
.

......

High-Performance Computing for
Stencil Computations Using a

High-Level Domain-Specific Language

Justin Holewinski Tom Henretty Kevin Stock
Louis-Noël Pouchet Atanas Rountev P. Sadayappan

Department of Computer Science and Engineering
The Ohio State University

Presented at WOLFHPC 2011

May 31, 2011

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 1

Stencil Computations

5-pt 2D Stencil 9-pt 2D Stencil

1 for(i = 1; i < N-1; ++i) {
2 for(j = 1; j < N-1; ++j) {
3 A[i][j] = CNST * (B[i][j] +
4 B[i][j-1] +
5 B[i][j+1] +
6 B[i-1][j] +
7 B[i+1][j]);
8 }
9 }

▶ Operate on each point in a discrete n-dimensional space
▶ Use neighboring points in computation
▶ Often surrounded by time loop
▶ Have diverse boundary conditions

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 2

Domain-Specific Language for Stencils

Why do we need a domain-specific language?

▶ Easier for application developers and scientists
▶ Write stencil as point-function and grid instead of loop nest

▶ More opportunity for compiler optimization
▶ Restricted to a simple expression language
▶ Not restricted by C/C++/Fortran specification

e.g. aliasing, memory life-cycle
▶ Control-flow is implicit instead of discovered at compile-time
▶ Iteration domain is easily obtained, enabling polyhedral

transformations for tiling, parallelism, memory optimizations
▶ Computations on grids ease dependency analysis

.Goal..

......
Use high-level abstractions to achieve write-once performance
portability for stencil computations.

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 3

Domain-Specific Language for Stencils

Why do we need a domain-specific language?
▶ Easier for application developers and scientists

▶ Write stencil as point-function and grid instead of loop nest

▶ More opportunity for compiler optimization
▶ Restricted to a simple expression language
▶ Not restricted by C/C++/Fortran specification

e.g. aliasing, memory life-cycle
▶ Control-flow is implicit instead of discovered at compile-time
▶ Iteration domain is easily obtained, enabling polyhedral

transformations for tiling, parallelism, memory optimizations
▶ Computations on grids ease dependency analysis

.Goal..

......
Use high-level abstractions to achieve write-once performance
portability for stencil computations.

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 4

Domain-Specific Language for Stencils

Why do we need a domain-specific language?
▶ Easier for application developers and scientists

▶ Write stencil as point-function and grid instead of loop nest
▶ More opportunity for compiler optimization

▶ Restricted to a simple expression language
▶ Not restricted by C/C++/Fortran specification

e.g. aliasing, memory life-cycle
▶ Control-flow is implicit instead of discovered at compile-time
▶ Iteration domain is easily obtained, enabling polyhedral

transformations for tiling, parallelism, memory optimizations
▶ Computations on grids ease dependency analysis

.Goal..

......
Use high-level abstractions to achieve write-once performance
portability for stencil computations.

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 5

Domain-Specific Language for Stencils

Why do we need a domain-specific language?
▶ Easier for application developers and scientists

▶ Write stencil as point-function and grid instead of loop nest
▶ More opportunity for compiler optimization

▶ Restricted to a simple expression language
▶ Not restricted by C/C++/Fortran specification

e.g. aliasing, memory life-cycle
▶ Control-flow is implicit instead of discovered at compile-time
▶ Iteration domain is easily obtained, enabling polyhedral

transformations for tiling, parallelism, memory optimizations
▶ Computations on grids ease dependency analysis

.Goal..

......
Use high-level abstractions to achieve write-once performance
portability for stencil computations.

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 6

Domain-Specific Language for Stencils

C/C++/
Fortran

Application
Code

Stencil DSL
Code

System
Compiler
(gcc, icc)

Compiled
Binary

Stencil DSL Compiler
Backend

Generated
Code

OpenMP C
Back-End

CUDA
Back-End

OpenCL
Back-End

Sequential C
Back-End

Generated
Code

Generated
Code

Generated
CodeFrontend

Stencil DSL
Parser

Stencil AST Generic
Optimizer

Stencil Compiler Workflow

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 7

Domain-Specific Language for Stencils

Define stencil operation as a point-function over a grid using
[time]grid[i-offset][j-offset] notation:

