o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

On the Impact of Execution
Models: A Case Study In
Computational Chemistry

DANIEL CHAVARRIA-MIRANDA, MAHANTESH HALAPPANAVAR, SRIRAM
KRISHNAMOORTHY, JOSEPH MANZANO, ABHINAV VISHNU, ADOLFY HOISIE

2015 Large-Scale Parallel Processing workshop (LSPP)
29t |[EEE International Parallel & Distributed Processing Symposium (IPDPS)
May 18-21, Hyderabad, India

EEEEEEEEEEEE

7

Pacific Northwest
NATIONAL LABORATORY

Motivati
Ot I vat I O n Proudly Operated by Battelle Since 1965

» Future extreme scale computing systems will be significantly power
constrained
» Current petascale era software & hardware ecosystem:
B Does it need to evolve?
B Or be completely replaced?
Many of these questions relate to the underlying execution model

Execution model:

B Conceptual framework describing orchestration of computation on parallel
hardware & software resources

B Connects application & algorithms to the underlying architecture & systems
software

» How do we keep thousands of compute nodes busy?
B Load balancing problem
B Under different execution models

vV Yy

7

Pacific Northwest
NATIONAL LABORATORY

E Xe C u t i O n M 0 d e I S Proudly Operated by Baftelle Since 1965

\ 2

Communicating Sequential Processes (CSP) as defined in Hoare’78 '
B Core execution model at the heart of MPI-1 two-sided communication
Bulk Synchronous Processing (BSP) as defined in Valiant’90 2
B Core execution model for many PGAS environments
B MPI-RMA, OpenSHMEM, ComEx, GASNet, Global Arrays, etc.
B MapReduce-like systems
Load balancing can be implemented under both CSP & BSP

Shared memory execution models:

B Considered under a single umbrella in this work (Shared Address Space,
SAS)

B Key feature: direct access to a common data store

Study the performance impact of different combinations of execution
models together with load balancing techniques

B Target: modern multicore clusters

"Hoare, C. A. R. (1978). "Communicating sequential processes". Communications of the ACM 21 (8): 666—677
2| eslie G. Valiant, “A Bridging Model for Parallel Computation,” Communications of the ACM, Volume 33 Issue 8, Aug. 1990 3

o

Pacific Northwest

Self-Consistent Field Method (SCF) e

» Case study using the Self-Consistent Field (SCF) method
B Electronic structure calculation in computational chemistry
» Several important challenges for execution models:
B [rregular work distribution
B Dependent on structural properties of the input
B Block-sparse data accesses
B Tradeoffs between locality & load balance

» Lessons from SCF are broadly applicable

» Explored elements:

B Execution models
® CSP, BSP, Hierarchical CSP & BSP with SAS

B Load balancing
® Novel semi-matching formulation
® Hypergraph partitionining
® Work stealing

7

Pacific Northwest
NATIONAL LABORATORY

Outli
u t I n e Proudly Operated by Battelle Since 1965

>
= Self-Consistent Field method
» Work Partitioners
» Execution Model Variants
B CSP only: MPI

B BSP only: Global Arrays
B CSP + SAS, BSP + SAS

B Work stealing
B Work stealing + SAS

» Experimental Results
» Conclusions

7

Pacific Northwest

Self-Consistent Field Method (SCF) e

» Fundamental quantum chemistry calculation
B Used to build the Hartree-Fock matrix

B Building block for higher-order methods: Coupled Cluster, Density
Functional Theory

» Dominant computational kernel in SCF:
B Two-electron contribution to the Fock matrix
» Principal data structures: Schwarz, density & Fock matrices
B 2D block distribution amongst processes on a cluster
» Computationally sparse n* calculation over n? data space
B nis number of basis sets in input
B Set of n* tasks over the data space

B Each task: reads tiles from Schwarz & density matrices, accumulate results
onto tiles of the Fock matrix

B Most tasks do not contribute significantly to the result
B < 1% of tasks do contribute, for large inputs

o

Pacific Northwest
NATIONAL LABORATORY

SCF method (cont.)

