High Performance Computer Applications, ISSN 1094-3420

Kernel	 1	
MPI	

Kernel	 2	
MPI	

Kernel	 3	
MPI	

Kernel	 N	
MPI	

HPC	 ApplicaAon	

Kernel	 2	
PGAS	

Kernel	 N	
PGAS	

HIPS '15 5

MVAPICH2 Software
•  High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP,

and RDMA over Converged Enhanced Ethernet (RoCE)
–  MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002

–  MVAPICH2-X (MPI + PGAS), Available since 2012

–  Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available
since 2014

–  Used by more than 2,375 organizations in 75 countries

–  More than 259,000 downloads from OSU site directly

–  Empowering many TOP500 clusters (Nov ‘14 ranking)
•  7th ranked 519,640-core cluster (Stampede) at TACC

•  11th ranked 160,768-core cluster (Pleiades) at NASA

•  15th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and
many others

–  Available with software stacks of many IB, HSE, and server vendors
including Linux Distros (RedHat and SuSE)

–  http://mvapich.cse.ohio-state.edu

HIPS '15 6

MVAPICH2-X for Hybrid MPI + PGAS Applications

•  Unified communication runtime for MPI, OpenSHMEM, UPC, CAF
available with MVAPICH2-X 1.9 (2011) onwards!
–  Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, MPI(+OpenMP) +

OpenSHMEM
–  MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2

standard compliant (with initial support for UPC 1.3), CAF 2008
standard (OpenUH)

–  Scalable Inter-node and intra-node communication – point-to-point and
collectives

HIPS '15 7

MPI, OpenSHMEM, UPC, CAF or Hybrid (MPI +
PGAS) Applications

Unified MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Calls UPC Calls CAF Calls

OpenSHMEM Design in MVAPICH2-X (Prior Work)

•  OpenSHMEM Stack based on OpenSHMEM Reference Implementation
•  OpenSHMEM Communication over MVAPICH2-X Runtime

–  Improves performance and scalability of pure OpenSHMEM and hybrid
MPI+OpenSHMEM applications[2]

[2] J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand:
Design and Performance Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012.

HIPS '15 8

CommunicaAon	 API	
Symmetric	 Memory	
Management	 API	

Minimal	 Set	 of	 Internal	 API	

InfiniBand,	 RoCE,	 iWARP	

Data	 	
Movement	 CollecAves	 Atomics	 Memory	

Management	

AcAve	
Messages	

One-‐sided	
OperaAons	

MVAPICH2-‐X	 RunAme	

	 Remote	 Atomic	
Ops	

Enhanced	 RegistraAon	
Cache	

OpenSHMEM	 API	

•  Introduction
•  Motivation
•  Problem Statement
•  Design Details
•  Experimental Results
•  Conclusion

HIPS '15

Overview

9

Why is Fast Startup Important
•  Developing and debugging

–  Developers spend a lot of time launching the application
–  Reducing job launch time saves developer-hours

•  Regression testing
–  Complex software have a lot of features to test
–  Large number of short-running tests need to be launched

•  System testing
–  Full-system size jobs to stress-test the network and software

•  Checkpoint-restart
–  An application restart is similar to a launching a new job
–  Faster startup means less time recovering from a failure

HIPS '15 10

Breakdown of Time Spent in
OpenSHMEM Initialization

0

5

10

15

20

25

30

35

32 64 128 256 512 1K 2K 4K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Connection Setup

PMI Exchange

Memory Registration

Shared Memory Setup

Other

•  Connection setup time
the dominant factor

•  PMI Exchange cost also
increases at scale

•  Other costs relatively
constant

•  All numbers taken on
TACC Stampede with 16
processes per node

•  MVAPICH2-X 2.1rc1 based
on OpenSHMEM 1.0h and
GASNet version 1.24.0

HIPS '15 11

Communication Pattern in Common
OpenSHMEM and Hybrid Applications

•  Current OpenSHMEM
runtimes establish all-to-all
connectivity

•  Each process
communicates with only a
small number of peers

•  Establishing all-to-all
connectivity is unnecessary
and wasteful

–  Takes more time
–  Consumes memory
–  Can impact performance of

the HCA

HIPS '15

Application Number of
Processes

Average
Number of

Peers

BT
64 8.7

1024 10.6

EP
64 3

1024 5.01

MG
64 9.46

1024 11.9

SP
64 8.75

1024 10.7

2D Heat
64 5.28

1024 5.40

12

•  Introduction
•  Motivation
•  Problem Statement
•  Design Details
•  Experimental Results
•  Conclusion

