
 Computing the Pseudoinverse of a Graph’s
 Laplacian using GPUs

Large Scale Parallel Processing 2015 1/54

 Nishant Saurabh Dr. Ana Lucia Varbanescu Dr. Gyan Ranjan
 Vrije Universiteit, Amsterdam. University of Amsterdam, Amsterdam. Symantec, CA, USA.
 nishants.prmitr7@gmail.com a.l.varbanescu@uva.nl gyan_ranjan@symantec.com

 Workshop on Large-Scale Parallel Processing
 IEEE International Parallel and Distributed
 Processing Symposium

 May 25th - 29th, 2015

mailto:nishants.prmitr7@gmail.com
mailto:a.l.varbanescu@uva.nl
mailto:gyan_ranjan@symantec.com

Graphs are Everywhere !

Large Scale Parallel Processing 2015 2/54

Graphs are Everywhere !

Large Scale Parallel Processing 2015 3/54

➢ Large Scale
➢ Local World
➢ Degree Distribution
➢ Sparse

Small World Characteristics

Complex Networks : Define Real World Graphs

Large Scale Parallel Processing 2015 4/54

➢ Topological Characteristics

➢ Behavioral Predictability

 Why ?

Graph Formalization & Background

Large Scale Parallel Processing 2015 5/54

5

3

2

41

A Simple, Connected,
Undirected, Unweighted
Graph G(V, E) .

n = |V| is the order of the graph, i.e.,
the number of vertices.

m = |E| is the size of the graph, i.e.,
the number of edges.

Graph Formalization & Background

Large Scale Parallel Processing 2015 6/54

5

3

2

41

0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 0
0 0 1 0 0

 A =

2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

 D =

A is Adjacency Matrix , D is Degree Matrix.

Graph Formalization & Background

Large Scale Parallel Processing 2015 7/54

5

3

2

41

0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 0
0 0 1 0 0

2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

 Degree matrix (D) - Adjacency Matrix (A) = Laplacian Matrix (L)

 2 -1 -1 0 0
-1 2 0 -1 0
-1 0 3 -1 -1
 0 -1 -1 2 0
 0 0 -1 0 1

Inverse of Laplacian matrix and Eigenspace

Large Scale Parallel Processing 2015 8/54

The inverse of Laplacian matrix L is L-1

such that :

L L-1 = I

where I is Identity matrix and L is a square
matrix.

Inverse of Laplacian matrix and Eigenspace

Large Scale Parallel Processing 2015 9/54

The inverse of Laplacian matrix L is L-1

such that :

L L-1 = I

where I is Identity matrix and L is a square
matrix.

Not Every matrix is
invertible.

Inverse of Laplacian matrix and Eigenspace

Large Scale Parallel Processing 2015 10/54

The inverse of Laplacian matrix L is L-1

such that :

L L-1 = I

where I is Identity matrix and L is a square
matrix.

Not Every matrix is
invertible.

The Eigenspace can be formulated as :

Lv = λ v

where L is Laplacian Matrix, v is
Eigenvector and λ is Eigenvalue.

Inverse of Laplacian matrix and Eigenspace

Large Scale Parallel Processing 2015 11/54

The inverse of Laplacian matrix L is L-1

such that :

L L-1 = I

where I is Identity matrix and L is a square
matrix.

Not Every matrix is
invertible.

The Eigenspace can be formulated as :

Lv = λ v

where L is Laplacian Matrix, v is
Eigenvector and λ is Eigenvalue.

A matrix is not invertible, if any
corresponding value of λ is 0.

Eigenvalues & Eigenvector

Large Scale Parallel Processing 2015 12/54

5

3

2

41

 2 -1 -1 0 0
-1 2 0 -1 0
-1 0 3 -1 -1
 0 -1 -1 2 0
 0 0 -1 0 1

L =

Eigenvalues & Eigenvector

Large Scale Parallel Processing 2015 13/54

5

3

2

41

 2 -1 -1 0 0
-1 2 0 -1 0
-1 0 3 -1 -1
 0 -1 -1 2 0
 0 0 -1 0 1

L =

 Non - Invertible !

