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Current Trends in HPC 

•  Supercomputing systems scaling rapidly 
–  Multi-core architectures and 
–  High-performance interconnects 

•  InfiniBand is a popular HPC interconnect 
–  224 systems (44.8%) in top 500 

•  PGAS and hybrid MPI+PGAS models 
becoming increasingly popular 

•  Supporting frameworks (e.g. Job 
Launchers) also need to become more 
scalable to handle this growth 
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Parallel Programming Models 

•  Key features of PGAS models – 
–  Simple shared memory abstractions  
–  Light weight one-sided communication  
–  Easier to express irregular communication 

•  Different approaches to PGAS – 
–  Languages – UPC, CAF, X10, Chapel 
–  Library – OpenSHMEM, Global Arrays 
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Hybrid (MPI+PGAS) Programming 
•  Application sub-kernels can be re-written in MPI/PGAS 

based on communication characteristics 
•  Benefits: 

–  Best of Distributed Computing Model 
–  Best of Shared Memory Computing Model 

•  Exascale Roadmap[1]:  
–  “Hybrid Programming is a practical way to 

 program exascale systems” 

[1] The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011, 
International Journal of High Performance Computer Applications, ISSN 1094-3420 
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MVAPICH2 Software 
•  High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, 

and RDMA over Converged Enhanced Ethernet (RoCE) 
–  MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002 

–  MVAPICH2-X (MPI + PGAS), Available since 2012 

–  Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available 
since 2014 

–  Used by more than  2,375 organizations in 75 countries 

–  More than 259,000 downloads from OSU site directly 

–  Empowering many TOP500 clusters (Nov ‘14 ranking) 
•   7th ranked 519,640-core cluster (Stampede) at  TACC 

•  11th ranked 160,768-core cluster (Pleiades) at NASA 

•  15th  ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and 
many others 

–  Available with software stacks of many IB, HSE, and server vendors 
including Linux Distros (RedHat and SuSE) 

–  http://mvapich.cse.ohio-state.edu 
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MVAPICH2-X for Hybrid MPI + PGAS Applications 

•  Unified communication runtime for MPI, OpenSHMEM, UPC, CAF 
available with MVAPICH2-X 1.9 (2011) onwards!  
–  Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, MPI(+OpenMP) + 

OpenSHMEM 
–  MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 

standard compliant (with initial support for UPC 1.3), CAF 2008 
standard (OpenUH) 

–  Scalable Inter-node and intra-node communication – point-to-point and 
collectives 
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OpenSHMEM Design in MVAPICH2-X (Prior Work) 

•  OpenSHMEM Stack based on OpenSHMEM Reference Implementation 
•  OpenSHMEM Communication over MVAPICH2-X Runtime 

–  Improves performance and scalability of pure OpenSHMEM and hybrid         
MPI+OpenSHMEM applications[2]  

[2] J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: 
Design and Performance Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012. 
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Why is Fast Startup Important 
•  Developing and debugging 

–  Developers spend a lot of time launching the application 
–  Reducing job launch time saves developer-hours 

•  Regression testing 
–  Complex software have a lot of features to test 
–  Large number of short-running tests need to be launched 

•  System testing 
–  Full-system size jobs to stress-test the network and software 

•  Checkpoint-restart 
–  An application restart is similar to a launching a new job 
–  Faster startup means less time recovering from a failure 
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Breakdown of Time Spent in 
OpenSHMEM Initialization 
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•  Connection setup time 
the dominant factor 

•  PMI Exchange cost also 
increases at scale 

•  Other costs relatively 
constant 

•  All numbers taken on 
TACC Stampede with 16 
processes per node 

•  MVAPICH2-X 2.1rc1 based 
on OpenSHMEM 1.0h and 
GASNet version 1.24.0 
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Communication Pattern in Common 
OpenSHMEM and Hybrid Applications 

•  Current OpenSHMEM 
runtimes establish all-to-all 
connectivity 

•  Each process 
communicates with only a 
small number of peers 

•  Establishing all-to-all 
connectivity is unnecessary 
and wasteful 

–  Takes more time 
–  Consumes memory 
–  Can impact performance of 

the HCA 
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Problem Statement 
•  Each OpenSHMEM process registers memory segments with the 

HCA and broadcasts the segment information 
–  Forces setting up all-to-all connectivity 
–  Extra message transfer causes overhead 