HIPS '15

Overview

13

Problem Statement
•  Each OpenSHMEM process registers memory segments with the

HCA and broadcasts the segment information
–  Forces setting up all-to-all connectivity
–  Extra message transfer causes overhead

•  OpenSHMEM uses global barriers during initialization
–  Causes connections to be established
–  Unnecessary synchronization between processes

•  Does not take advantage of recently proposed non-blocking PMI
extensions[3]

–  No overlap between PMI exchange and other operations

•  Can we enhance the existing OpenSHMEM runtime design to
address these challenges and improve the startup performance and
scalability of pure OpenSHMEM and hybrid MPI+OpenSHMEM
programs?

HIPS '15 14

 [3] Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A.
Venkatesh, J. Perkins and D. K. Panda CCGrid ‘15, May 2015

•  Introduction
•  Motivation
•  Problem Statement
•  Design Details
•  Experimental Results
•  Conclusion

HIPS '15

Overview

15

Addressing the Challenges

1.  All-to-all connectivity
–  On-demand connection setup scheme

2.  Global Barrier Synchronization
–  Shared memory based intra-node barrier

3.  PMI Exchange cost
–  Non-blocking PMI extensions

HIPS '15 16

Connection Management in InfiniBand

•  InfiniBand is a low-latency, high-bandwidth switched fabric
interconnect widely used in high performance computing clusters

•  Provides different transport protocols
–  RC: Reliable, connection oriented, requires one endpoint (QP) per peer
–  UD: Unreliable, connectionless, requires only one QP for all peers

•  Requires an out-of-band channel to exchange connection
information before in-band communication

•  Provides Remote Direct Memory Access (RDMA) capabilities
–  Fits well with one sided semantics of OpenSHMEM
–  Only RC protocol is supported
–  Requires memory to be pre-registered with the HCA

•  The initiating process needs to obtain the address, size, and an
identifier (remote_key/rkey) from the target process

HIPS '15 17

RDMA Communication in MVAPICH2-X
•  PMI provides a key-value store, acts as the out-of-band

channel for InfiniBand
–  Each process opens a UD endpoint and puts its address into the

key-value store using PMI Put
–  PMI Fence broadcasts this information to other processes

•  When a process P1 wants to communicate with another
process P2
–  P1 looks up the UD address of P2 using PMI Get
–  P1 opens a RC endpoint and sends the address to P2 using UD
–  P2 also opens a corresponding RC endpoint and replies with its

address to P1 over UD
–  P1 and P2 enables the RC connection and can do send/recv
–  P1, P2 exchange segment information (<address, size, rkey>)
–  P1 can do RDMA read/write operations from memory of P2

HIPS '15 18

Supporting On-demand Connection Setup
•  Each process no longer broadcasts the segment

information (<address, size, rkey>)
•  Segment information is serialized and stored in a buffer

–  Combined with the connect request/reply messages
–  Connection is established only when required
–  Overhead is reduced as one extra message is eliminated

•  The connect request and reply messages are transmitted
over the connectionless UD protocol
–  Underlying conduit (mvapich2x) guarantees reliable delivery

HIPS '15 19

On-demand Connection Setup in
GASNet-mvapich2x conduit

HIPS '15

Main
Thread

Main
Thread

Connection
Manager Thread

Connection
Manager Thread

Process 1 Process 2

Put/Get
(P2) Create QP

QP->Init
Enqueue Send Create QP

QP->Init
QP->RTR

QP->RTR
QP->RTS

Connection
Established
Dequeue Send

Connect Request
(LID, QPN)

(address, size, rkey)
Connect Reply

(LID, QPN)
(address, size, rkey)

QP->RTS
Conn. Established

Put/Get
(P2)