λ = , 0.82 , 2 , 2.68 , 4.4812 0

Moore Penrose pseudo-inverse

Large Scale Parallel Processing 2015 14/54

To calculate the inverse for a rank deficient matrix (L = laplacian matrix, of order n):

Moore Penrose pseudo-inverse

Large Scale Parallel Processing 2015 16/54

L+ = (L +1/n)-1 - 1/n

To calculate the inverse for a rank deficient matrix (L = laplacian matrix, of order n):

Moore Penrose pseudo-inverse

Large Scale Parallel Processing 2015 15/54

L+ = pinv(L) in Matlab

L+ = numpy.linalg.pinv(L) in Python

To calculate the inverse for a rank deficient matrix (L = laplacian matrix, of order n):

L+ = (L +1/n)-1 - 1/n

Applications to Computation of L+

Large Scale Parallel Processing 2015 17/54

 Epidemiology

Infrastructure
Planning

Online Social
Networks

Collaborative
Recommendation
Systems

Probability
 and Mathematical
 Chemistry

The Goal

Large Scale Parallel Processing 2015 18/54

 Algorithm

The Goal

Large Scale Parallel Processing 2015 19/54

 Algorithm +

The Goal

Large Scale Parallel Processing 2015 20/54

 Algorithm + Speedup ?

Divide and Conquer Approach to compute L+

Large Scale Parallel Processing 2015 21/54

Divide and Conquer Approach to compute L+

Large Scale Parallel Processing 2015 22/54

Three Steps

➢ Partition

Divide : Partition

Large Scale Parallel Processing 2015 23/54

A simple, connected,unweighted,
undirected Graph G.

Divide : Partition

Large Scale Parallel Processing 2015 24/54

A simple, connected,unweighted, Connected Subgraph G1 and G2
undirected Graph G. Compute L+

G1 and L+
G2

Divide and Conquer Approach to compute L+

Large Scale Parallel Processing 2015 25/54

Three Steps

➢ Partition

➢ First Join

Conquer : First Join

Large Scale Parallel Processing 2015 26/54

Dotted lines represent minimized
cutoff edges during Partition.

Conquer : First Join

Large Scale Parallel Processing 2015 27/54

Join a random cutoff edge

We get a new connected Graph G3
Using L+

G1 and L+
G2 , compute L+

G3

Dotted lines represent minimized
cutoff edges during Partition.

Divide and Conquer Approach to compute L+

Large Scale Parallel Processing 2015 28/54

Three Steps

➢ Partition

➢ First Join

➢ Edge Firing

Conquer : Edge Firing

Large Scale Parallel Processing 2015 29/54

Conquer : Edge Firing

Large Scale Parallel Processing 2015 30/54

Fire first cutoff Edge

G4, Compute L+
G4

Conquer : Edge Firing

Large Scale Parallel Processing 2015 31/54

Fire first cutoff Edge

Fire Second cutoff Edge

G4, Compute L+
G4

G5, Compute L+
G5

Methodology

Large Scale Parallel Processing 2015 32/54

➢ Abstract a simple Partition Approach.

➢ Use GPU to compute L+
 of the subgraphs.

➢ Apply element-wise computation on First Join and Edge Firing
using GPU.

➢ Minimize Data Transfer.

Implementation Approach - Representation

Large Scale Parallel Processing 2015 33/54

1

7

2

6

4

3

5

A simple, connected,unweighted, undirected
Graph G.

 Sparse Representation

1, 2, 1
2, 1, 1
1, 5, 1
5, 1, 1
1, 7, 1
7, 1, 1
2, 3, 1
3, 2, 1
3, 6, 1
6, 3, 1
3, 7, 1
7, 3, 1
4, 7, 1
7, 4, 1
4, 5, 1
5, 4, 1

Implementation Approach - Partition

Large Scale Parallel Processing 2015 34/54

1

7

2

6

4

3

5

A simple, connected,unweighted, undirected
Graph G.

