

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
1

Performance Analysis for Target

Devices with the OpenMP Tools

Interface

Tim Cramer, Robert Dietrich, Christian Terboven, Matthias S.

Müller, Wolfgang E. Nagel

IT Center, RWTH Aachen University

Technische Universität Dresden

HIPS Workshop, Hyderabad, 25.05.2015

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
2

Motivation

 Requirement for large compute capabilities

Wide use and acceptance of new architectures

 New user friendly programming paradigms

(e.g., OpenMP 4.0, OpenACC)

 But: adequate tools support is important as well

 Tools support for OpenMP

 OpenMP Architecture Review Board (ARB) published a technical report

describing the OpenMP Tools (OMPT) interface to extend the standard

 Support only for OpenMP 3.1

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
3

Agenda

 Introduction

 The OpenMP Tools Interface (OMPT)

 The OpenMP 4.0 Target Constructs

 Contributions

 Extension of OMPT for Target Constructs

 Runtime Implementation (LLVM/Intel OpenMP)

 Tool Integration (Measurements with Score-P, Visualization with Vampir)

 Performance Evaluation

 Conclusion

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
4

OpenMP Tools Interface (OMPT)

 OMPT Features

 Support for asynchronous sampling

 Blame shifting techniques

 Callbacks definitions for instrumentation-based monitoring of runtime events

 Standardized interface

 OMPT Design Objectives

 Should provide sufficient information about the program and the OpenMP

runtime system

 Low overhead API

 Low development burden for the runtime and tool developer

 OpenMP runtime

maintains information about the state of each thread

provides API calls to interrogate the runtime

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
5

OMPT: Benefits

 Benefits

 Event-based performance analysis with low overhead

 Standardized interface (OMPT only for 3.1 at the moment)

 Runtime information (OMPT) vs. source-to-source instrumentation (OPARI2)

OPARI2

 can deliver exact user code mapping

 independent of OpenMP implementation

 recompiling necessary

 Low detail level of information, e.g.

data transfer size

mapping of variable or array

 no chance for standardization

OMPT is vice versa

Overhead of both is similar [1]

Reference
[1] Daniel Lorenz, Robert Dietrich, Ronny

Tschüter, and Felix Wolf. A comparison
between OPARI2 and the OpenMP tools
interface in the context of Score-P. In Proc. of
the 10th International Workshop on OpenMP
(IWOMP), Salvador, Brazil, September 2014,
volume 8766 of LNCS, pages 161– 172.
Springer International Publishing, September
2014.

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
6

OpenMP 4.0: Target Constructs
(SAXPY Example)

int n = 10240; float a = 42.0f; float b = 23.0f;

float *x, *y;

// Allocate and initialize x, y

// Run SAXPY TWICE and process data on host

{

 #pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

 processDataOnHost(y);

 #pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

}

main(){
 saxpy();
 processDataOnHost();
 saxpy();
}

Host Device

Target Device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
7

OpenMP 4.0: Target Constructs
(SAXPY Example)

int n = 10240; float a = 42.0f; float b = 23.0f;

float *x, *y;

// Allocate and initialize x, y

// Run SAXPY TWICE and process data on host

{

 #pragma omp target

 #pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

 processDataOnHost(y);

 #pragma omp target

 #pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

}

main(){
 saxpy();
 processDataOnHost();
 saxpy();
}

Host Device

 saxpy();

 saxpy();

Target Device

offloading

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
8

OpenMP 4.0: Target Constructs
(SAXPY Example)

int n = 10240; float a = 42.0f; float b = 23.0f;

float *x, *y;

// Allocate and initialize x, y

// Run SAXPY TWICE and process data on host

{

 #pragma omp target map(to:x[0:n]) map(tofrom:y[0:n])

 #pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

 processDataOnHost(y);

 #pragma omp target map(to:x[0:n]) map(tofrom:y[0:n])

 #pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

}

main(){
 saxpy();
 processDataOnHost();
 saxpy();
}

Host Device

 saxpy();

 saxpy();

Target Device

offloading

x,y

x,y

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
9

OpenMP 4.0: Target Constructs
(SAXPY Example)

int n = 10240; float a = 42.0f; float b = 23.0f;

float *x, *y;

// Allocate and initialize x, y

// Run SAXPY TWICE and process data on host

#pragma omp target data map(to:x[0:n]) map(tofrom:y[0:n])

{

 #pragma omp target

 #pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

 processDataOnHost(y);

 #pragma omp target

 #pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

}

main(){
 saxpy();
 processDataOnHost();
 saxpy();
}

Host Device

 saxpy();

 saxpy();

Target Device

offloading

x,y

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
10

OpenMP 4.0: Target Constructs
(SAXPY Example)

int n = 10240; float a = 42.0f; float b = 23.0f;

float *x, *y;

// Allocate and initialize x, y

// Run SAXPY TWICE and process data on host

#pragma omp target data map(to:x[0:n]) map(tofrom:y[0:n])

{

 #pragma omp target

 #pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

 #pragma omp target update from(y[0:n])

 processDataOnHost(y);

 #pragma omp target update to(y[0:n])

 #pragma omp target

 #pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

}

main(){
 saxpy();
 processDataOnHost();
 saxpy();
}

Host Device

 saxpy();

 saxpy();

Target Device

offloading

x,y

y

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
11

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
(in relation to
an enclosing
target region)

the begin event and all
variables are mapped

target function is invoked
on a device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
12

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
(in relation to
an enclosing
target region)

the begin event and all
variables are mapped

target function is invoked
on a device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
13

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
(in relation to
an enclosing
target region)

the begin event and all
variables are mapped

target function is invoked
on a device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
14