20

Send over UD

Send over RC

Shared Memory Based Intra-node Barrier
•  A global barrier with P processes –

–  Requires at least O(log(P)) connections
–  Takes at least O(log(P)) time
–  Forces unnecessary synchronization

•  With on-demand connection setup mechanism, global
barriers are no longer required
–  Intra-node barriers are still necessary

•  Replace global barriers with shared memory based intra-
node barriers

•  Requires the underlying conduit to handle message
timeout and retransmissions

HIPS '15 21

Using Non-blocking PMI Extensions[3]

Current
start_pes() {
 PMI2_KVS_Put();
 PMI2_KVS_Fence();
 /* Do unrelated
 tasks */
}
connect() {
 PMI2_KVS_Get();
 /* Use values */
}

Proposed
start_pes() {
 PMIX_Iallgather();
 /* Do unrelated
 tasks */
}

connect() {
 PMIX_Wait();
 /* Use values */
}

HIPS '15 22

 [3] Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A.
Venkatesh, J. Perkins and D. K. Panda CCGrid ‘15, May 2015

•  PMI is used to exchange the UD endpoint addresses
•  Different initialization related tasks can be overlapped

with the PMI exchange
–  Registering memory with the HCA
–  Setting up shared memory channels
–  Allocating resources

•  The data exchanged through PMI is only required
when a process tries to communicate with another
process. Many applications perform computation
between start_pes and the first communication
–  Reading input files
–  Preprocessing the input
–  Dividing the problem into sub-problems

HIPS '15

Using Non-blocking PMI Extensions

23

•  Introduction
•  Motivation
•  Problem Statement
•  Design Details
•  Experimental Results
•  Conclusion

HIPS '15

Overview

24

Experimental Setup

•  Cluster-A
–  2.67 GHz Intel Westmere dual socket, quad-core processors
–  12 GB Physical memory per node
–  Mellanox MT26428 QDR Connect-X HCAs (32 Gbps data rate)

•  Cluster-B (TACC Stampede)
–  2.70 GHz Intel SandyBridge dual socket, eight-core processors
–  32 GB physical memory per node
–  MT4099 FDR ConnectX-3 HCAs (54 Gbps data rate)

•  All evaluations performed with MVAPICH2-X 2.1rc1, based on
–  OpenSHMEM reference implementation 1.0h
–  GASNet version 1.24.0

•  OSU Microbenchmark Suite 4.4
–  Enhanced to measure OpenSHMEM initialization performance

HIPS '15 25

Performance of OpenSHMEM Initialization

0

10

20

30

40

50

60

70
16

32

64

12
8

25
6

51
2

1K

2K

4K

8K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

start_pes - Current

start_pes - Proposed

•  Constant initialization
time at any scale using
non-blocking PMI calls

•  start_pes() performs
29.6 times faster with
8,192 processes

•  Taken on Cluster-B
(TACC Stampede)

•  16 Processes per node

HIPS '15 26

29.6x

Breakdown of Time Spent in
OpenSHMEM Initialization

0

0.5

1

1.5

2

2.5

3

3.5

4

32 64 128 256 512 1K 2K 4K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Memory Registration

Shared Memory Setup

Other

•  Connection setup
cost eliminated

•  PMI exchange cost
overlapped

•  Constant initialization
cost at any scale

•  “Other” costs include
opening HCA, reading
configuration files etc.

•  Taken on Cluster-B
(TACC Stampede)

•  16 Processes per node

HIPS '15 27

Performance of OpenSHMEM Hello World

0

20

40

60

80

100
16

32

64

12
8

25
6

51
2

1K

2K

4K

8K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Hello World - Current

Hello World - Proposed

•  Performance of Hello
World improved by 8.31
times with 8,192
processes

•  Taken on Cluster-B
(TACC Stampede)

•  16 Processes per node

HIPS '15 28

8.31x

Overhead of On-demand Connection Setup
on Performance of Point-to-Point Operations

HIPS '15

0
50

100
150
200
250
300
350

4 32

25
6

2K

16
K

12
8K

1M

La
te

nc
y

(u
s)

