
Evolving the Tensor Contraction Engine for
Next-Generation Multi-petaflop

Supercomputers

Jeff Hammond1 and Eugene DePrince2

Argonne National Laboratory
1 Leadership Computing Facility (jhammond@anl.gov)

2 Center for Nanoscale Materials (adeprince@anl.gov)

WOLFHPC – 31 May 2011

Jeff Hammond WOLFHPC 2011

Abstract

The Tensor Contraction Engine (TCE) is an enormously successful project in creating

a domain-specific language for quantum many-body theory with an associated code

generator for the massively-parallel computational chemistry package NWChem. This

collection of tools has enabled hundreds of novel scientific simulations running

efficiently on many of the largest supercomputers in the world. This talk will first

recount five years of experience developing simulation capability with the TCE

(specifically, response properties) and performance analysis of its execution on

leadership-class supercomputers, summarizing its many successes with constructive

criticism of its few shortcomings. Second, we will describe our recent investigation of

quantum many-body methods on heterogeneous compute nodes, specifically GPUs

attached to multicore CPUs, and how to evolve the TCE for the next generation of

multi-petaflop supercomputers, all of which which feature multicore CPUs and many

of which will be heterogeneous. We will describe new domain-specific libraries and

high-level data structures that can couple to automatic code generation techniques for

improved productivity and performance as well as our efforts to implement them.

Jeff Hammond WOLFHPC 2011

What is TCE?

1 NWChem users know it as the coupled-cluster module that
supports a kitchen sink of methods.

2 NWChem developers know it as the Python program that
generates item 1.

3 People in this room probably know it as a multi-institutional
collaboration that resulted in item 2 (among other things).

Jeff Hammond WOLFHPC 2011

The practical TCE – NWChem many-body codes

What does it do?

1 GUI input quantum many-body theory e.g. CCSD.

2 Operator specification of theory.

3 Apply Wick’s theory to transform operator expressions into
array expressions.

4 Transform input array expression to operation tree using many
types of optimization.

5 Produce Fortran+Global Arrays+NXTVAL implementation.

Developer can intercept at various stages to modify theory,
algorithm or implementation.

Jeff Hammond WOLFHPC 2011

The practical TCE – Success stories

First parallel implementation of many (most) CC methods.

First truly generic CC code (not string-based):
{RHF,ROHF,UHF}×CC{SD,SDT,SDTQ}×{T/Λ,EOM,LR/QR}
Most of the largest calculations of their kind employ TCE:
CR-EOMCCSD(T), CCSD-LR α, CCSD-QR β, CCSDT-LR α

Reduces implementation time for new methods from years to
hours, TCE codes are easy to verify.

Significant hand-tuning by Karol Kowalski and others at PNNL
was required to make TCE run efficiently and scale to 1000
processors and beyond.

Jeff Hammond WOLFHPC 2011

Before TCE

CCSD/aug-cc-pVDZ – 192 b.f. – days on 1 processor

Benzene is close to crossover point between small and large.

Jeff Hammond WOLFHPC 2011

Linear response polarizability

CCSD/Z3POL – 1080 b.f. – 40 hours on 1024 processors

This problem is 20,000 times larger on the computer than benzene.

J. Chem. Phys. 129, 226101 (2008).

Jeff Hammond WOLFHPC 2011

http://link.aip.org/link/jcpsa6/v129/i22/p226101/s1

Quadratic response hyperpolarizability

CCSD/d-aug-cc-pVTZ – 812 b.f. – 20 hours on 1024 processors

Lower levels of theory are not reliable for this system.

J. Chem. Phys. 130, 194108 (2009).

Jeff Hammond WOLFHPC 2011

http://jcp.aip.org/resource/1/jcpsa6/v130/i19/p194108_s1

Charge-transfer excited-states of biomolecules

CR-EOMCCSD(T)/6-31G* – 584 b.f. – 1 hour on 256 cores

Lower levels of theory are wildly incorrect for this system.

Jeff Hammond WOLFHPC 2011

Excited-state calculation of conjugated arrays

CR-EOMCCSD(T)/6-31+G* – 1096 b.f. – 15 hours on 1024 cores

Robert probably showed Karol’s latest and greatest.

