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➢ Large Scale
➢ Local World
➢ Degree Distribution
➢ Sparse

Small World Characteristics



Complex Networks : Define Real World Graphs
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➢ Topological Characteristics

➢ Behavioral Predictability

 Why ?
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A Simple, Connected, 
Undirected,  Unweighted 
Graph G(V, E) .

n = |V| is the order of the graph, i.e., 
the number of vertices.

m = |E| is the size of the graph, i.e., 
the number of edges.
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0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 0
0 0 1 0 0

         A    =    

2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

         D    =    

A is Adjacency Matrix , D is Degree Matrix.
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0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 0
0 0 1 0 0

2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

             Degree matrix (D) - Adjacency Matrix (A) =  Laplacian Matrix  (L) 

 2   -1  -1   0  0
-1    2   0  -1  0
-1    0   3  -1 -1
 0   -1  -1   2  0
 0    0  -1   0  1
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The inverse of Laplacian matrix L is L-1 

such that :

L L-1  = I  

where I is Identity matrix and L is a square 
matrix.
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such that :
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where I is Identity matrix and L is a square 
matrix.

Not Every matrix is 
invertible. 
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The inverse of Laplacian matrix L is L-1 

such that :

L L-1  = I  

where I is Identity matrix and L is a square 
matrix.

Not Every matrix is 
invertible. 

The Eigenspace can be formulated as :

Lv = λ v

where L is Laplacian Matrix, v is 
Eigenvector and  λ is Eigenvalue.
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The inverse of Laplacian matrix L is L-1 

such that :

L L-1  = I  

where I is Identity matrix and L is a square 
matrix.

Not Every matrix is 
invertible. 

The Eigenspace can be formulated as :

Lv = λ v

where L is Laplacian Matrix, v is 
Eigenvector and  λ is Eigenvalue.

A matrix is not invertible, if any 
corresponding value of λ is 0.
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 2   -1  -1   0  0
-1    2   0  -1  0
-1    0   3  -1 -1
 0   -1  -1   2  0
 0    0  -1   0  1

L =
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 2   -1  -1   0  0
-1    2   0  -1  0
-1    0   3  -1 -1
 0   -1  -1   2  0
 0    0  -1   0  1

L =

  Non - Invertible !

λ =              ,   0.82 ,   2 ,     2.68 ,    4.4812         0
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To calculate the inverse for a rank deficient matrix (L = laplacian matrix, of order n):
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L+ = ( L +1/n)-1 - 1/n
                
                

To calculate the inverse for a rank deficient matrix (L = laplacian matrix, of order n):



Moore Penrose pseudo-inverse
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L+ = pinv(L) in Matlab

L+ = numpy.linalg.pinv(L) in Python

To calculate the inverse for a rank deficient matrix (L = laplacian matrix, of order n):

L+ = ( L +1/n)-1 - 1/n
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   Epidemiology

        
 

Infrastructure      
Planning

        

Online Social 
Networks

   
Collaborative            
Recommendation 
Systems

   
Probability 
   and Mathematical 
          Chemistry
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       Algorithm
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       Algorithm + 



The Goal
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       Algorithm +   Speedup ?
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Three Steps

➢ Partition



Divide : Partition
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A simple, connected,unweighted,                                               
undirected Graph G.          
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A simple, connected,unweighted,                                                           Connected Subgraph G1 and  G2
undirected Graph G.           Compute L+

G1 and L+
G2



Divide and Conquer Approach to compute L+ 

Large Scale Parallel Processing 2015                                                                       25/54

Three Steps

➢ Partition

➢ First Join



Conquer : First Join
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Dotted lines represent minimized 
cutoff  edges during Partition.
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Join a random cutoff edge

We get a new connected Graph G3
Using L+

G1 and L+
G2 , compute L+

G3

Dotted lines represent minimized 
cutoff  edges during Partition.