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
(in relation to
an enclosing
target region)

the begin event and all
variables are mapped

target function is invoked
on a device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
15

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
(in relation to
an enclosing
target region)

the begin event and all
variables are mapped

target function is invoked
on a device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
16

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
a task encounters a target
construct and all
variables are mapped

target function is invoked

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
17

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
(in relation to
an enclosing
target region)

the begin event and all
variables are mapped

target function is invoked
on a device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
18

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
(in relation to
an enclosing
target region)

the begin event and all
variables are mapped

target function is invoked
on a device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
19

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
(in relation to
an enclosing
target region)

the begin event and all
variables are mapped

target function is invoked
on a device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
20

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
(in relation to
an enclosing
target region)

the begin event and all
variables are mapped

target function is invoked
on a device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
21

OMPT: Begin Events for Target
Directives

 Relevant information for performance analysis

Description Event (begin) Invocation

after before

Identification of
constructs

target a task encounters a target
construct

region is executed

target data a task encounters a target
data construct

new data environment is
created

target update a task encounters a target
update construct

data consistency is
established

Data transfer
host <-> device

data map
- a variable is mapped

(event for each variable)

Kernel
invocation

target invoke
(in relation to
an enclosing
target region)

the target* begin event
and after all variables are
mapped

target function is invoked
on a device

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
22

OMPT: Signatures for Target Events

 Signatures

 Only two different signature types needed for begin events

 Possible additional information for

target* events: source code line

(In general: Missing source code information is a big disadvantage of

OMPT compared to source-to-source instrumentation)

data map: variable name

 OpenMP 4.1: Each target* region will be an implicit task

target id will be obsolete

Signature Events Parameter

new target
callback

target,
target data,
target update,
target invoke

task id, target id, device id, target
function

new data map data map task id, target id, map id, device id,
sync type, map type, data size

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
23

OMPT Inquiry Functions (1/2)

 Prerequisite

 calling of OpenMP runtime library routine is unsafe (e.g.,

omp_get_theread_num())  OMPT inquiry functions

 all device inquiry functions are only allowed to be called in the extend of a

target data region

target update region

in the specified target event callbacks

 undefined behavior otherwise

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
24

OMPT Inquiry Functions (2/2)

Function Description

OMPT_API ompt_target_device_id_t

 ompt_get_target_device_id();

Returns the ID of the active target
device.

OMPT_API ompt_target_id_t

 ompt_get_target_id();

Returns the ID of the current target
region.

OMPT_API ompt_target_device_time_t

 ompt_get_target_device_time (

 omp_target_device_id_t id

);

Returns the current time stamp on the
target device with ID id.
(Can be used to synchronize time stamps
on the target device with time stamps on
the host.)

OMPT_API void ompt_target_map (

 void* dst, void* src,

 ompt_target_device_id_t id,

 ompt_data_map_t map_type,

 ompt_target_sync_t sync_type,

 ompt_data_size_t bytes

);

Maps the specified number of bytes
between host and target device
according to the map type.
(Can be used to map collected
performance data / OMPT events from
the device to the host.)

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
25

OMPT: Prototype Implementation

 Extension of the Intel-/LLVM-based OpenMP implementation

 OMPT 3.1 is part of the LLVM OpenMP runtime already [1]

 OMPT 4.0 target support available as separated branch / fork [2]

 Intel uses additional offload library (OpenMP library is not called for target*

directives)

 All target device events / signatures are implemented

 Only the inquiry functions ompt_get_device_time() and

ompt_target_data_map() are missing (work in progress)

 Event Handling

 All target events: host-side only invocation

 Analysis of “normal” OMPT events on a device

Callback registration on device possible (e.g., with preloading)

Tools developer are responsible for event handling (device and/or host)

 [1] http://openmp.llvm.org
[2] https://github.com/OpenMPToolsInterface

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
26

OMPT: Tool Integration (1/3)

 Using the OMPT extension in Score-P

Application

OpenMP Offload

Score-P

Host Device

Application
(offloaded)

Offload OpenMP

libmpti

Target Device

OMPT instrumented

Control flow Tool infrastructure

OMPT callbacks OMPT callbacks

OpenMP OpenMP

Data transfer

performance
information

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
27

OMPT: Tool Integration (2/3)

 Visualization in Vampir

 SPEC ACCEL Benchmark 314.omrig (ported to OpenMP 4.0)

OpenMP target* regions on host

Data mapping operations

OpenMP regions
on the MIC

Region stack Context view

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
28

OMPT: Tool Integration (3/3)

 OMPT + Score-P Overhead

 Synthetic double buffering benchmark (maps 4 GB in 200 MB chunks)

 Overhead for host- and device-sided events is basically the data transfer

Only little influence on the application runtime itself

 Used test system

Host: 2-socket Intel Sandybridge (Xeon E5-2650) CPUs

Target device: Intel Xeon Phi 5110P coprocessors

Runtime [s] Overhead

Uninstrumented 28.08 -

Score-P (host-sided events only) 28.50 1.5 %

Score-P (host-sided and devices sided events) 32.23 12.9 %

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
29

Summary & Conclusion

 Extension of OMPT

 All OpenMP 4.x features should be covered in OMPT

 Proposal for target directives includes 10 new events, 4 signatures and 4

inquiry functions

 Prototype reference implementation in LLVM-based OpenMP runtime

available

 Prototype support in Score-P measurement infrastructure available

 Source code information is missing in OMPT

 High detail level of information (size of mapped variables)

 Low overhead for proposed new events

 Outlook

 Extend the OpenMP technical report to get proposed extension into the

standard

Performance Analysis for Target Devices with the OpenMP Tools Interface

Tim Cramer | IT Center der RWTH Aachen University
30

Thank you for your attention.

Questions?

