Justin Holewinski Tom Henretty Kevin Stock
Louis-Noél Pouchet Atanas Rountev P. Sadayappan

Department of Computer Science and Engineering
The Ohio State University
Presented at WOLFHPC 2011

May 31, 2011

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 1

+
+
BLi 1[j+1] +
+

]

]
n

1| for(i = 1; i < N-1; ++i) {

2 for(j = 1; j < N-1; ++j) {

3 A[il[j] = CNST * (B[i 1[j

4 B[i 1[j-1]
5

6 B[i-11[j

7 BLi+1]1[j

8 }

9]}

5-pt 2D Stencil 9-pt 2D Stencil

» Operate on each point in a discrete n-dimensional space
» Use neighboring points in computation
» Often surrounded by time loop

» Have diverse boundary conditions

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University

2

Why do we need a domain-specific language?

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 3

Why do we need a domain-specific language?

» Easier for application developers and scientists
» Write stencil as point-function and grid instead of loop nest

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 4

Domain-Specific Language for Stencils

Why do we need a domain-specific language?
» Easier for application developers and scientists
» Write stencil as point-function and grid instead of loop nest

» More opportunity for compiler optimization

> Restricted to a simple expression language
» Not restricted by C/C++/Fortran specification
e.g. aliasing, memory life-cycle
» Control-flow is implicit instead of discovered at compile-time
> Iteration domain is easily obtained, enabling polyhedral
transformations for tiling, parallelism, memory optimizations
» Computations on grids ease dependency analysis

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University

Domain-Specific Language for Stencils

Why do we need a domain-specific language?
» Easier for application developers and scientists
» Write stencil as point-function and grid instead of loop nest

» More opportunity for compiler optimization
> Restricted to a simple expression language
» Not restricted by C/C++/Fortran specification
e.g. aliasing, memory life-cycle
» Control-flow is implicit instead of discovered at compile-time
» lIteration domain is easily obtained, enabling polyhedral
transformations for tiling, parallelism, memory optimizations
» Computations on grids ease dependency analysis

Goal
Use high-level abstractions to achieve write-once performance
portability for stencil computations.

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University

Stencil DSL Compiler

Generated
Code

Sequential C
Back-End

OpenCL Generated
Back-End Code
Stencil DSL Stencil AST Generic Cscy':‘pelzr
Parser Optimizer (gee, icc)
CUDA
Back-End

Generated
Code

OpenMP C
Back-End

Stencil Compiler Workflow

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 7

Define stencil operation as a point-function over a grid using
[time]grid[i-offset] [j-offset] notation:

1| pointfunction five_point_avg(p) {

2 float ONE_FIFTH;

3 ONE_FIFTH = 0.2;

4 [11p[0][0] = ONE_FIFTH*([0]lp[-1]1[0] + [0]lp[0][-1] + [0lp([0][O]
5 + [0lplol[1] + [0lpl[1]1[01);
6|3

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University =~ 8

Define stencil operation as a point-function over a grid using
[time]grid[i-offset] [j-offset] notation:

float ONE_FIFTH;
ONE_FIFTH = 0.2;

G E WN

pointfunction five_point_avg(p) {

[11p[0][0] = ONE_FIFTH*([0]lp[-1]1[0] + [0]lp[0][-1] + [0lp([0][O]

+ [0lplol[1] + [0lpl[1]1[01);

Define stencil range, functions, and convergence:

1| iterate 1000 {

2 stencil jacobi_2d {

3 [0][0:Nx-1] [11afo][0] = [0]al0]([0];
4 [Ny-1]1[0:Nx-1] [11afo][0] = [0]a[0]([0];
5 [0:Ny-1][0] [11af0][0] = [0]a[0]([0];
6 [0:Ny-1] [Nx-1] [11afo][0] = [0]a[0]([0];
7

8 [1:Ny-2]1[1:Nx-2] : five_point_avg(a);

9 }

10

11 reduction max_diff max {

12 [0:Ny-1]1[0:Nx-1]
}

14| } check (max_diff < .00001) every 4 iterations

[1]afo][0] - [0Jalo0l[0];

