
Speculative Runtime Parallelization of Loop Nests:
Towards Greater Scope and E�ciency

Aravind Sukumaran-Rajam, Luis Esteban Campostrini,
Juan Manuel Martinez Caamaño, Philippe Clauss

25 May, 2015

HIPS

Inria APOLLO 25 May, 2015 1 / 47



Apollo

What is this talk about ?
A dynamic and speculative optimizer

Optimization of loop nests that cannot be handled statically

Dynamic application of polyhedral model

Non linear extensions to polyhedral model

Inria APOLLO 25 May, 2015 2 / 47



Motivation

Static approaches are limited due to intractable control and memory
instructions

Indirect memory accesses (A[B[i]])
Pointers (ptr = ptr-> next)
While loops (While (ptr!=NULL))

Dynamic approaches can overcome these limitations by using
run-time information

Inria APOLLO 25 May, 2015 3 / 47



Motivation

Dynamic approaches require to be speculative to enlarge their scope
(Thread level speculation)

Traditional TLS system relies on centralized verification which is not
scalable due to the high memory tra�c

Apollo uses a prediction model based on the polytope model and on
linear approximations introduced in this talk

Inria APOLLO 25 May, 2015 4 / 47



Generic automatic and speculative code optimization

Predict an optimization

Verify that the prediction holds

A fail-safe system to recover from a mis-prediction

Inria APOLLO 25 May, 2015 5 / 47



Traditional TLS system

Inria APOLLO 25 May, 2015 6 / 47



Traditional thread level speculation

while (cond)

{

a[i] = ...;

..

..

..

x = a[j];

}

Inria APOLLO 25 May, 2015 7 / 47



Traditional thread level speculation

Sequential

execution order

a[1] = ...
x = a[100]
a[201] = ...
x = a[101]
a[100] = ...
x = a[102]
a[250] = ...
x = a[103]

Inria APOLLO 25 May, 2015 8 / 47



Traditional thread level speculation

What is missing ?
A dependence prediction model

How is this a↵ected ?
Missed parallelization opportunities
Higher mis-prediction rates
Huge centralization overhead

Inria APOLLO 25 May, 2015 9 / 47



Traditional thread level speculation

What is missing ?
A dependence prediction model

How is this a↵ected ?
Missed parallelization opportunities
Higher mis-prediction rates
Huge centralization overhead

Inria APOLLO 25 May, 2015 9 / 47



Apollo

Figure : Mission control: We have lift o↵

Inria APOLLO 25 May, 2015 10 / 47



Apollo

APOLLO : Automatic speculative POLyhedral Loop Optimizer

Features
Dynamic

Polytope model

Speculative with weakly centralized verification

Handle all loop types

Extends the applicability of the polytope model to non linear memory
accesses

Inria APOLLO 25 May, 2015 11 / 47



Background: Polytope model

Polytope model

A mathematical way to model the loop nests in a program

Each instance of a statement is represented by a point in the lattice
of the polyhedron

Widely used for static program optimization (Pluto)

Inria APOLLO 25 May, 2015 12 / 47



Background {Dependence representation}

Original user code

for(i = 2; i < 10; i++){

a[i] = a[i - 2] + 1;

}

i : source iterator
i

0 : target iterator

Dependence constraints

i >= 2

i <= 9

i

0 >= 2

i

0 <= 9

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

Domain constraints (1)

i

0 = i + 2
o

Access constraints (2)

i

0 >= i + 1
o

Order constraints (3)

Inria APOLLO 25 May, 2015 13 / 47



Handling dynamic codes

In this code we can extract the linear functions statically

for(i = 2; i < 10; i++){

a[i] = a[i - 2] + 1;

}

This code requires dynamic analysis to extract linear functions

while(ptr1 && ptr2){

ptr1->val = ptr2->val + 1;

ptr1 = ptr1->next;

ptr2 = ptr2->next;

}

Inria APOLLO 25 May, 2015 14 / 47



Handling dynamic codes

Speculate the linear functions for

Dynamic memory accesses

Dynamic loop bounds

Scalar variables which carry cross iteration dependencies

Inria APOLLO 25 May, 2015 15 / 47



Apollo

Profile the code by sampling

Interpolate memory addresses and scalar values

Compute the data dependencies and build the prediction model

Compute optimizing valid transformation

Speculatively execute the optimized code

Verify the speculation while the optimized code is running

Inria APOLLO 25 May, 2015 15 / 47



Apollo

Challenges

How to instrument?