J. Chem. Phys. 132, 154103 (2010).

Jeff Hammond WOLFHPC 2011

http://link.aip.org/link/JCPSA6/v132/i15/p154103/s1

Summary of TCE module

http://cloc.sourceforge.net v 1.53 T=30.0 s

Language files blank comment code

Fortran 77 11451 1004 115129 2824724

SUM: 11451 1004 115129 2824724

Only <25 KLOC are hand-written; ∼100 KLOC is utility code
following TCE data-parallel template.

Jeff Hammond WOLFHPC 2011

My thesis work

http://cloc.sourceforge.net v 1.53 T=13.0 s

Language files blank comment code

Fortran 77 5757 0 29098 983284

SUM: 5757 0 29098 983284

Total does not include ∼1M LOC that was reused (EOM).

CCSD quadratic response hyperpolarizability was derived,
implemented and verified during a two week trip to PNNL.
Over 100 KLOC were “written” in under an hour.

Jeff Hammond WOLFHPC 2011

The practical TCE – Limitations

What does it NOT do?

Relies upon external (read: hand-written) implementations of
many procedures.

Hand-written procedures define underlying data
representation.

Does not effectively reuse code (TCE needs own runtime).
Of course, 4M LOC in F77 could be 4K LOC in C++.

Ignores some obvious abstraction layers and hierarchical
parallelism.

None of these shortcomings are intrinsic!

An instantiation of TCE is limited to the set of code
transformations known to the implementer.

Jeff Hammond WOLFHPC 2011

The practical TCE – Performance analysis

Performance TCE in NWChem cannot be understood independent
of GA programming model.

GA couldn’t do block sparse so TCE does its own indexing.
Table lookups are/were a bottleneck.

Suboptimal data representation leads to nonlocal
communication.

Single-level tiling isn’t ideal.

Lack of abstraction for kernel prevents optimization;
e.g. tensor permutations significant portion of wall time.

Time does not permit me to quantify performance issues.

Can all hand-optimizations can be back-ported into TCE?
Is this necessary? What are the challenges of an embedded DSL?

Jeff Hammond WOLFHPC 2011

HPC circa 2012

Systems coming online in 2012 will have 200K+ cores with
significant node-level parallelism both in the processor(s) and the
NIC (e.g. Cray Gemini has 48 ports).

BlueWaters (PERCS): 37,500+ sockets, 8 cores per socket.

Mira (Blue Gene/Q): 49,152 nodes, 1 16-core CPU per node.

Titan (Cray XK): 12,160 nodes, 1 AMD Bulldozer CPU and 1
NVIDIA Kepler GPU per node.

[Details from NCSA, Wikipedia and Buddy Bland’s public slides.]

Node counts not increasing relative to current systems, so
node-level parallelism is our primary challenge.

Process-only parallelism is not optimal for any of these machines.
TCE 2.0 must address heterogeneity.

Jeff Hammond WOLFHPC 2011

Exascale Architecture

10 GB

1000s of threads
(private cache)

per-node
shared memory

~1 million nodes
(hierarchical network)

50 GB/s

300 GB/s300 GB/s 300 GB/s300 GB/s300 GB/s300 GB/s 300 GB/s300 GB/s

10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB

Jeff Hammond WOLFHPC 2011

Coupled-cluster theory

|CC 〉 = exp(T)|0〉
T = T1 + T2 + · · ·+ Tn (n� N)

T1 =
∑
ia

tai â
†
aâi

T2 =
∑
ijab

tabij â†aâ
†
bâj âi

|ΨCCD〉 = exp(T2)|ΨHF 〉
= (1 + T2 + T 2

2)|ΨHF 〉
|ΨCCSD〉 = exp(T1 + T2)|ΨHF 〉

= (1 + T1 + · · ·+ T 4
1 + T2 + T 2

2 + T1T2 + T 2
1 T2)|ΨHF 〉

Jeff Hammond WOLFHPC 2011

Coupled cluster (CCD) implementation

Rab
ij = V ab

ij + P(ia, jb)