Divide and Conquer Approach to compute L+ 
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Three Steps

➢ Partition

➢ First Join

➢ Edge Firing
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Conquer : Edge Firing
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Fire first cutoff Edge

G4, Compute L+
G4



Conquer : Edge Firing
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Fire first cutoff Edge

Fire Second cutoff Edge

G4, Compute L+
G4

G5, Compute L+
G5



Methodology
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➢ Abstract a simple Partition Approach.

➢ Use GPU to compute L+
 of the subgraphs.

➢ Apply element-wise computation on First Join and Edge Firing 
using GPU.

➢ Minimize Data Transfer.
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A simple, connected,unweighted, undirected 
Graph G.

   Sparse Representation

1,    2,   1
2,    1,   1
1,    5,   1
5,    1,   1
1,    7,   1
7,    1,   1
2,    3,   1
3,    2,   1
3,    6,   1
6,    3,   1
3,    7,   1
7,    3,   1
4,    7,   1
7,    4,   1
4,    5,   1
5,    4,   1
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A simple, connected,unweighted, undirected 
Graph G.

Node   Degree
   1          3
   3          3
   7          3
   2          2
   4          2
   5          2
   6          1 
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5

Largest Component has order 6 

Remove edges of node 1 Remove edges of node 3

Largest Component has order 3 , which is <= n 
/ 2 ( n = 7). But we wanted two connected 
components, and there are some isolated 
ones.

1

7

2

6

4

3

5
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1

7

2

6

4

3

5

We get a bipartition , with two simple, 
connected components
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1. CPU Based Parallel Implementation :

★ Parallelisation using pthreads
★ inverse (L + 1/n)  - 1/n
★ dgetri.f  Blas routine
★ First Join and Edge Firing
★ 4 threads generated



Parallel Implementation - First Join & Edge Firing

Large Scale Parallel Processing 2015                                                                        38/54

1. CPU Based Parallel Implementation :

★ Parallelisation using pthreads
★ inverse (L + 1/n)  - 1/n
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  2.     Matlab based GPU Implementation :

★ Parallel Computing Toolbox
★ inv( ) , GPU enabled function
★ First Join and Edge Firing
★ bsxfun( ) 
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1. CPU Based Parallel Implementation :

★ Parallelisation using pthreads
★ inverse (L + 1/n)  - 1/n
★ dgetri.f  Blas routine
★ First Join and Edge Firing
★ 4 threads generated

  2.     Matlab based GPU Implementation :

★ Parallel Computing Toolbox
★ inv( ) , GPU enabled function
★ First Join and Edge Firing
★ bsxfun( ) 

  3.     CUDA based GPU Implementation :

★ Thrust Library
★ inverse cuBlas library routine
★ First Join - Three Device Kernels
★ Edge Firing - Single Kernel
★ 256 threads generated per block
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1. CPU Based Parallel Implementation :

★ Parallelisation using pthreads
★ inverse (L + 1/n)  - 1/n
★ dgetri.f  Blas routine
★ First Join and Edge Firing
★ 4 threads generated

  2.     Matlab based GPU Implementation :

★ Parallel Computing Toolbox
★ inv( ) , GPU enabled function
★ First Join and Edge Firing
★ bsxfun( ) 

  3.     CUDA based GPU Implementation :

★ Thrust Library
★ inverse cuBlas library routine
★ First Join - Three Device Kernels
★ Edge Firing - Single Kernel
★ 256 threads generated per block

  4.     cuBlas Implementation -Baselining the performance :

★ inverse (L + 1/n)  - 1/n 
★ cublas<t>getriBatched routine
★ cublas<t>getrfBatched routine
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       HOST 

       GPU

Transfers , the 
sub-graphs as full 
Matrix of order n1 
& n2.
Here n1 = 2 and n2 
= 3
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       HOST 

       GPU

Transfers , the 
sub-graphs as full 
Matrix of order n1 
& n2.
Here n1 = 2 and n2 
= 3

Transfers first Cutoff Edge 
as (source,destination)

l+11          l
+

12 

l+21       l
+

22  

l+11          l
+

12      l
+

13

l+21       l
+

22        l
+

23

l+31          l
+

32      l
+

33

Computes L+ of 
sub-graphs
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       GPU

Transfers , the 
sub-graphs as full 
Matrix of order n1 
& n2.
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       HOST 

       GPU

Remaining cutoff 
edges transferred 
as (source, 
destination), N 
number of times.
N is the number of 
edges fired after 
first Join.