How to build the prediction model?

How to compute the optimizing transformation?

How to generate the optimized code?

How to verify the speculation?

Inria APOLLO 25 May, 2015 16 / 47



Apollo

Apollo consists of two core components

Static module

Runtime module

Inria APOLLO 25 May, 2015 17 / 47



Apollo {Static Module}

Static Module
A set of dedicated LLVM compiler passes

Statically analyze memory instructions which can be disambiguated at
compile time

Transforms any kind of target loops into for loops

Generates an instrumented version to track memory accesses

Creates optimized code skeletons

Inria APOLLO 25 May, 2015 18 / 47



Apollo {Code skeletons}

Code skeleton
General frameworks representing a class of transformations.

Skeletons are parametrized. Instantiating di↵erent parameters results
in di↵erent transformations.

Instrumentation skeleton is used to track memory accesses

Optimized skeletons are used for parallelization and other code
optimizations (data locality . . . )

Inria APOLLO 25 May, 2015 19 / 47



Apollo {Code skeleton}

Figure : Optimized skeleton

Inria APOLLO 25 May, 2015 20 / 47



Apollo {Runtime Module}

Runtime Module
Runs the instrumentation skeleton for a small outermost loop slice

Builds a linear prediction model for the loop bounds and memory
accesses

Computes the dependencies between the memory accesses

Computes the transformation

Selects and instantiates the appropriate code skeleton

Monitor the execution to verify the correctness of the linear functions
and thereby the transformation

Inria APOLLO 25 May, 2015 21 / 47



Chunking

consider the following simple code

for(i = 0; i < 1000; i++){

a[i] = b[i + 2] + 1;

}

Inria APOLLO 25 May, 2015 22 / 47



Chunking

consider the following simple code

for(i = 0; i < 1000; i++){

a[i] = b[i + 2] + 1;

}

Inria APOLLO 25 May, 2015 22 / 47



Execution flow

Inria APOLLO 25 May, 2015 23 / 47



Apollo global view

Inria APOLLO 25 May, 2015 24 / 47



Apollo {Memory backup}

Memory backup

The execution is speculative

A mis-speculation can trigger rollback

In order to prevent memory corruption, all the predicted memory
write regions are backed up

Thanks to the linear prediction model; the exact write regions can be
identified

Inria APOLLO 25 May, 2015 25 / 47



Apollo {Compliance with the Polytope model}

Verification Module
The validity of the polytope model is proven by construction

The transformation is valid as long as the predicted linear functions
are valid

Uses the linear access functions generated during the instrumentation
phase

Inria APOLLO 25 May, 2015 26 / 47



Apollo {Runtime Verification}

Verification Module
Runtime verification system ensures that the memory accesses follows
the predicted linear functions

Polyhedral transformations will also a↵ect the execution order of
iterations inside each thread. Hence each iteration must be verified

If verification fails a rollback is triggered

Inria APOLLO 25 May, 2015 27 / 47



Apollo {Runtime Verification}

Figure : Optimized skeleton

Inria APOLLO 25 May, 2015 28 / 47



Apollo {Non A�ne}

Non a�ne memory accesses

The polyhedral model cannot handle non a�ne accesses (even with
dynamic analysis)

In the presence of non a�ne accesses, the computed dependencies
may be inaccurate

The validity of the transformation cannot be guaranteed

Inria APOLLO 25 May, 2015 29 / 47



Apollo {Non A�ne}

Why should we be concerned about non a�ne accesses

Most of the dynamic programs exhibit non a�ne behavior

Most of the indirect accesses and pointers to dynamic memory are
typically non linear

