

High-Performance Coarray Fortran Support with MVAPICH2-X: Initial Experience and Evaluation

Jian Lin, Khaled Hamidouche, Xiaoyi Lu, Mingzhe Li, Dhabaleswar K. (DK) Panda

Presenter: Wasiur Rahman

Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA

- Introduction
- Motivation
- Design
- Evaluation
- Conclusion

- Introduction
- Motivation
- Design
- Evaluation
- Conclusion

Introduction

- MPI is the de-facto programming model for scientific parallel applications
 - Offers attractive features for High Performance Computing (HPC) applications
 - MPI Libraries (such as MVAPICH2, Open MPI, Intel MPI) have been optimized to the hilt
- Partitioned Global Address Space (PGAS) models are Emerging
 - Global view of data, One sided operations, better programmability
 - Suits for irregular and dynamic applications

Partitioned Global Address Space (PGAS) Models

- Key abstraction
 - Shared memory abstraction over distributed system images
- Library-level solutions
 - OpenSHMEM
 - Global Arrays

- Language-level solutions
 - UPC
 - Coarray Fortran (CAF)

Coarray Fortran (CAF): Language-level PGAS support in Fortran

- An extension to Fortran to support global shared array in parallel Fortran applications
- CAF = CAF compiler + CAF runtime (libcaf)
- Coarray syntax and basic synchronization support in Fortran 2008

```
E.g.
real :: a(n) [*]
x(:)[q] = x(:) + x(:)[p]
name[i] = name
sync all
```

 Collective communication and atomic operations in upcoming Fortran 2015

interface	parameters		
CO_BROADCAST	A, SOURCE_IMAGE [, STAT, ERRMSG]		
CO_MAX	A [, RESULT_IMAGE, STAT, ERRMSG]		
CO_MIN	A [, RESULT_IMAGE, STAT, ERRMSG]		
CO_SUM	A [, RESULT_IMAGE, STAT, ERRMSG]		
CO_REDUCE	A, OPERATOR [, RESULT_IMAGE,		
	STAT, ERRMSG]		

ATOMIC_ADD ATOMIC_FETCH_ADD

MVAPICH2/MVAPICH2-X Software

- High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, and RDMA over Converged Enhanced Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2012
 - Support for GPGPUs and MIC
 - Used by more than 2,375 organizations in 75 countries
 - More than 259,000 downloads from OSU site directly
 - Empowering many TOP500 clusters (November 2014 ranking)
 - 7th ranked 519,640-core cluster (Stampede) at TACC
 - 11th ranked 160,768-core cluster (Pleiades) at NASA
 - 15th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others
 - Available with software stacks of many IB, HSE, and server vendors including Linux Distros (RedHat and SuSE)
 - <u>http://mvapich.cse.ohio-state.edu</u>
- Partner in the U.S. NSF-TACC Stampede System

MVAPICH2-X: Unified Communication Library for MPI and PGAS

The Basic Architecture of MVAPICH2-X

Feature Highlights

- Supports MPI(+OpenMP), OpenSHMEM,
 UPC, MPI(+OpenMP) + OpenSHMEM,
 MPI(+OpenMP) + UPC
- MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 (initial support for UPC v1.3) standard compliant
- Scalable inter-node communication with high performance and reduced memory footprint
- Optimized intra-node communication using shared memory schemes
- Optimized OpenSHMEM collectives
- Supports different CPU binding policies
- Flexible process manager support

- Introduction
- Motivation
- Design
- Evaluation
- Conclusion

Motivation

 Can CAF be well supported with MVAPICH2-X to deliver high-performance on InfiniBand clusters?

Challenges

- Can a light-weight and transparent design be proposed for MVAPICH2-X to efficiently support CAF on InfiniBand clusters?
- Can we improve the performance of the new collective operations in CAF through efficiently mapping them onto internal collective operation designs in MVAPICH2-X?
- What are the performance benefits of our proposed approach across various CAF micro-benchmarks and applications with MVAPICH2-X on InfiniBand clusters?

- Introduction
- Motivation
- Design
- Evaluation
- Conclusion

Alternative CAF implementations

- Commercial software
 - Cray Fortran, Intel Fortran, ...
- Open-source project
 - OpenUH CAF, GNU Fortran + OpenCoarrays, ...