•  OpenSHMEM uses global barriers during initialization 
–  Causes connections to be established 
–  Unnecessary synchronization between processes 

•  Does not take advantage of recently proposed non-blocking PMI 
extensions[3] 

–  No overlap between PMI exchange and other operations 

•  Can we enhance the existing OpenSHMEM runtime design to 
address these challenges and improve the startup performance and 
scalability of pure OpenSHMEM and hybrid MPI+OpenSHMEM 
programs? 
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     [3] Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. 
Venkatesh, J. Perkins and D. K. Panda CCGrid ‘15, May 2015 
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Addressing the Challenges 

1.  All-to-all connectivity 
–  On-demand connection setup scheme 

2.  Global Barrier Synchronization 
–  Shared memory based intra-node barrier 

3.  PMI Exchange cost 
–  Non-blocking PMI extensions 
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Connection Management in InfiniBand 

•  InfiniBand is a low-latency, high-bandwidth switched fabric 
interconnect widely used in high performance computing clusters 

•  Provides different transport protocols 
–  RC: Reliable, connection oriented, requires one endpoint (QP) per peer 
–  UD: Unreliable, connectionless, requires only one QP for all peers 

•  Requires an out-of-band channel to exchange connection 
information before in-band communication 

•  Provides Remote Direct Memory Access (RDMA) capabilities 
–  Fits well with one sided semantics of OpenSHMEM 
–  Only RC protocol is supported 
–  Requires memory to be pre-registered with the HCA 

•  The initiating process needs to obtain the address, size, and an 
identifier (remote_key/rkey) from the target process 
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RDMA Communication in MVAPICH2-X 
•  PMI provides a key-value store, acts as the out-of-band 

channel for InfiniBand 
–  Each process opens a UD endpoint and puts its address into the 

key-value store using PMI Put 
–  PMI Fence broadcasts this information to other processes 

•  When a process P1 wants to communicate with another 
process P2 
–  P1 looks up the UD address of P2 using PMI Get 
–  P1 opens a RC endpoint and sends the address to P2 using UD 
–  P2 also opens a corresponding RC endpoint and replies with its 

address to P1 over UD 
–  P1 and P2 enables the RC connection and can do send/recv 
–  P1, P2 exchange segment information (<address, size, rkey>) 
–  P1 can do RDMA read/write operations from memory of P2 
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Supporting On-demand Connection Setup 
•  Each process no longer broadcasts the segment 

information (<address, size, rkey>) 
•  Segment information is serialized and stored in a buffer 

–  Combined with the connect request/reply messages 
–  Connection is established only when required 
–  Overhead is reduced as one extra message is eliminated 

•  The connect request and reply messages are transmitted 
over the connectionless UD protocol 
–  Underlying conduit (mvapich2x) guarantees reliable delivery 
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On-demand Connection Setup in 
GASNet-mvapich2x conduit 
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Shared Memory Based Intra-node Barrier 
•  A global barrier with P processes – 

–  Requires at least O(log(P)) connections 
–  Takes at least O(log(P)) time 
–  Forces unnecessary synchronization 

•  With on-demand connection setup mechanism, global 
barriers are no longer required 
–  Intra-node barriers are still necessary 

•  Replace global barriers with shared memory based intra-
node barriers 

•  Requires the underlying conduit to handle message 
timeout and retransmissions 
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Using Non-blocking PMI Extensions[3] 

Current 
start_pes() {
  PMI2_KVS_Put();
  PMI2_KVS_Fence();
  /* Do unrelated
     tasks */
}
connect() {
  PMI2_KVS_Get();
  /* Use values */
}

Proposed 
start_pes() {
  PMIX_Iallgather();
  /* Do unrelated
     tasks */
}

connect() {
  PMIX_Wait();
  /* Use values */
}
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      [3] Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. 
Venkatesh, J. Perkins and D. K. Panda CCGrid ‘15, May 2015 



•  PMI is used to exchange the UD endpoint addresses 
•  Different initialization related tasks can be overlapped 

with the PMI exchange 
–  Registering memory with the HCA 
–  Setting up shared memory channels 
–  Allocating resources 

•  The data exchanged through PMI is only required 
when a process tries to communicate with another 
process. Many applications perform computation 
between start_pes and the first communication 
–  Reading input files 
–  Preprocessing the input 
–  Dividing the problem into sub-problems 
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Experimental Setup 

