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» Future extreme scale computing systems will be significantly power
constrained
» Current petascale era software & hardware ecosystem:
B Does it need to evolve?
B Or be completely replaced?
Many of these questions relate to the underlying execution model

Execution model:

B Conceptual framework describing orchestration of computation on parallel
hardware & software resources

B Connects application & algorithms to the underlying architecture & systems
software

» How do we keep thousands of compute nodes busy?
B Load balancing problem
B Under different execution models
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Communicating Sequential Processes (CSP) as defined in Hoare’78 '
B Core execution model at the heart of MPI-1 two-sided communication
Bulk Synchronous Processing (BSP) as defined in Valiant’90 2
B Core execution model for many PGAS environments
B MPI-RMA, OpenSHMEM, ComEx, GASNet, Global Arrays, etc.
B MapReduce-like systems
Load balancing can be implemented under both CSP & BSP

Shared memory execution models:

B Considered under a single umbrella in this work (Shared Address Space,
SAS)

B Key feature: direct access to a common data store

Study the performance impact of different combinations of execution
models together with load balancing techniques

B Target: modern multicore clusters

"Hoare, C. A. R. (1978). "Communicating sequential processes". Communications of the ACM 21 (8): 666—677
2| eslie G. Valiant, “A Bridging Model for Parallel Computation,” Communications of the ACM, Volume 33 Issue 8, Aug. 1990 3
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» Case study using the Self-Consistent Field (SCF) method
B Electronic structure calculation in computational chemistry
» Several important challenges for execution models:
B [rregular work distribution
B Dependent on structural properties of the input
B Block-sparse data accesses
B Tradeoffs between locality & load balance

» Lessons from SCF are broadly applicable

» Explored elements:

B Execution models
® CSP, BSP, Hierarchical CSP & BSP with SAS

B Load balancing
® Novel semi-matching formulation
® Hypergraph partitionining
® Work stealing
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= Self-Consistent Field method
» Work Partitioners
» Execution Model Variants
B CSP only: MPI

B BSP only: Global Arrays
B CSP + SAS, BSP + SAS

B Work stealing
B Work stealing + SAS

» Experimental Results
» Conclusions
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» Fundamental quantum chemistry calculation
B Used to build the Hartree-Fock matrix

B Building block for higher-order methods: Coupled Cluster, Density
Functional Theory

» Dominant computational kernel in SCF:
B Two-electron contribution to the Fock matrix
» Principal data structures: Schwarz, density & Fock matrices
B 2D block distribution amongst processes on a cluster
» Computationally sparse n* calculation over n? data space
B nis number of basis sets in input
B Set of n* tasks over the data space

B Each task: reads tiles from Schwarz & density matrices, accumulate results
onto tiles of the Fock matrix

B Most tasks do not contribute significantly to the result
B < 1% of tasks do contribute, for large inputs
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SCF method (cont.)

» Pure locality-based schedule:

# of tasks per GA process - locality only
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» Maximizing locality with respect to data tile access produces severe
load imbalance

» Computational cost of each task varies (roughly proportional to number
of non-zeroes in data tiles)

| 7
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Work Partitioners

» Given these challenges from the SCF application
B Explore best options for mapping it efficiently onto a cluster

» Deal with load imbalance first

» Task weights:
B Each task accesses two distinct data tiles from Schwarz matrix
B Examine all elements in the Cartesian product of the tiles
B Weight corresponds to number of non-zeroes in the product

» Map tasks to processes on the cluster:

B Such that the sum of the task weights per process is approximately
equal

» Two static approaches:
B Hypergraph partitioning
B Weighted semi-matching over bipartite graph
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Hypergraph Partitioning

» PaToH hypergraph formulation:

Unique tile coordinates (4 unique tiles per task)
Tasks (cells in (nets in hypergraph)

Tasks (cells in

. hypergraph)

one net per
unique tile

» Each task accesses six different tiles (read 4 tiles of Schwarz & density,
write 2 tiles of Fock)
B However, only four unique sets of coordinates
» Multi-constraint formulation:
B Equalize weight and number of tasks per process
B Larger number of lighter tasks is not equivalent to a few heavy tasks o
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Semi-matching Partitioning

» Weighted semi-matching formulation:

Process ranks

weight=w;  weight=w;  weight=w,+w, weight=w,

» Bi-partite graph with tasks & processes

» Single-constraint formulation:
B Equalize sum of task weights per process
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= Execution Model Variants
B CSP only: MPI

B BSP only: Global Arrays
B CSP + SAS, BSP + SAS

B Work stealing
B Work stealing + SAS

» Experimental Results
» Conclusions
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» MPI is the de facto programming model for clusters

B Core execution model is CSP
» Basic concept: need a two-sided communication schedule

B What does each rank need to send and receive?

B Use static work partitioners and 2D data decomposition to create schedule
» Computation & communication macro-steps
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» Main difference with CSP:
B One sided communication enables “position-independent” representation of
tasks
B Can execute on any process since data accesses are specified in absolute/
global terms
B No need to build communication schedule

» Key concept to enable work stealing across processes
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» Couple CSP & BSP implementations with SAS execution model
B As realized in the OpenMP programming model

» Two-level load balancing:
M Inter-node using CSP or BSP
B [ntra-node load balancing across threads

» CSP + SAS
B Implemented on top of the hypergraph partitioning approach
B Master thread performs communication
B All threads access communicated data from shared buffers
B Synchronization to prepare write-back (Fock) buffer

» BSP + SAS

B Communication is done inline by all threads (synchronized by locks)
B Not much overhead due to large computational load
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» Distributed work stealing across processes on a cluster

» Dynamic adaptivity in the presence of load imbalance

» Two variants:

B Per-core work stealing

B Work stealing + SAS

» Both use one-sided communication to access task queues on
remote compute nodes

» Persistence-based approach:

B Initial seeding of task queues based on pure locality approach

B Keep track of which actual tasks were executed by the process to
seed queues for following iterations

» Work stealing + SAS
B Steal tasks at a coarser granularity
B Execute them using OpenMP work sharing constructs 15
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Experimental Results

» Ran on up to 2048 cores of PNNL's Olympus cluster

B Dual-socket AMD Interlagos processors (16 cores per sockets), 64GB RAM
per node

B Use every other core for runs due to shared floating point units (Bulldozer)
B QDR Infiniband interconnect

» 16 processes per node or 16 threads w/single process for OpenMP runs
» Two input decks:

B 256 atoms of Beryllium (Be), 356 atoms of Be
» Work stealing granularities:

B Process-based: 1 task

B SAS-based: 1024 tasks
® To reduce steal overhead and keep threads busy

BSP CSP

Intra-node/Inter-node | WS | SM | HG | HG
Process-centric ° ° ° °
OpenMP guided (MT) ° ° °

Table I: SCF two-electron kernel versions where WS is Work Stealing, SM
is Semi-Matching, and HG is Hypergraph. 17



Experimental Results (cont.)
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Process Execution Breakdown: 352 Atoms
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Analysis & Conclusions
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Studied a large number of execution model variants for SCF
benchmark

B Different communication primitives, task scheduling, concurrency
Statically scheduled versions can match and sometimes exceed
work stealing-based version

Semi-matching executes fast for a static partitioning
B Can produce lower quality partitionings

Hypergraph is better but very slow

System wide dynamic adaptation

B Requires the right kind of communication & concurrency primitives
Execution model design choices & assumptions can limit critical
optimizations

B Such as global, dynamic load balancing

Future work: consider other execution & programming models, improve
accuracy of static partitioning formulations | 1o



