Computing the Pseudoinverse of a Graph's Laplacian using GPUs

Nishant Saurabh Vrije Universiteit, Amsterdam. nishants.prmitr7@gmail.com

Dr. Ana Lucia Varbanescu University of Amsterdam, Amsterdam. a.l.varbanescu@uva.nl

Dr. Gyan Ranjan Symantec, CA, USA. gyan_ranjan@symantec.com

Workshop on Large-Scale Parallel Processing IEEE International Parallel and Distributed Processing Symposium

May 25th - 29th, 2015

Graphs are Everywhere !

Graphs are Everywhere !

Small World Characteristics

- Large Scale
- Local World
- Degree Distribution
- Sparse

Complex Networks : Define Real World Graphs

Why?

- **Topological Characteristics**
- **Behavioral Predictability**

Graph Formalization & Background

n = |V| is the order of the graph, i.e., the number of vertices.

m = |E| is the size of the graph, i.e., the number of edges.

Graph Formalization & Background

Graph Formalization & Background

The inverse of Laplacian matrix L is L^{-1} such that :

$$L L^{-1} = I$$

where I is Identity matrix and L is a square matrix.

The inverse of Laplacian matrix L is L^{-1} such that :

$$L L^{-1} = I$$

where I is Identity matrix and L is a square matrix.

The inverse of Laplacian matrix L *is* L^{-1} *such that :*

 $L L^{-1} = I$

where I is Identity matrix and L is a square matrix.

The Eigenspace can be formulated as :

$$Lv = \lambda v$$

where *L* is Laplacian Matrix, v is Eigenvector and λ is Eigenvalue.

The inverse of Laplacian matrix L *is* L^{-1} *such that :*

 $L L^{-1} = I$

where I is Identity matrix and L is a square matrix.

The Eigenspace can be formulated as :

 $Lv = \lambda v$

where *L* is Laplacian Matrix, v is Eigenvector and λ is Eigenvalue.

A matrix is not invertible, if any corresponding value of λ is 0.

Eigenvalues & Eigenvector

Eigenvalues & Eigenvector

Moore Penrose pseudo-inverse

To calculate the inverse for a rank deficient matrix (L = laplacian matrix, of order n):

Moore Penrose pseudo-inverse

To calculate the inverse for a rank deficient matrix (L = laplacian matrix, of order n):

 $L^+ = (L + 1/n)^{-1} - 1/n$

Moore Penrose pseudo-inverse

To calculate the inverse for a rank deficient matrix (L = laplacian matrix, of order n):

Applications to Computation of L^{+1}

The Goal

The Goal

The Goal

Divide and Conquer Approach to compute L⁺

Divide and Conquer Approach to compute L⁺

Three Steps

> Partition

Large Scale Parallel Processing 2015

Divide : Partition

A simple, connected, unweighted, undirected Graph G.

Divide : Partition

A simple, connected, unweighted, undirected Graph G.

Connected Subgraph $G^{}_1$ and $~G^{}_2$ Compute $L^+_{~G1}$ and $L^+_{~G2}$

Divide and Conquer Approach to compute L⁺

Three Steps

- > Partition
- ➤ First Join

Conquer : First Join

Dotted lines represent minimized cutoff edges during Partition.

Conquer : First Join

Dotted lines represent minimized cutoff edges during Partition.

We get a new connected Graph $\rm G^{}_{3}$ Using $\rm L^{+}_{~G1}$ and $\rm L^{+}_{~G2}$, compute $\rm L^{+}_{~G3}$

Divide and Conquer Approach to compute L⁺

Three Steps

- > Partition
- ≻ First Join

➤ Edge Firing

Conquer : Edge Firing

Conquer : Edge Firing

Conquer : Edge Firing

- ➤ Abstract a simple Partition Approach.
- > Use GPU to compute L^+ of the subgraphs.
- ➤ Apply element-wise computation on First Join and Edge Firing using GPU.
- ➤ Minimize Data Transfer.