•  Cluster-A  
–  2.67 GHz Intel Westmere dual socket, quad-core processors 
–  12 GB Physical memory per node 
–  Mellanox MT26428 QDR Connect-X HCAs (32 Gbps data rate)  

•  Cluster-B (TACC Stampede) 
–  2.70 GHz Intel SandyBridge dual socket, eight-core processors 
–  32 GB physical memory per node 
–  MT4099 FDR ConnectX-3 HCAs (54 Gbps data rate) 

•  All evaluations performed with MVAPICH2-X 2.1rc1, based on 
–  OpenSHMEM reference implementation 1.0h 
–  GASNet version 1.24.0 

•  OSU Microbenchmark Suite 4.4 
–  Enhanced to measure OpenSHMEM initialization performance 
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Performance of OpenSHMEM Initialization 
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•  Constant initialization 
time at any scale using 
non-blocking PMI calls 

•  start_pes() performs 
29.6 times faster with 
8,192 processes  

•  Taken on Cluster-B 
(TACC Stampede) 

•  16 Processes per node 
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Breakdown of Time Spent in 
OpenSHMEM Initialization 
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•  Connection setup 
cost eliminated 

•  PMI exchange cost 
overlapped 

•  Constant initialization 
cost at any scale 
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opening HCA, reading 
configuration files etc. 

•  Taken on Cluster-B 
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Performance of OpenSHMEM Hello World 
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•  Performance of Hello 
World improved by 8.31 
times with 8,192 
processes 

•  Taken on Cluster-B 
(TACC Stampede) 

•  16 Processes per node 
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Overhead of On-demand Connection Setup 
on Performance of Point-to-Point Operations 
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•  Average of 1,000 iterations, 5 runs each 
•  Identical performance with static connection setup 
•  Taken on Cluster-A 
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Overhead of On-demand Connection Setup 
on Performance of Collective Operations 

HIPS '15 

0 

50 

100 

150 

200 

250 

4 32
 

25
6 

2K
 

16
K

 

12
8K

 

1M
 

La
te

nc
y 

(m
s)

 

Message Size 

shmem_collect 
(512 processes) 

Static 
On-demand 

•  Average of 1,000 iterations, 5 runs each 
•  Identical performance with static connection setup 
•  Taken on Cluster-A, 8 processes per node 
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Performance of Pure OpenSHMEM 
Applications (NAS Parallel Benchmarks)[4] 

•  Improvement observed 
depends on - 
–  Average number of 

communicating peers 
–  Time spent in computation 

before first communication 
•  18-35% improvement in total 

execution time (reported by 
job launcher) 

 
•  256 Processes 
•  Cluster-A 
•  8 Processes per Node 
•  Class B data 
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[4] OpenSHMEM implementation of NAS Parallel Benchmarks available at 
https://github.com/openshmem-org/openshmem-npbs 



Overhead on Performance of Hybrid MPI
+OpenSHMEM Application (Graph500) 

•  MPI+OpenSHMEM 
implementation of 
Graph500[5] used 

•  Both static and on-
demand connection 
setup schemes show 
identical performance 

 
•  Cluster-A 
•  8 Processes per Node 
•  1,024 Vertices 
•  16,384 Edges 
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[5] J. Jose, S. Potluri, K. Tomko, and D. K. Panda, "Designing Scalable Graph500 Benchmark with Hybrid 
MPI+OpenSHMEM Programming Models," in ISC '13 
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Resource Usage and Scalability 
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•  Number of connections 
limited by what is 
required 

•  More than 90% 
(8x-100x) reduction in 
number of connections 
and associated 
resources across 
applications 

•  Taken on Cluster-A 
•  8 Processes per node 
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Conclusion 
•  Static connection establishment is unnecessary and wasteful 
•  On-demand connection management in OpenSHMEM 

improves performance and saves memory 
•  start_pes can be completed in constant time at any scale using 

recently proposed non-blocking PMI extensions 
•  start_pes is 29.6x faster with 8,192 processes 
•  Hello World is 8.3x faster with 8,192 processes 
•  Total execution time of NAS benchmarks reduced by up to 

35% with 256 processes 
•  Number of connections and endpoints reduced by > 90% (up 

to 100 times with 1,024 processes) 
•  Proposed designs already available since MVAPICH2-X 2.1rc1 
•  Support for UPC and other PGAS languages coming soon! 
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Thank you! 
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