[
T ae
ij I be − T ab

im Imj +
1

2
V ab
ef T

ef
ij +

1

2
T ab
mnI

mn
ij − T ae

mj I
mb
ie − Ima

ie T eb
mj + (2T ea

mi − T ea
im)Imb

ej

]
I ab = (−2Vmn

eb + Vmn
be)T ea

mn

I ij = (2Vmi
ef − V im

ef)T ef
mj

I ijkl = V ij
kl + V ij

ef T
ef
kl

I iajb = V ia
jb −

1

2
V im
eb T

ea
jm

I iabj = V ia
bj + V im

be (T ea
mj −

1

2
T ae
mj)−

1

2
Vmi
be T

ae
mj

Tensor contractions currently implemented as GEMM plus PERMUTE.

Jeff Hammond WOLFHPC 2011

Hardware Details

CPU GPU
X5550 2 X5550 C1060 C2050

processor speed (MHz) 2660 2660 1300 1150
memory bandwidth (GB/s) 32 64 102 144

memory speed (MHz) 1066 1066 800 1500
ECC available yes yes no yes
SP peak (GF) 85.1 170.2 933 1030
DP peak (GF) 42.6 83.2 78 515

power usage (W) 95 190 188 238

Note that power consumption is apples-to-oranges since CPU does
not include DRAM, whereas GPU does.

Jeff Hammond WOLFHPC 2011

Relative Performance of GEMM

GPU versus SMP CPU (8 threads):

 0

 100

 200

 300

 400

 500

 600

 700

 0 1000 2000 3000 4000 5000

pe
rf

or
m

an
ce

 (
gi

ga
flo

p/
s)

rank

SGEMM performance

X5550
C2050

CPU = 156.2 GF
GPU = 717.6 GF

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000

pe
rf

or
m

an
ce

 (
gi

ga
flo

p/
s)

rank

DGEMM performance

X5550
C2050

CPU = 79.2 GF
GPU = 335.6 GF

We expect roughly 4-5 times speedup based upon this evaluation
because GEMM should be 90% of the execution time.

Jeff Hammond WOLFHPC 2011

CPU/GPU CCD

Iteration time in seconds
our DP code X5550

C2050 C1060 X5550 Molpro TCE GAMESS
C8H10 0.3 0.8 1.3 2.3 5.1 6.2
C10H8 0.5 1.5 2.5 4.8 10.6 12.7
C10H12 0.8 2.5 3.5 7.1 16.2 19.7
C12H14 2.0 7.1 10.0 17.6 42.0 57.7
C14H10 2.7 10.2 13.9 29.9 59.5 78.5
C14H16 4.5 16.7 21.6 41.5 90.2 129.3

C20 8.8 29.9 40.3 103.0 166.3 238.9
C16H18 10.5 35.9 50.2 83.3 190.8 279.5
C18H12 12.7 42.2 50.3 111.8 218.4 329.4
C18H20 20.1 73.0 86.6 157.4 372.1 555.5

Our algorithm is most similar to GAMESS and does ∼4 times the
flops as Molpro.

Jeff Hammond WOLFHPC 2011

CPU+GPU CCSD

Iteration time (s)
Hybrid CPU Molpro NWChem PSI3 TCE GAMESS

C8H10 0.6 1.4 2.4 3.6 7.9 8.4 7.2
C10H8 0.9 2.6 5.1 8.2 17.9 16.8 15.3
C10H12 1.4 4.1 7.2 11.3 23.6 25.2 23.6
C12H14 3.3 11.1 19.0 29.4 54.2 64.4 65.1
C14H10 4.4 15.5 31.0 49.1 61.4 90.7 92.9
C14H16 6.3 24.1 43.1 65.0 103.4 129.2 163.7

C20 10.5 43.2 102.0 175.7 162.6 233.9 277.5
C16H18 10.0 38.9 84.1 117.5 192.4 267.9 345.8
C18H12 14.1 57.1 116.2 178.6 216.4 304.5 380.0
C18H20 22.5 95.9 161.4 216.3 306.9 512.0 641.3

Statically distribute most diagrams between GPU and CPU,
dynamically distribute leftovers.