1 pointfunction five_point_avg(p) {
2 float ONE_FIFTH;
3 ONE_FIFTH = 0.2;
4 [1]p[0][0] = ONE_FIFTH*([0]p[-1][0] + [0]p[0][-1] + [0]p[0][0]
5 + [0]p[0][1] + [0]p[1][0]);
6 }

Define stencil range, functions, and convergence:
1 iterate 1000 {
2 stencil jacobi_2d {
3 [0][0:Nx-1] : [1]a[0][0] = [0]a[0][0];
4 [Ny-1][0:Nx-1] : [1]a[0][0] = [0]a[0][0];
5 [0:Ny-1][0] : [1]a[0][0] = [0]a[0][0];
6 [0:Ny-1][Nx-1] : [1]a[0][0] = [0]a[0][0];
7
8 [1:Ny-2][1:Nx-2] : five_point_avg(a);
9 }

10
11 reduction max_diff max {
12 [0:Ny-1][0:Nx-1] : [1]a[0][0] - [0]a[0][0];
13 }
14 } check (max_diff < .00001) every 4 iterations

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 8

Domain-Specific Language for Stencils

Define stencil operation as a point-function over a grid using
[time]grid[i-offset][j-offset] notation:

1 pointfunction five_point_avg(p) {
2 float ONE_FIFTH;
3 ONE_FIFTH = 0.2;
4 [1]p[0][0] = ONE_FIFTH*([0]p[-1][0] + [0]p[0][-1] + [0]p[0][0]
5 + [0]p[0][1] + [0]p[1][0]);
6 }

Define stencil range, functions, and convergence:
1 iterate 1000 {
2 stencil jacobi_2d {
3 [0][0:Nx-1] : [1]a[0][0] = [0]a[0][0];
4 [Ny-1][0:Nx-1] : [1]a[0][0] = [0]a[0][0];
5 [0:Ny-1][0] : [1]a[0][0] = [0]a[0][0];
6 [0:Ny-1][Nx-1] : [1]a[0][0] = [0]a[0][0];
7
8 [1:Ny-2][1:Nx-2] : five_point_avg(a);
9 }

10
11 reduction max_diff max {
12 [0:Ny-1][0:Nx-1] : [1]a[0][0] - [0]a[0][0];
13 }
14 } check (max_diff < .00001) every 4 iterations

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 9

Domain-Specific Language for Stencils

1 int Nx;
2 int Ny;
3 grid g [Ny][Nx];
4
5 float griddata a on g at 0,1;
6
7 pointfunction five_point_avg(p) {
8 float ONE_FIFTH;
9 ONE_FIFTH = 0.2;

10 [1]p[0][0] = ONE_FIFTH*([0]p[-1][0] + [0]p[0][-1] + [0]p[0][0]
11 + [0]p[0][1] + [0]p[1][0]);
12 }
13
14 iterate 1000 {
15 stencil jacobi_2d {
16 [0][0:Nx-1] : [1]a[0][0] = [0]a[0][0];
17 [Ny-1][0:Nx-1] : [1]a[0][0] = [0]a[0][0];
18 [0:Ny-1][0] : [1]a[0][0] = [0]a[0][0];
19 [0:Ny-1][Nx-1] : [1]a[0][0] = [0]a[0][0];
20
21 [1:Ny-2][1:Nx-2] : five_point_avg(a);
22 }
23
24 reduction max_diff max {
25 [0:Ny-1][0:Nx-1] : [1]a[0][0] - [0]a[0][0];
26 }
27 } check (max_diff < .00001) every 4 iterations

Complete stencil program
Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 10

Optimizing CPU vs. GPU Performance
Floating-Point Throughput

▶ Need fine-grain and coarse-grain parallelism

▶ On a CPU
▶ Use vector processing units (SIMD)
▶ Use threads to exploit multi-/many-cores

▶ On a GPU
▶ Exploit SIMT parallelism across hundreds of cores
▶ Multiprocessors operate in lock-step ⇒ divergence = BAD

But this is not the whole story...

10x41 1202x5852
0

2

4

6

8

10

12

14

16

18

G
Fl

o
p
/s

Bandwidth Starved

Jacobi 5-pt on Core i7 2600K (single-threaded, no time tiling)

base

AVX intrinsics

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 11

Optimizing CPU vs. GPU Performance
Floating-Point Throughput

▶ Need fine-grain and coarse-grain parallelism
▶ On a CPU

▶ Use vector processing units (SIMD)
▶ Use threads to exploit multi-/many-cores

▶ On a GPU
▶ Exploit SIMT parallelism across hundreds of cores
▶ Multiprocessors operate in lock-step ⇒ divergence = BAD

But this is not the whole story...