Node Degree
 1 3
 3 3
 7 3
 2 2
 4 2
 5 2
 6 1

Implementation Approach - Partition

Large Scale Parallel Processing 2015 35/54

1

7

2

6

4

3

5

Largest Component has order 6

Remove edges of node 1 Remove edges of node 3

Largest Component has order 3 , which is <= n
/ 2 (n = 7). But we wanted two connected
components, and there are some isolated
ones.

1

7

2

6

4

3

5

Implementation Approach - Recombine

Large Scale Parallel Processing 2015 36/54

1

7

2

6

4

3

5

1

7

2

6

4

3

5

We get a bipartition , with two simple,
connected components

Parallel Implementation - First Join & Edge Firing

Large Scale Parallel Processing 2015 37/54

1. CPU Based Parallel Implementation :

★ Parallelisation using pthreads
★ inverse (L + 1/n) - 1/n
★ dgetri.f Blas routine
★ First Join and Edge Firing
★ 4 threads generated

Parallel Implementation - First Join & Edge Firing

Large Scale Parallel Processing 2015 38/54

1. CPU Based Parallel Implementation :

★ Parallelisation using pthreads
★ inverse (L + 1/n) - 1/n
★ dgetri.f Blas routine
★ First Join and Edge Firing
★ 4 threads generated

 2. Matlab based GPU Implementation :

★ Parallel Computing Toolbox
★ inv() , GPU enabled function
★ First Join and Edge Firing
★ bsxfun()

Parallel Implementation - First Join & Edge Firing

Large Scale Parallel Processing 2015 39/54

1. CPU Based Parallel Implementation :

★ Parallelisation using pthreads
★ inverse (L + 1/n) - 1/n
★ dgetri.f Blas routine
★ First Join and Edge Firing
★ 4 threads generated

 2. Matlab based GPU Implementation :

★ Parallel Computing Toolbox
★ inv() , GPU enabled function
★ First Join and Edge Firing
★ bsxfun()

 3. CUDA based GPU Implementation :

★ Thrust Library
★ inverse cuBlas library routine
★ First Join - Three Device Kernels
★ Edge Firing - Single Kernel
★ 256 threads generated per block

Parallel Implementation - First Join & Edge Firing

Large Scale Parallel Processing 2015 40/54

1. CPU Based Parallel Implementation :

★ Parallelisation using pthreads
★ inverse (L + 1/n) - 1/n
★ dgetri.f Blas routine
★ First Join and Edge Firing
★ 4 threads generated

 2. Matlab based GPU Implementation :

★ Parallel Computing Toolbox
★ inv() , GPU enabled function
★ First Join and Edge Firing
★ bsxfun()

 3. CUDA based GPU Implementation :

★ Thrust Library
★ inverse cuBlas library routine
★ First Join - Three Device Kernels
★ Edge Firing - Single Kernel
★ 256 threads generated per block

 4. cuBlas Implementation -Baselining the performance :

★ inverse (L + 1/n) - 1/n
★ cublas<t>getriBatched routine
★ cublas<t>getrfBatched routine

Implementation - First Join Using GPU

Large Scale Parallel Processing 2015 41/54

 HOST

 GPU

Transfers , the
sub-graphs as full
Matrix of order n1
& n2.
Here n1 = 2 and n2
= 3

Implementation - First Join Using GPU

Large Scale Parallel Processing 2015 42/54

 HOST

 GPU

Transfers , the
sub-graphs as full
Matrix of order n1
& n2.
Here n1 = 2 and n2
= 3

Transfers first Cutoff Edge
as (source,destination)

Implementation - First Join Using GPU

Large Scale Parallel Processing 2015 43/54

 HOST

 GPU

Transfers , the
sub-graphs as full
Matrix of order n1
& n2.
Here n1 = 2 and n2
= 3