» Pure locality-based schedule:

of tasks per GA process - locality only

30000

25000

20000

15000

of tasks

10000

5000

O LIS L L L L I O O

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

process rank

» Maximizing locality with respect to data tile access produces severe
load imbalance

» Computational cost of each task varies (roughly proportional to number
of non-zeroes in data tiles)

| 7

7

Pacific Northwest
NATIONAL LABORATORY

Work Partitioners

» Given these challenges from the SCF application
B Explore best options for mapping it efficiently onto a cluster

» Deal with load imbalance first

» Task weights:
B Each task accesses two distinct data tiles from Schwarz matrix
B Examine all elements in the Cartesian product of the tiles
B Weight corresponds to number of non-zeroes in the product

» Map tasks to processes on the cluster:

B Such that the sum of the task weights per process is approximately
equal

» Two static approaches:
B Hypergraph partitioning
B Weighted semi-matching over bipartite graph

Pacific Northwest
NATIONAL LABORATORY

Hypergraph Partitioning

» PaToH hypergraph formulation:

Unique tile coordinates (4 unique tiles per task)
Tasks (cells in (nets in hypergraph)

Tasks (cells in

. hypergraph)

one net per
unique tile

» Each task accesses six different tiles (read 4 tiles of Schwarz & density,
write 2 tiles of Fock)
B However, only four unique sets of coordinates
» Multi-constraint formulation:
B Equalize weight and number of tasks per process
B Larger number of lighter tasks is not equivalent to a few heavy tasks o

o

Pacific Northwest
NATIONAL LABORATORY

Semi-matching Partitioning

» Weighted semi-matching formulation:

Process ranks

weight=w; weight=w; weight=w,+w, weight=w,

» Bi-partite graph with tasks & processes

» Single-constraint formulation:
B Equalize sum of task weights per process

o

Pacific Northwest
NATIONAL LABORATORY

]
O u t I I n e Proudly Operated by Battelle Since 1965

>

>

>

= Execution Model Variants
B CSP only: MPI

B BSP only: Global Arrays
B CSP + SAS, BSP + SAS

B Work stealing
B Work stealing + SAS

» Experimental Results
» Conclusions

o

Pacific Northwest

C S P o n Iy : M P I NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

» MPI is the de facto programming model for clusters

B Core execution model is CSP
» Basic concept: need a two-sided communication schedule

B What does each rank need to send and receive?

B Use static work partitioners and 2D data decomposition to create schedule
» Computation & communication macro-steps

P

process rank i _ae®

e
=

O

\

S

syuel

13430 03 Ju3s ‘I yuel
AQ paumo sa|u elep

assigned tasks

o

Pacific Northwest
NATIONAL LABORATORY

B S P O n Iy : G I O b a I A rrays Proudly Operated by Balielle Since 1965

» Main difference with CSP:
B One sided communication enables “position-independent” representation of
tasks
B Can execute on any process since data accesses are specified in absolute/
global terms
B No need to build communication schedule

» Key concept to enable work stealing across processes

7

Pacific Northwest

‘ S P + SAS B S P + SAS NATIONAL L ABORATORY
5 Proudly Operated by Battelle Since 1965

» Couple CSP & BSP implementations with SAS execution model
B As realized in the OpenMP programming model

» Two-level load balancing:
M Inter-node using CSP or BSP
B [ntra-node load balancing across threads

» CSP + SAS
B Implemented on top of the hypergraph partitioning approach
B Master thread performs communication
B All threads access communicated data from shared buffers
B Synchronization to prepare write-back (Fock) buffer

» BSP + SAS

B Communication is done inline by all threads (synchronized by locks)
B Not much overhead due to large computational load