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University

9

int Nx;
int Ny;
grid g [Nyl][Nx];

float griddata a on g at 0,1;

pointfunction five_point_avg(p) {

float ONE_FIFTH;

ONE_FIFTH = 0.2;
10 [11p[0]1[0] = ONE_FIFTH*([0lp[-1]1[0] + [0lp[0]1[-1] + [0lp[0][0]
11 + [0]lp[01[1] + [0lp[11[01);
12| ¥

OO0 ~NOOUTEWN -

14| iterate 1000 {
15 stencil jacobi_2d {

16 [0]1[0:Nx-1] : [1]afo0l[0] = [0Ja[0][0];
17 [Ny-11[0:Nx-1] : [1]a[0][0] = [0]a[0][0];
18 [0:Ny-1][0] : [1]af0l[0] = [0Ja[0][0];
19 [0:Ny-1] [Nx-1] : [1]a[0][0] = [0]a[0][0];
20

21 [1:Ny-2]1[1:Nx-2] : five_point_avg(a);

22 }

23

24 reduction max_diff max {

25 [0:Ny-1]1[0:Nx-1] : [1]a[0]l[0] - [0la[0][0];
26 }

27|} check (max_diff < .00001) every 4 iterations

Complete stencil program

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University

10

Floating-Point Throughput
> Need fine-grain and coarse-grain parallelism

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 11

Floating-Point Throughput
> Need fine-grain and coarse-grain parallelism
» Ona CPU
» Use vector processing units (SIMD)
» Use threads to exploit multi-/many-cores

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 12

Floating-Point Throughput

> Need fine-grain and coarse-grain parallelism

» Ona CPU
» Use vector processing units (SIMD)
» Use threads to exploit multi-/many-cores

» On a GPU
» Exploit SIMT parallelism across hundreds of cores
» Multiprocessors operate in lock-step = divergence = BAD

But this is not the whole story...

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 13

Optimizing CPU vs. GPU Performance

Floating-Point Throughput
> Need fine-grain and coarse-grain parallelism
» Ona CPU
» Use vector processing units (SIMD)
» Use threads to exploit multi-/many-cores
» On a GPU
» Exploit SIMT parallelism across hundreds of cores
» Multiprocessors operate in lock-step = divergence = BAD
But this is not the whole story...

Jacobi 5-pt on Core i7 2600K (single-threaded, no time tiling)
18

EEm base
B AVX intrinsics

GFlop/s

Bandwidth Starved

10x41 1202x5852
Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 14

Memory Hierarchy

» Increasingly complex (multiple levels)
» Fast but small on-chip memory

» Slow but abundant off-chip memory

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 15

Memory Hierarchy

» Increasingly complex (multiple levels)

Fast but small on-chip memory

vV v v

On a CPU

Slow but abundant off-chip memory

» Exploit hardware caches through data re-use

Holewinski et al.: Stencil Computations with a High-Level DSL

HPC Research Laboratory, The Ohio State University

16

Optimizing CPU vs. GPU Performance

Memory Hierarchy
» Increasingly complex (multiple levels)
» Fast but small on-chip memory

» Slow but abundant off-chip memory
» Ona CPU

» Exploit hardware caches through data re-use

» On a GPU

» Exploit per-multiprocessor shared/local memory
» Maximize work per read/write operation

> Need time tiling to efficiently utilize available main memory
bandwidth

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 17

Typical Approach

» Use spatial tiling to distribute work among thread blocks

» Use shared/local memory as program-controlled cache

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 18

Optimizing Stencils on GPUs

Typical Approach
> Use spatial tiling to distribute work among thread blocks
» Use shared/local memory as program-controlled cache
Problems
» Global (off-chip) memory latency is high
> Limited data re-use within a thread block
» Cannot schedule enough threads to hide memory latency

» Traditional time tiling is not efficient due to branch divergence
and a lack of memory access coalescing

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 19

Optimizing Stencils on GPUs

Typical Approach
> Use spatial tiling to distribute work among thread blocks
» Use shared/local memory as program-controlled cache
Problems
» Global (off-chip) memory latency is high
> Limited data re-use within a thread block
» Cannot schedule enough threads to hide memory latency