Transfers first Cutoff Edge
as (source,destination)

l+11 l
+

12

l+21 l
+

22

l+11 l
+

12 l
+

13

l+21 l
+

22 l
+

23

l+31 l
+

32 l
+

33

Computes L+ of
sub-graphs

Implementation - First Join Using GPU

Large Scale Parallel Processing 2015 44/54

 HOST

 GPU

Transfers , the
sub-graphs as full
Matrix of order n1
& n2.
Here n1 = 2 and n2
= 3

Transfers first Cutoff Edge
as (source,destination)

l+11 l
+

12

l+21 l
+

22

l+11 l
+

12 l
+

13

l+21 l
+

22 l
+

23

l+31 l
+

32 l
+

33

Computes L+ of
sub-graphs

 l+11 l

+
12 l

+
13 l

+
14 l

+
15

 l
+

21 l
+

22 l
+

23 l
+

24 l
+

25

 l
+

31 l
+

32 l
+

33 l
+

34 l
+

35

 l+
41 l

+
42 l

+
43 l

+
44 l

+
45

 l+
51 l

+
52 l

+
53 l

+
54 l

+
55

Using L+ of sub-
graphs, L+

G3
is obtained.

Implementation - Edge Firing Using GPU

Large Scale Parallel Processing 2015 45/54

 HOST

 GPU

Remaining cutoff
edges transferred
as (source,
destination), N
number of times.
N is the number of
edges fired after
first Join.

Computes L+ of order
n1+ n2 , n times

 l+11 l

+
12 l

+
13 l

+
14 l

+
15

 l
+

21 l
+

22 l
+

23 l
+

24 l
+

25

 l
+

31 l
+

32 l
+

33 l
+

34 l
+

35

 l+
41 l

+
42 l

+
43 l

+
44 l

+
45

 l+
51 l

+
52 l

+
53 l

+
54 l

+
55

Final Result Obtained

Implementation - Edge Firing Using GPU

Large Scale Parallel Processing 2015 46/54

 HOST

 GPU

Remaining cutoff
edges transferred
as (source,
destination), N
number of times.
N is the number of
edges fired after
first Join.

Computes L+ of order
n1+ n2 , n times

 l+11 l

+
12 l

+
13 l

+
14 l

+
15

 l
+

21 l
+

22 l
+

23 l
+

24 l
+

25

 l
+

31 l
+

32 l
+

33 l
+

34 l
+

35

 l+
41 l

+
42 l

+
43 l

+
44 l

+
45

 l+
51 l

+
52 l

+
53 l

+
54 l

+
55

Final Result Obtained

gather(L+
G)

Experiments & Results

Large Scale Parallel Processing 2015 47/54

Hardware Platform :

★ NVIDIA Tesla K20m GPU from DAS4 , a six-cluster wide-area distributed system designed and used by 5
 research institutions in The Netherlands.

★ 5GB of GPU global memory, Memory bandwidth of 208 GB/sec, and a peak performance of 3520 GFlops (single
precision).

★ CUDA 5.5 , Matlab R2014a

★ CPU experiments (sequential and parallel) - performed on DAS4 computing node, using dual-quad-core 2.4
GHz CPU configuration and 24GB memory.

Experiments & Results

Large Scale Parallel Processing 2015 48/54

● Different behavior for different graphs.

● cuBlas and CUDA better for smaller
graphs.

● Matlab suitable for graphs of large order.

● Divide and Conquer approach versus
 (L + 1/n)-1 - 1/n

 Finding :

Experiments & Results

Large Scale Parallel Processing 2015 49/54

 Finding :

● Speedup achieved up-to 300 times.

● Matlab - Speedup - better for large order
graphs.

Experiments & Results

Large Scale Parallel Processing 2015 50/54

No Correlation Found !

Investigate more parameters !

Experiments & Results

Large Scale Parallel Processing 2015 51/54

No Correlation Found !

Future Work : Investigate more
parameters.