Message Size

shmem_get

Static
On-demand

0
50

100
150
200
250
300
350

4 32

25
6

2K

16
K

12
8K

1M

La
te

nc
y

(u
s)

Message Size

shmem_put

Static
On-demand

0

1

2

3

4

5

6

fa
dd

fin
c

ad
d

in
c

cs
w

ap

sw
ap

La
te

nc
y

(u
s)

Operation

shmem atomics

Static
On-demand

•  Average of 1,000 iterations, 5 runs each
•  Identical performance with static connection setup
•  Taken on Cluster-A

29

Overhead of On-demand Connection Setup
on Performance of Collective Operations

HIPS '15

0

50

100

150

200

250

4 32

25
6

2K

16
K

12
8K

1M

La
te

nc
y

(m
s)

Message Size

shmem_collect
(512 processes)

Static
On-demand

•  Average of 1,000 iterations, 5 runs each
•  Identical performance with static connection setup
•  Taken on Cluster-A, 8 processes per node

0

0.5

1

1.5

2

2.5

4 32

25
6

2K

16
K

12
8K

1M

La
te

nc
y

(m
s)

Message Size

shmem_reduce
(512 processes)

Static
On-demand

0

4

8

12

16

20

8 16

32

64

12
8

25
6

51
2

La
te

nc
y

(u
s)

Number of Processes

shmem_barrier_all
(8-512 processes)

Static
On-demand

30

Performance of Pure OpenSHMEM
Applications (NAS Parallel Benchmarks)[4]

•  Improvement observed
depends on -
–  Average number of

communicating peers
–  Time spent in computation

before first communication
•  18-35% improvement in total

execution time (reported by
job launcher)

•  256 Processes
•  Cluster-A
•  8 Processes per Node
•  Class B data

HIPS '15

0

2

4

6

8

BT EP MG SP

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Benchmark

Static
On-demand

31

[4] OpenSHMEM implementation of NAS Parallel Benchmarks available at
https://github.com/openshmem-org/openshmem-npbs

Overhead on Performance of Hybrid MPI
+OpenSHMEM Application (Graph500)

•  MPI+OpenSHMEM
implementation of
Graph500[5] used

•  Both static and on-
demand connection
setup schemes show
identical performance

•  Cluster-A
•  8 Processes per Node
•  1,024 Vertices
•  16,384 Edges

HIPS '15

0

50

100

150

200

250

300

16 32 64 128 256 512

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Processes

Static

On-demand

[5] J. Jose, S. Potluri, K. Tomko, and D. K. Panda, "Designing Scalable Graph500 Benchmark with Hybrid
MPI+OpenSHMEM Programming Models," in ISC '13

32

Resource Usage and Scalability

1

10

100

1000

10000

64 256 1K 4K

Av
er

ag
e

N
um

be
r o

f E
nd

po
in

ts

C
re

at
ed

 p
er

 P
ro

ce
ss

Number of Processes

Static BT EP
MG SP 2D Heat

262x

93x

(Actual)

•  Number of connections
limited by what is
required

•  More than 90%
(8x-100x) reduction in
number of connections
and associated
resources across
applications

•  Taken on Cluster-A
•  8 Processes per node

HIPS '15

(Projected)

33

•  Introduction
•  Motivation
•  Problem Statement
•  Design Details
•  Experimental Results
•  Conclusion

HIPS '15

Overview

34

Conclusion
•  Static connection establishment is unnecessary and wasteful
•  On-demand connection management in OpenSHMEM

improves performance and saves memory
•  start_pes can be completed in constant time at any scale using

recently proposed non-blocking PMI extensions
•  start_pes is 29.6x faster with 8,192 processes
•  Hello World is 8.3x faster with 8,192 processes
•  Total execution time of NAS benchmarks reduced by up to

35% with 256 processes
•  Number of connections and endpoints reduced by > 90% (up

to 100 times with 1,024 processes)
•  Proposed designs already available since MVAPICH2-X 2.1rc1
•  Support for UPC and other PGAS languages coming soon!

HIPS '15 35

Thank you!

HIPS '15

{chakrabs, subramon, perkinjo, awan, panda}
@cse.ohio-state.edu

http://nowlab.cse.ohio-state.edu

36