	MPI	GASNet	DMAPP	ARMCI
Cray Fortran	R		С	
Intel Fortran	C+R			
OpenUH CAF	C+R	C+R		С
OpenCoarrays	C+R	C+R		С

C: Communication library

R: Runtime management

Communication Design in OpenUH CAF Runtime

- Why choose OpenUH CAF?
 - Relatively complete support of the new collective communication
- Collective implementations

Name	Description	
compi	Calling MPI top-level collective interfaces directly	
cogas	Centric or 2-level collective based on non-blocking puts/gets in loop	
osemu	Application-level emulation based on one-sided coarray operations	

Unified Communication Runtime (UCR) in MVAPICH2-X

- The common communication layer in MVAPICH2-X
 - Lower-level but easy-to-use primitives supporting the common one-sided, two-sided, collective communication and synchronization semantics
 - Optimization for collective communication, shared memory communication, etc.
- UCR-based MVAPICH2-X Conduit for GASNet
 - A complete implementation of GASNet core APIs as well as collective extended APIs
 - Has supported the UPC implementation in MVAPICH2-X

The Overview of Proposed Design

One-sided Operations

- One-sided coarray access operations can benefit from UCR directly because of MV2Xconduit in GASNet
- Performance optimizations:
 - Small messages: Use pre-registered intermediate buffers to reduce the latency, and increase the bandwidth / message rate
 - Large messages: Use directly the user buffer to read/write the data through RDMA to avoid the overhead of the copies to the intermediate buffers

Collective Operations (1)

- Direct Approach *compi* and *cogas*
 - *compi* and *cogas* approaches in OpenUH CAF can benefit from UCR directly because of MV2X-conduit in GASNet
 - May introduce additional overhead into the call stacks
- Enhanced Approach *coucr*
 - Integrate with UCR in depth, bypass the redundant
 GASNet call stacks and avoid the single-operation-in-loop
 - CO_BROADCAST → UCR broadcast
 - CO_REDUCE → UCR reduce/allreduce
 - Other reduce interfaces → operator mapping logic + UCR reduce/allreduce

Collective Operations (2)

- Hybrid Approach *cohyb*
 - *cogas* and *coucr* may use different algorithms for the same collective operation
 - No one design can perform better at all message sizes.
 - Switching thresholds are set for different collective subroutines according to the tuning parameters

- Introduction
- Motivation
- Design
- Evaluation
- Conclusion

Experiment Setup

- Hardware: RI Cluster @ CSE, OSU
 - Xeon dual 8 core sockets (2.67GHz) with 12GB RAM
 - Mellanox QDR ConnectX HCAs (32 Gbps data rate) with PCI-Ex Gen2 interfaces
- Software stack
 - RHEL 6.3 with OpenFabrics 1.5.3-3
 - MVAPICH2-X 2.1rc2 + OpenUH CAF 3.0.39
- Benchmarks
 - CAF Test Suite from University of Houston (with our modifications for testing collective operations)
 - NPB3.3-CAF from University of Houston

Performance Evaluations for One-sided Communication

- Micro-benchmark improvement (MV2X vs. GASNet-IBV)
 - Put bandwidth: 3.5X improvement on 4KB; Put latency: reduce 29% on 4B
 - Bidirectional bandwidth: 3.3X improvement on 4KB

HIPS 2015

Performance Evaluations for Collective Communication

Reduce on 64 cores Broadcast on 64 cores 1000 350 300 800 Bandwidth (MB/s) Bandwidth (MB/s) 250 600 200 2.3X 150 400 100 200 50 0 0 8K 16K 32K 64K 128K 16 32 64 128 512 512 128K 256K 512K 64 128 256 512 $1 \mathsf{K}$ 2K 8Қ 16K 32K 64K 28N 32 4 K 256h 1 M 2 Message Size (byte) Message Size (byte) GASNet-IBV(cogas) — GASNet-MPI(cogas) GASNet-IBV(cogas) — GASNet-MPI(cogas) MV2X(cogas) — (>> MV2X(coucr) MV2X(cogas) ••• ••• MV2X(cohyb) ••• •• •• MV2X(cohyb)

- Bandwidth improvement (MV2X-cohyb vs. GASNet-IBV)
 - CO_REDUCE: 2.3X improvement on 1KB, 1.1X improvement on 128KB
 - CO_BROADCAST: 4.0X improvement on 1KB, 1.3X improvement on 1MB

Performance Evaluations for Application (NPB)

C.128

D.256

- Application performance improvement: NPB3.3-CAF (MV2X vs. GASNet-IBV)
 - Reduce the execution time by:
 - 12% (BT.D.256), 18% (EP.D.256), 9% (SP.D.256)

- Introduction
- Motivation
- Design
- Evaluation
- Conclusion

Conclusion

- CAF can leverage the high-performance provided by MVAPICH2-X by integrating with UCR in depth
 - Improve the bandwidth and latency of one-sided coarray access (e.g. up to 3.5X for inter-node put operation)
 - Improve the bandwidth of collective operations in the upcoming Fortran 2015 (e.g. up to 4.0X for 64-core broadcast)
 - Save the execution time of CAF applications (e.g. by 18% for EP.D.256 in NPB)
- The proposed design is available since MVAPICH2-X v2.1rc2 release!

Future Work

- The next steps for advanced support of CAF on MVAPICH2-X:
 - Further optimize the collective communication subroutines
 - Enable the team-level collective communication semantics
 - Enhance the atomic operations with UCR

Thank you!

{linjia, hamidouc, luxi, limin, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory <u>http://nowlab.cse.ohio-state.edu/</u> MVAPICH Web Page <u>http://mvapich.cse.ohio-state.edu/</u>