Contributions

Large Scale Parallel Processing 2015 52/54

★ Designed a parallel version of the Divide-and-Conquer computation of the Moore-Penrose
pseudo-inverse of the Laplacian .

★ Designed a GPU-enabled version of this parallel solution, and implemented it in Matlab,
with significant speedup.

★ Implemented three other parallel versions, one using CUDA, one using cuBLAS, and a
pThreads-based version.

★ Empirical evidence that the performance of three GPU-enabled versions is heavily
dependent on the input graph properties.

Conclusion & Future Work

Large Scale Parallel Processing 2015 53/54

Conclusion :

❏ cuBlas and CUDA - small order graphs.

❏ Matlab implementation outperforms cuBlas and CUDA for large order graphs.

❏ Divide and Conquer Approach - Large Graphs - Significant Performance.

❏ Matlab GPU Computing - Productivity and Performance.

❏ Performance Variation - Input Graph

Conclusion & Future Work

Large Scale Parallel Processing 2015 54/54

Future Work :

★ Multiple GPU’s , Recursive Partitioning.

★ Spanning Trees to Compute L+.

★ Investigate parameters of the graph affecting performance,

Thank you !

Large Scale Parallel Processing 2015

 Any Questions ?

 Workshop on Large-Scale Parallel
 Processing

 IEEE International Parallel and Distributed
 Processing Symposium

 Nishant Saurabh
nishants.prmitr7@gmail.com

mailto:nishants.prmitr7@gmail.com
mailto:nishants.prmitr7@gmail.com

 Back-up Slides

Large Scale Parallel Processing 2015 1

 Nishant Saurabh Dr. Ana Lucia Varbanescu Dr. Gyan Ranjan
 Vrije Universiteit University of Amsterdam Symantec
 Amsterdam. Amsterdam. CA USA.

 Workshop on Large-Scale Parallel
 Processing

 IEEE International Parallel and Distributed
 Processing Symposium

 May 25th - 29th, 2015

Computational Formula

Large Scale Parallel Processing 2015 2

Operations Ω L+

First Join x, y ∈ G1 : Ω
G3

xy = ΩG1
xy

x, y ∈G2 : Ω
G3

xy = ΩG2
xy

x ∈ G1, y ∈ G2 : Ω
G3

xy = ΩG1
xi + ωij +

ΩG1
jy

l+(1)
xy - n2n3 (l

+(1)
xi + l+(1)

iy) − n2
2 (l

+(1)
ii + l+(2)

jj + ωij)

 n2

3

l+(2)
xy - n1n3(l

+(2)
xj + l+(2)

jy) − n2
1 (l

+(1)
ii + l+(2)

jj + ωij)

 n2
3

 n3(n1 l
+(1)

xi + n2 l
+(2)

jy) − n1 n2(l
+(1)

ii + l+(2)
jj + ωij)

 n2
3

Computational Formula

Large Scale Parallel Processing 2015 3

Operations Ω L+

Edge Firing ΩG1
xy − [(ΩG1

xj − ΩG1
xi) − (ΩG1

jy − ΩG1
iy)] 2

 4 (ωij + ΩG1

ij)

 l+(1)

xy − (l+(1)
xi + l+(1)

xj) (l
+(1)

iy + l+(2)
jy)

 ωij + ΩG1

ij

Case Study - Topological Centrality

Large Scale Parallel Processing 2015 4

5

3

2

41

 l+11 l
+

12 l
+

13 l
+

14 l
+

15

 l
+

21 l
+

22 l
+

23 l
+

24 l
+

25

 l
+

31 l
+

32 l
+

33 l
+

34 l
+

35

 l+
41 l

+
42 l

+
43 l

+
44 l

+
45

 l+
51 l

+
52 l

+
53 l

+
54 l

+
55

Topological Centrality (C*
i) = 1/ l+

ii, where l+
ii is general term of L+ for

node i

Experiments & Results

Large Scale Parallel Processing 2015 5