A dependence prediction model is vital for the e�ciency of TLS
systems

Inria APOLLO 25 May, 2015 30 / 47



Apollo {Non A�ne}

Challenges

Polytope model as such is not compatible

Non linear accesses will require a centralization system

Live backup is required

There is no linear function available for validation

The overhead cost should be acceptable

Inria APOLLO 25 May, 2015 31 / 47



Apollo {Non A�ne}

Solution
Relax the polytope model by adding some non a�ne accesses

Account for the relaxation by adding additional verification

Inria APOLLO 25 May, 2015 32 / 47



Apollo {Non A�ne}

During Instrumentation

Identify potential non linear accesses

Compute regression lines modeling each non linear access

Refine the regression line by removing outliers

Inria APOLLO 25 May, 2015 33 / 47



Apollo {Non A�ne}

During Instrumentation

Compute the regression correlation coe�cient

Correlation coe�cient measures the quality of regression line

Characterize each memory access as
A�ne
Non a�ne
Nearly a�ne

Inria APOLLO 25 May, 2015 34 / 47



Apollo {Access types}

(a) A�ne (b) Nearly a�ne

(c) Non a�ne

Inria APOLLO 25 May, 2015 35 / 47



Apollo {Non A�ne}

Building the dependence polytope

Nearly a�ne : The correlation coe�cient is greater than 0.9

Non a�ne : The correlation coe�cient is lower than 0.9

Inria APOLLO 25 May, 2015 36 / 47



Apollo {Non A�ne}

Building the dependence polytope : Nearly a�ne

The memory accesses are well characterized

Approximate the regression hyperplane from R domain to Z domain

Compute two bounding hyperplanes close to the regression
hyperplane (tubes), one lower and the other higher

Encode these bounding hyperplanes to the polytope model

Inria APOLLO 25 May, 2015 37 / 47



Apollo {Near a�ne}

Figure : Bounding hyperplanes

Inria APOLLO 25 May, 2015 38 / 47



Apollo {Non A�ne}

Building the dependence polytope : Non a�ne

The memory accesses are not well characterized

Adding them to the dependence polytope will have adverse e↵ects

Hence do not encode them to the dependence polytope

Inria APOLLO 25 May, 2015 39 / 47



Apollo {Non A�ne}

Pre-execution validation
Detect any possible violation as early as possible

For the instrumented memory accesses, verify that non linear memory
accesses do not invalidate transformation

This can be done by checking for intersection of memory access
between a�ne and non a�ne accesses

Inria APOLLO 25 May, 2015 40 / 47



Apollo {Non A�ne}

Building safe point

Backing up while running can hurt performance a lot

For non a�ne and nearly a�ne accesses there is no way to exactly
predict the memory addresses that will be written

For non a�ne accesses, compute a range information, and backup

For nearly a�ne accesses, compute the area inside the bounding
hyperplanes and backup this region

Inria APOLLO 25 May, 2015 41 / 47



Apollo {Non A�ne}

Execution
Based on the transformation suggested by the scheduler, select and
initiate a skeleton

Pluto is used dynamically for scheduling

Inria APOLLO 25 May, 2015 42 / 47



Apollo {Non A�ne}

Verification
A�ne access: Verify that accesses follow the a�ne function

Nearly a�ne access: If the instance falls inside the tube, the access is
valid. If not treat that particular instance as a non a�ne access

Non a�ne access: For the non predicted ranges, perform live backup.

Inria APOLLO 25 May, 2015 43 / 47



Apollo {Runtime Verification}

Figure : Optimized skeleton with non linear support

Inria APOLLO 25 May, 2015 44 / 47



Apollo {Results}

Figure : Speedup : The higher the better

Inria APOLLO 25 May, 2015 45 / 47



Conclusion

A dependence model is a must for the TLS system

Thanks to dynamic and speculative environment, a well designed
extension to the polytope model can amend the model to consider
non linear accesses

Can be used in any general dynamic speculative system

Inria APOLLO 25 May, 2015 46 / 47



Questions?

Inria APOLLO 25 May, 2015 47 / 47