Implementation Approach - Representation

A simple, connected, unweighted, undirected Graph G.

Sparse Representation

Implementation Approach - Partition

A simple, connected, unweighted, undirected Graph G.

Implementation Approach - Partition

Largest Component has order 6

Largest Component has order 3 , which is $\leq n / 2$ (n = 7). But we wanted two connected components, and there are some isolated ones.

Implementation Approach - Recombine

We get a bipartition , with two simple, connected components

Parallel Implementation - First Join & Edge Firing

- **1.** CPU Based Parallel Implementation :
- \star Parallelisation using pthreads
- \bigstar inverse (L + 1/n) 1/n
- \star *dgetri.f* Blas routine
- \star First Join and Edge Firing
- \star 4 threads generated

Parallel Implementation - First Join & Edge Firing

- **1.** CPU Based Parallel Implementation :
- \star Parallelisation using pthreads
- \bigstar inverse (L + 1/n) 1/n
- \star *dgetri.f* Blas routine
- \star First Join and Edge Firing
- \star 4 threads generated

- 2. Matlab based GPU Implementation :
- ★ Parallel Computing Toolbox
- ★ inv(), GPU enabled function
- \star First Join and Edge Firing
- ★ bsxfun()

Parallel Implementation - First Join & Edge Firing

1. **CPU Based Parallel Implementation :** 2. Matlab based GPU Implementation : Parallel Computing Toolbox Parallelisation using pthreads \star \star *inverse* (L + 1/n) - 1/n \star *inv()*, GPU enabled function × First Join and Edge Firing *dgetri.f* Blas routine ★ ★ First Join and Edge Firing bsxfun() × ★ 4 threads generated ★ 3. **CUDA** based GPU Implementation : Thrust Library \star *inverse* cuBlas library routine ★ First Join - Three Device Kernels ★ Edge Firing - Single Kernel \star \star 256 threads generated per block

Parallel Implementation - First Join & Edge Firing 1. **CPU Based Parallel Implementation :** 2. Matlab based GPU Implementation : Parallel Computing Toolbox Parallelisation using pthreads \star \star *inverse* (L + 1/n) - 1/n \star *inv()*, GPU enabled function × First Join and Edge Firing *dgetri.f* Blas routine ★ \star bsxfun() First Join and Edge Firing \star ★ 4 threads generated ★ cuBlas Implementation -Baselining the performance : 4. 3. **CUDA** based GPU Implementation : *inverse* (L + 1/n) - 1/n \star Thrust Library \star *cublas*<*t*>*getriBatched* routine \star *inverse* cuBlas library routine ★ *cublas*<*t*>*getrfBatched* routine \star First Join - Three Device Kernels ★ Edge Firing - Single Kernel ★ 256 threads generated per block \star

 $|^{+}_{13}$

 $|_{23}^{+}$

I⁺₃₃

Implementation - Edge Firing Using GPU

Implementation - Edge Firing Using GPU

Hardware Platform :

- ★ NVIDIA Tesla K20m GPU from DAS4, a six-cluster wide-area distributed system designed and used by 5 research institutions in The Netherlands.
- ★ 5GB of GPU global memory, Memory bandwidth of 208 GB/sec, and a peak performance of 3520 GFlops (single precision).
- \star CUDA 5.5 , Matlab R2014a
- ★ CPU experiments (sequential and parallel) performed on DAS4 computing node, using dual-quad-core 2.4 GHz CPU configuration and 24GB memory.

Execution Time in milliseconds: Comparison between ParallelCPU, cuBlas, Cuda and Matlab

Finding :

- Different behavior for different graphs.
- cuBlas and CUDA better for smaller graphs.
- Matlab suitable for graphs of large order.
- Divide and Conquer approach versus $(L + 1/n)^{-1} 1/n$

Speedup Comparison between ParallelCPU, cuBlas, Cuda and Matlab

Finding :

- Speedup achieved up-to 300 times.
- Matlab Speedup better for large order graphs.