Computes L+  of order 
n1+ n2 , n times
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gather( L+
G)
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Hardware Platform :

★ NVIDIA Tesla K20m GPU from DAS4 , a six-cluster wide-area distributed system designed and used by 5
          research institutions in The Netherlands.

★ 5GB of GPU global memory, Memory bandwidth of 208 GB/sec, and a peak performance of 3520 GFlops (single 
precision).

★ CUDA 5.5 , Matlab R2014a

★ CPU experiments (sequential and parallel) - performed on DAS4 computing node, using dual-quad-core 2.4    
GHz CPU configuration and 24GB memory.
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● Different behavior for different graphs.

● cuBlas and CUDA better for smaller 
graphs.

● Matlab suitable for graphs of large order.

● Divide and Conquer approach versus
          (L + 1/n)-1 - 1/n

 Finding :
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 Finding :

● Speedup achieved up-to 300 times.

● Matlab - Speedup - better for large order 
graphs.
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No Correlation Found !

Investigate more parameters !
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No Correlation Found !

Future Work : Investigate more      
parameters.
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★ Designed a parallel version of the Divide-and-Conquer computation of the Moore-Penrose 
pseudo-inverse of the Laplacian .

★ Designed a GPU-enabled version of this parallel solution, and implemented it in Matlab, 
with significant speedup.

★ Implemented three other parallel versions, one using CUDA, one using cuBLAS, and a 
pThreads-based version.

★ Empirical evidence that the performance of three GPU-enabled versions is heavily 
dependent on the input graph properties.
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Conclusion :

❏ cuBlas and CUDA - small order graphs.

❏ Matlab implementation outperforms cuBlas and CUDA for large order graphs.

❏ Divide and Conquer Approach - Large Graphs - Significant Performance.

❏ Matlab GPU Computing - Productivity and Performance.

❏ Performance Variation - Input Graph
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Future Work :
 
★ Multiple GPU’s , Recursive Partitioning.    

★ Spanning Trees to Compute L+.

★ Investigate parameters of the graph affecting performance, 
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Operations                                  Ω                                                L+

First Join x, y ∈ G1 :  Ω
G3

xy = ΩG1
xy

x, y ∈G2 :   Ω
G3

xy = ΩG2
xy

x ∈ G1, y ∈ G2 : Ω
G3

xy = ΩG1
xi + ωij + 

ΩG1
jy

l+(1)
xy     -       n2n3 ( l

+(1)
xi + l+(1)

iy ) − n2
2 ( l

+(1)
ii + l+(2)

jj + ωij )
             
                                                      n2

3

l+(2)
xy     -       n1n3( l

+(2)
xj + l+(2)

jy ) − n2
1 ( l

+(1)
ii + l+(2)

jj + ωij  )

                                                 n2
3

               n3( n1 l
+(1)

xi + n2 l
+(2)

jy ) − n1 n2( l
+(1)

ii + l+(2)
jj + ωij  )

                                                 n2
3
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Operations                                 Ω                                                L+

Edge Firing ΩG1
xy  − [( ΩG1

xj  − ΩG1
xi ) − ( ΩG1

jy  − ΩG1
iy )] 2

     
                            4 ( ωij + ΩG1

ij )

        
      l+(1)

xy    −          ( l+(1)
xi + l+(1)

xj  ) ( l
+(1)

iy + l+(2)
jy )

             
                                               ωij + ΩG1

ij 
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