10x41 1202x5852
0

2

4

6

8

10

12

14

16

18

G
Fl

o
p
/s

Bandwidth Starved

Jacobi 5-pt on Core i7 2600K (single-threaded, no time tiling)

base

AVX intrinsics

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 12

Optimizing CPU vs. GPU Performance
Floating-Point Throughput

▶ Need fine-grain and coarse-grain parallelism
▶ On a CPU

▶ Use vector processing units (SIMD)
▶ Use threads to exploit multi-/many-cores

▶ On a GPU
▶ Exploit SIMT parallelism across hundreds of cores
▶ Multiprocessors operate in lock-step ⇒ divergence = BAD

But this is not the whole story...

10x41 1202x5852
0

2

4

6

8

10

12

14

16

18

G
Fl

o
p
/s

Bandwidth Starved

Jacobi 5-pt on Core i7 2600K (single-threaded, no time tiling)

base

AVX intrinsics

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 13

Optimizing CPU vs. GPU Performance
Floating-Point Throughput

▶ Need fine-grain and coarse-grain parallelism
▶ On a CPU

▶ Use vector processing units (SIMD)
▶ Use threads to exploit multi-/many-cores

▶ On a GPU
▶ Exploit SIMT parallelism across hundreds of cores
▶ Multiprocessors operate in lock-step ⇒ divergence = BAD

But this is not the whole story...

10x41 1202x5852
0

2

4

6

8

10

12

14

16

18

G
Fl

o
p
/s

Bandwidth Starved

Jacobi 5-pt on Core i7 2600K (single-threaded, no time tiling)

base

AVX intrinsics

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 14

Optimizing CPU vs. GPU Performance

Memory Hierarchy
▶ Increasingly complex (multiple levels)
▶ Fast but small on-chip memory
▶ Slow but abundant off-chip memory

▶ On a CPU
▶ Exploit hardware caches through data re-use

▶ On a GPU
▶ Exploit per-multiprocessor shared/local memory
▶ Maximize work per read/write operation

▶ Need time tiling to efficiently utilize available main memory
bandwidth

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 15

Optimizing CPU vs. GPU Performance

Memory Hierarchy
▶ Increasingly complex (multiple levels)
▶ Fast but small on-chip memory
▶ Slow but abundant off-chip memory
▶ On a CPU

▶ Exploit hardware caches through data re-use

▶ On a GPU
▶ Exploit per-multiprocessor shared/local memory
▶ Maximize work per read/write operation

▶ Need time tiling to efficiently utilize available main memory
bandwidth

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 16

Optimizing CPU vs. GPU Performance

Memory Hierarchy
▶ Increasingly complex (multiple levels)
▶ Fast but small on-chip memory
▶ Slow but abundant off-chip memory
▶ On a CPU

▶ Exploit hardware caches through data re-use
▶ On a GPU

▶ Exploit per-multiprocessor shared/local memory
▶ Maximize work per read/write operation

▶ Need time tiling to efficiently utilize available main memory
bandwidth

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 17

Optimizing Stencils on GPUs
Typical Approach

▶ Use spatial tiling to distribute work among thread blocks
▶ Use shared/local memory as program-controlled cache

Problems
▶ Global (off-chip) memory latency is high
▶ Limited data re-use within a thread block
▶ Cannot schedule enough threads to hide memory latency
▶ Traditional time tiling is not efficient due to branch divergence

and a lack of memory access coalescing
Result

▶ Compute units are mostly idle waiting for memory operations
to complete

A possible solution?
▶ Overlapped tiling

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 18

Optimizing Stencils on GPUs
Typical Approach

▶ Use spatial tiling to distribute work among thread blocks
▶ Use shared/local memory as program-controlled cache

Problems
▶ Global (off-chip) memory latency is high
▶ Limited data re-use within a thread block
▶ Cannot schedule enough threads to hide memory latency
▶ Traditional time tiling is not efficient due to branch divergence

and a lack of memory access coalescing

Result
▶ Compute units are mostly idle waiting for memory operations

to complete
A possible solution?