Datasets with Increasing number of edges

Datasets with Increasing number of cutoff edges

Contributions

- ★ Designed a parallel version of the Divide-and-Conquer computation of the Moore-Penrose pseudo-inverse of the Laplacian .
- ★ Designed a GPU-enabled version of this parallel solution, and implemented it in Matlab, with significant speedup.
- ★ Implemented three other parallel versions, one using CUDA, one using cuBLAS, and a pThreads-based version.
- ★ Empirical evidence that the performance of three GPU-enabled versions is heavily dependent on the input graph properties.

Conclusion & Future Work

Conclusion :

- □ cuBlas and CUDA small order graphs.
- □ Matlab implementation outperforms cuBlas and CUDA for large order graphs.
- Divide and Conquer Approach Large Graphs Significant Performance.
- □ Matlab GPU Computing Productivity and Performance.
- Performance Variation Input Graph

Conclusion & Future Work

Future Work :

- ★ Multiple GPU's , Recursive Partitioning.
- **★** Spanning Trees to Compute L^+ .
- \star Investigate parameters of the graph affecting performance,

Any Questions ?

Nishant Saurabh nishants.prmitr7@gmail.com

Workshop on Large-Scale Parallel Processing IEEE International Parallel and Distributed Processing Symposium

Large Scale Parallel Processing 2015

Back-up Slides

Nishant Saurabh

Vrije Universiteit Amsterdam.

Dr. Ana Lucia Varbanescu

University of Amsterdam Amsterdam.

Dr. Gyan Ranjan Symantec CA USA.

Workshop on Large-Scale Parallel Processing IEEE International Parallel and Distributed Processing Symposium

Computational Formula

Operations	Ω	\mathbf{L}^+
First Join	$x, y \in G_{I}: \Omega^{G3}_{xy} = \Omega^{G1}_{xy}$	$l^{+(l)}_{xy} - n_2 n_3 (l^{+(l)}_{xi} + l^{+(l)}_{iy}) - n_2^2 (l^{+(l)}_{ii} + l^{+(2)}_{jj} + \omega_{ij})$ n_3^2
	$x, y \in G_2: \ \Omega^{G3}_{xy} = \Omega^{G2}_{xy}$	$l^{+(2)}_{xy} - n_{I}n_{3}(l^{+(2)}_{xj} + l^{+(2)}_{jy}) - n^{2}_{I}(l^{+(1)}_{ii} + l^{+(2)}_{jj} + \omega_{ij})$ n^{2}_{3}
	$x \in G_{i'} y \in G_2 : \Omega^{G3}_{xy} = \Omega^{G1}_{xi} + \omega_{ij} + \Omega^{G1}_{jy}$	$n_{3}(n_{1}l^{+(1)}_{xi} + n_{2}l^{+(2)}_{jy}) - n_{1}n_{2}(l^{+(1)}_{ii} + l^{+(2)}_{jj} + \omega_{ij})$ n^{2}_{3}

Computational Formula

Operations	Ω	\mathbf{L}^{+}
Edge Firing	$\Omega_{xy}^{GI} = [(\Omega_{xj}^{GI} - \Omega_{xi}^{GI}) - (\Omega_{jy}^{GI} - \Omega_{iy}^{GI})]^{2}$ $4 (\omega_{ij} + \Omega_{ij}^{GI})$	$l^{+(l)}_{xy} - (l^{+(l)}_{xi} + l^{+(l)}_{xj}) (l^{+(l)}_{iy} + l^{+(2)}_{jy})$ $\omega_{ij} + \Omega^{Gl}_{ij}$

Case Study - Topological Centrality

Topological Centrality $(C_{i}^{*}) = 1/l_{ii}^{+}$, where l_{ii}^{+} is general term of L⁺ for node i

Topological centrality - Facebook