» Traditional time tiling is not efficient due to branch divergence
and a lack of memory access coalescing

Result

» Compute units are mostly idle waiting for memory operations
to complete

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 20

Optimizing Stencils on GPUs

Typical Approach
> Use spatial tiling to distribute work among thread blocks
» Use shared/local memory as program-controlled cache
Problems
» Global (off-chip) memory latency is high
> Limited data re-use within a thread block
» Cannot schedule enough threads to hide memory latency

» Traditional time tiling is not efficient due to branch divergence
and a lack of memory access coalescing

Result

» Compute units are mostly idle waiting for memory operations
to complete

A possible solution?
» Overlapped tiling

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 21

Replace inter-tile communication with redundant computation
» Tile borders are redundantly computed by all neighboring tiles
» Trades extra FLOPs for a decrease in needed synchronization

» Enables time tiling without skewing (introduces divergence,
load imbalance, and bank conflicts)

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 22

Overlapped Tiling

Replace inter-tile communication with redundant computation
» Tile borders are redundantly computed by all neighboring tiles
» Trades extra FLOPs for a decrease in needed synchronization

» Enables time tiling without skewing (introduces divergence,
load imbalance, and bank conflicts)

Originally proposed by Krishnamoorthy et al. for parallelization
» We want fully-automatic code generation for arbitrary stencils

» Use OpenCL for performance-portable code generation, but
tune parameters for different GPU architectures

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 23

Overlapped Tiling

Replace inter-tile communication with redundant computation
» Tile borders are redundantly computed by all neighboring tiles
» Trades extra FLOPs for a decrease in needed synchronization

» Enables time tiling without skewing (introduces divergence,
load imbalance, and bank conflicts)

Originally proposed by Krishnamoorthy et al. for parallelization
» We want fully-automatic code generation for arbitrary stencils

» Use OpenCL for performance-portable code generation, but
tune parameters for different GPU architectures

Let us look at an example for a 2 x 2 tile with a time tile size of 2...

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 24

Tile at time t +1

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 25

Computed in time step t

Data needed at time t +1

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 26

Also computed by neighboring tiles

Computation at time t

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 27

Halo/Shadow data

Data needed at time t

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 28

GPU Implementation

» Schedule extra threads for redundant border cell computations

> In general, need (n+ 2% rx (t—1)) x (m+2xrx (t—1))
threads

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 29

GPU Implementation
» Schedule extra threads for redundant border cell computations
> In general, need (n+ 2% r* (t—1)) x (m+2xrx (t— 1))
threads
> Use shared memory to store results across time

» Only need to access global memory in first and last time step
of tile

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 30

Overlapped Tiling

GPU Implementation
» Schedule extra threads for redundant border cell computations
» In general, need (n+2x*rx (t—1)) x (m+2*rx (t—1))
threads
» Use shared memory to store results across time

» Only need to access global memory in first and last time step
of tile

» Synchronize threads, not blocks, after each time step

» Thread synchronization efficiently supported in hardware;
block synchronization is not

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 31

Overlapped Tiling

GPU Implementation
» Schedule extra threads for redundant border cell computations
» In general, need (n+2x*rx (t—1)) x (m+2*rx (t—1))
threads
» Use shared memory to store results across time

» Only need to access global memory in first and last time step
of tile

» Synchronize threads, not blocks, after each time step

» Thread synchronization efficiently supported in hardware;
block synchronization is not

» Use host to synchronize across time tiles

for(t = 0; t < TIME_STEPS; t += TIME_TILE_SIZE) {
invoke_kernel (input, output);
swap (input, output);
// Implicit barrier

}

GAWN

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 32

Block size considerations
» Block size has large impact on performance
> Need enough threads to keep compute units busy...

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 33

Block size considerations
» Block size has large impact on performance
> Need enough threads to keep compute units busy...
» ... but it is also beneficial to use smaller blocks to increase the
number of available registers per block

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 34

What about block size?

Block size considerations

» Block size has large impact on performance

» Need enough threads to keep compute units busy...