Jeff Hammond WOLFHPC 2011

More hybrid CCSD

Iteration time (s) Speedup
molecule Basis o v Hybrid CPU Molpro CPU Molpro
CH3OH aTZ 7 175 2.5 4.5 2.8 1.8 1.1
benzene aDZ 15 171 5.1 14.7 17.4 2.9 3.4

C2H6SO4 aDZ 23 167 9.0 33.2 31.2 3.7 3.5
C10H12 DZ 26 164 10.7 39.5 56.8 3.7 5.3
C10H12 6-31G 26 78 1.4 4.1 7.2 2.9 5.1

Calculations are small because we are not using out-of-core or
distributed storage, hence are limited by CPU main memory.

Physics- or array-based domain decomposition will lead to
single-node tasks of this size.

Jeff Hammond WOLFHPC 2011

Lessons learned

Do not GPU-ize legacy code!
Must redesign and reimplement (hopefully automatically).

Verification is a pain.

CC possess significant task-based parallelism.

Threading ameliorates memory capacity and BW bottlenecks.
(How many cores required to saturate STREAM BW?)

GEMM and PERMUTE kernels both data-parallel, readily
parallelizable via OpenMP or CUDA.

Careful organization of asynchronous data movement hides
entire PCI transfer cost for non-trivial problems.

Näive data movement leads to 2x for CCSD; smart data
movement leads to 8x.

Jeff Hammond WOLFHPC 2011

Summary of GPU CC

Implemented CCD on GPU and on CPU using
CUDA/OpenMP and vendor BLAS.
Implementation quality is very similar.

Implemented CCSD on CPU+GPU using streams and mild
dynamic load-balancing.

Compared to legacy codes as directly as possible:

Apples-to-apples CPU vs. GPU is 4-5x (as predicted).
Apples-to-oranges us versus them shows 7-10x.
Our CPU code is 2x, so again 4-5x is from GPU.

We have very preliminary MPI results using task parallelism plus
MPI Allreduce.

Load-balancing is the only significant barrier to GA+GPU
implementation.

Jeff Hammond WOLFHPC 2011

Suggestions for TCE 2.0

Hierarchical task and data parallelism.

Abstraction layers for high-level library insertion.

Integrate with accurate hardware models.

Runtime profile-guided optimization for iterative codes.

Synergy between data structures and computation.

Target low-level communication.

Brew coffee.

Except for the last point, an evolutionary approach is sufficient
for TCE to continue having a transformative impact on
quantum chemistry codes in the post-petascale era.

Jeff Hammond WOLFHPC 2011

Acknowledgments

Karol Kowalski
Saday, Robert, Sriram. . .

Dirac cluster at NERSC

Jeff Hammond WOLFHPC 2011

Chemistry Details

Molecule o v

C8H10 21 63
C10H8 24 72
C10H12 26 78
C12H14 31 93
C14H10 33 99
C14H16 36 108

C20 40 120
C16H18 41 123
C18H12 42 126
C18H20 46 138

6-31G basis set

C1 symmetry

F and V from GAMESS via disk

Since January . . .

Integrated with PSI3 (GPL).

No longer memory-limited by GPU.

Working on GA-like one-sided.

GPU one-sided R&D since 2009.

Jeff Hammond WOLFHPC 2011

Numerical Precision versus Performance

Iteration time in seconds
C1060 C2050 X5550

molecule SP DP SP DP SP DP

C8H10 0.2 0.8 0.2 0.3 0.7 1.3
C10H8 0.4 1.5 0.2 0.5 1.3 2.5
C10H12 0.7 2.5 0.4 0.8 2.0 3.5
C12H14 1.8 7.1 1.0 2.0 5.6 10.0
C14H10 2.6 10.2 1.5 2.7 8.4 13.9
C14H16 4.1 16.7 2.4 4.5 12.1 21.6

C20 6.7 29.9 4.1 8.8 22.3 40.3
C16H18 9.0 35.9 5.0 10.5 28.8 50.2
C18H12 10.1 42.2 5.6 12.7 29.4 50.3
C18H20 17.2 73.0 10.1 20.1 47.0 86.6

This the apples-to-apples CPU vs. GPU.

Jeff Hammond WOLFHPC 2011