7

Pacific Northwest

W k St I n NATIONAL LABORATORY
O r e a I n g Proudly Operated by Battelle Since 1965

» Distributed work stealing across processes on a cluster

» Dynamic adaptivity in the presence of load imbalance

» Two variants:

B Per-core work stealing

B Work stealing + SAS

» Both use one-sided communication to access task queues on
remote compute nodes

» Persistence-based approach:

B Initial seeding of task queues based on pure locality approach

B Keep track of which actual tasks were executed by the process to
seed queues for following iterations

» Work stealing + SAS
B Steal tasks at a coarser granularity
B Execute them using OpenMP work sharing constructs 15

o

Pacific Northwest
NATIONAL LABORATORY

]
0 u tI I n e Proudly Operated by Battelle Since 1965

vvyvyy

-
=~ Experimental Results
» Conclusions

Pacific Northwest
NATIONAL LABORATORY

Experimental Results

» Ran on up to 2048 cores of PNNL's Olympus cluster

B Dual-socket AMD Interlagos processors (16 cores per sockets), 64GB RAM
per node

B Use every other core for runs due to shared floating point units (Bulldozer)
B QDR Infiniband interconnect

» 16 processes per node or 16 threads w/single process for OpenMP runs
» Two input decks:

B 256 atoms of Beryllium (Be), 356 atoms of Be
» Work stealing granularities:

B Process-based: 1 task

B SAS-based: 1024 tasks
® To reduce steal overhead and keep threads busy

BSP CSP

Intra-node/Inter-node | WS | SM | HG | HG
Process-centric ° ° ° °
OpenMP guided (MT) ° ° °

Table I: SCF two-electron kernel versions where WS is Work Stealing, SM
is Semi-Matching, and HG is Hypergraph. 17

Experimental Results (cont.)

160
140
120
100

80

Time (s)

60
40
20

250

Time (s)

Process Execution Breadown: 256 Atoms

512 (.

<
N
o
—

BSP+SM

2048 T

512 I .

1024 | —
2048 T —

N <
- o
n o

—

512

1024 .
2048 mm

2048 | T —

BSP+HG CSP+HG BSP+WS

MT Execution Breakdown: 256 Atoms

512(32) .

1024 (64) NN

2048 (128) NI

BSP+HG+MT

512 (32) RN
1024 (64) NN

2048 (128) I

CSP+HG+MT

512 (32) N
1024 (64) N

2048 (128) I

BSP+WS+MT

B SM/HG
m Scheduling
B Execution

B HG
1 Scheduling
W Execution

350
300
250

=200

£

£ 150
100

50

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Process Execution Breakdown: 352 Atoms

(o]
—
wn

512

1024
2048

o<
-
n o

—

2048 T

N N T ®
N - & 3
o o n o o
— o~ — o~
BSP+SM BSP+HG CSP+HG BSP+WS

MT Execution Breakdown: 352 Atoms

512 (32) [N -
1024 (64) NN
2048 (128) 1

512 (32)
1024 (64) N
2048 (128) I

512(32) [N -

1024 (64) NN
2048 (128) NN

BSP+HG+MT CSP+HG+MT BSP+WS+MT

B SM/HG
1 Scheduling
B Execution

B HG
1 Scheduling
W Execution

Pacific Northwest
NATIONAL LABORATORY

Analysis & Conclusions

-

vV Yy

Studied a large number of execution model variants for SCF
benchmark

B Different communication primitives, task scheduling, concurrency
Statically scheduled versions can match and sometimes exceed
work stealing-based version

Semi-matching executes fast for a static partitioning
B Can produce lower quality partitionings

Hypergraph is better but very slow

System wide dynamic adaptation

B Requires the right kind of communication & concurrency primitives
Execution model design choices & assumptions can limit critical
optimizations

B Such as global, dynamic load balancing

Future work: consider other execution & programming models, improve
accuracy of static partitioning formulations | 1o