> ... but it is also beneficial to use smaller blocks to increase the
number of available registers per block
Problem size: 4096 x 4096 x 256

v

NVidia Tesla C2050 (GFlop/s) AMD Radeon HD 6970 (GFlop/s)

60 30

50
25

40
20

Block Size (Y)
Block Size (Y)

30

15
20

10 '

10 20 30 40 50 60 10 15 20 25 30
Block Size (X) Block Size (X)

10

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 35

Arithmetic Intensity
Arithmetic intensity matters too...

OpenCL on GPUs (4096x4096x256)

300
El Base (9 FLOP/pt)
I Overlapped (9 FLOP/pt)
250 EEl Base (17 FLOP/pt) N
[Overlapped (17 FLOP/pt)
200 T
w
a
© 150 1
[T
G]
100 T
50 T

NVidia NVidia NVidia AMD AMD
Tesla GTX 280 Quadro HD6970 HD5870
C2050 FX 5800

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 36

Jacobi 5-pt on Multi-Core with OpenMP

Jacobi 5-pt on GPU with OpenCL

16 T T T T T
— Intel Xeon E5640 100 F
14 H — Intel Core i7 2600K 1
n = Intel Core 2 Quad Q6600 i
—— _AMD Phenom 9850 80 1
v 0 r w
a a 60 |
o 8 9
s s
o o
6 40 |
4 — NVidia GTX 280
20 — Nvidia Tesla C2050 J
2 —— AMD Radeon HD6970
— AMD Radeon HD5870
0 L L L 0 L T T
512 1024 2048 4096 8192 512 1024 2048 4096

Problem Size (N x N)

» Fixed CPU tile sizes

» Fixed GPU block/tile sizes

Holewinski et al.: Stencil Computations with a High-Level DSL

HPC Research Laboratory, The Ohio State University 37

Problem Size (N x N)

8192

» A DSL for stencils enables high productivity and performance
» Higher-level for application developers
» More information for compilers
> Increased performance-portability

» Overlapped tiling enables high-performance stencils on GPUs

» Trade redundant computation for less communication
» Exploit high compute-per-memory-op ratio on GPUs

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 38

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 39

Performance Evaluation

Jacobi 5-pt on CPU and GPU (4096x4096x256)

4000
3500 q
3000 q
m
E 2500} 1
G)
£
= 2000 B
o
Q
a
& 1500 | g
w
1000 | B
7l - A
0 I
Intel NVidia NVidia
Xeon E5640 Tesla C2050 Tesla C2050
4 Threads Base Overlapped

GPU Block Size: 64 x 8 (512 of 1024 max)

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 40

Performance Evaluation

OpenMP on CPUs (4096x4096x256)

OpenCL on GPUs (4096x4096x256)

GFlop/s

Intel Intel Intel AMD
Xeon Core i7 Core 2 Phenom
E5640 2600K Q6600 9850

2x4 Threads 4 Threads 4 Threads 4 Threads

300
¢ -parallel -fast B Naive (9 FLOP/pt)
@l icc+openmp with pocc 250 | @ Overlapped (9 FLOP/pt)
W Naive (17 FLOP/pt)
3 Overlapped (17 FLOP/pt)
200 2
1«
a
° 150 9
o
4 O
100 1
50 1
0

NVidia NVidia NVidia AMD AMD
Tesla GTX 280 Quadro HD6970 HD5870
C2050 FX 5800

FP Through-put for Jacobi 9-pt

Holewinski et al.: Stencil Computations with a High-Level DSL

HPC Research Laboratory, The Ohio State University

41

120

100

80

60

GFlop/s

40

20

Holewinski et al.: Stencil Computations with a High-Level DSL

Jacobi 5-pt on GPUs

512 1024 2048 4096 8192

Problem Size (N x N)

Problem Size Evaluation for GPUs

NVidia GTX 280
NVidia Tesla C2050
AMD Radeon HD6970
AMD Radeon HD5870

HPC Research Laboratory, The Ohio State University 42

	Stencils
	Stencil DSL
	CPU vs. GPU
	Overlapped Tiling
	Performance Evaluation
	Conclusion