▶ Overlapped tiling

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 19

Optimizing Stencils on GPUs
Typical Approach

▶ Use spatial tiling to distribute work among thread blocks
▶ Use shared/local memory as program-controlled cache

Problems
▶ Global (off-chip) memory latency is high
▶ Limited data re-use within a thread block
▶ Cannot schedule enough threads to hide memory latency
▶ Traditional time tiling is not efficient due to branch divergence

and a lack of memory access coalescing
Result

▶ Compute units are mostly idle waiting for memory operations
to complete

A possible solution?
▶ Overlapped tiling

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 20

Optimizing Stencils on GPUs
Typical Approach

▶ Use spatial tiling to distribute work among thread blocks
▶ Use shared/local memory as program-controlled cache

Problems
▶ Global (off-chip) memory latency is high
▶ Limited data re-use within a thread block
▶ Cannot schedule enough threads to hide memory latency
▶ Traditional time tiling is not efficient due to branch divergence

and a lack of memory access coalescing
Result

▶ Compute units are mostly idle waiting for memory operations
to complete

A possible solution?
▶ Overlapped tiling

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 21

Overlapped Tiling

Replace inter-tile communication with redundant computation
▶ Tile borders are redundantly computed by all neighboring tiles
▶ Trades extra FLOPs for a decrease in needed synchronization
▶ Enables time tiling without skewing (introduces divergence,

load imbalance, and bank conflicts)

Originally proposed by Krishnamoorthy et al. for parallelization
▶ We want fully-automatic code generation for arbitrary stencils
▶ Use OpenCL for performance-portable code generation, but

tune parameters for different GPU architectures

Let us look at an example for a 2× 2 tile with a time tile size of 2...

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 22

Overlapped Tiling

Replace inter-tile communication with redundant computation
▶ Tile borders are redundantly computed by all neighboring tiles
▶ Trades extra FLOPs for a decrease in needed synchronization
▶ Enables time tiling without skewing (introduces divergence,

load imbalance, and bank conflicts)
Originally proposed by Krishnamoorthy et al. for parallelization

▶ We want fully-automatic code generation for arbitrary stencils
▶ Use OpenCL for performance-portable code generation, but

tune parameters for different GPU architectures

Let us look at an example for a 2× 2 tile with a time tile size of 2...

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 23

Overlapped Tiling

Replace inter-tile communication with redundant computation
▶ Tile borders are redundantly computed by all neighboring tiles
▶ Trades extra FLOPs for a decrease in needed synchronization
▶ Enables time tiling without skewing (introduces divergence,

load imbalance, and bank conflicts)
Originally proposed by Krishnamoorthy et al. for parallelization

▶ We want fully-automatic code generation for arbitrary stencils
▶ Use OpenCL for performance-portable code generation, but

tune parameters for different GPU architectures

Let us look at an example for a 2× 2 tile with a time tile size of 2...

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 24

Overlapped Tiling

Tile at time t +1

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 25

Overlapped Tiling

Data needed at time t +1

Computed in time step t

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 26

Overlapped Tiling

Computation at time t

Also computed by neighboring tiles

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 27

Overlapped Tiling

Data needed at time t

Halo/Shadow data

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 28

Overlapped Tiling
GPU Implementation

▶ Schedule extra threads for redundant border cell computations
▶ In general, need (n + 2 ∗ r ∗ (t − 1))× (m + 2 ∗ r ∗ (t − 1))

threads

▶ Use shared memory to store results across time
▶ Only need to access global memory in first and last time step

of tile
▶ Synchronize threads, not blocks, after each time step

▶ Thread synchronization efficiently supported in hardware;
block synchronization is not

▶ Use host to synchronize across time tiles
1 for(t = 0; t < TIME_STEPS; t += TIME_TILE_SIZE) {
2 invoke_kernel(input, output);
3 swap(input, output);
4 // Implicit barrier
5 }

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 29

Overlapped Tiling
GPU Implementation

▶ Schedule extra threads for redundant border cell computations
▶ In general, need (n + 2 ∗ r ∗ (t − 1))× (m + 2 ∗ r ∗ (t − 1))

threads

▶ Use shared memory to store results across time
▶ Only need to access global memory in first and last time step

of tile

▶ Synchronize threads, not blocks, after each time step
▶ Thread synchronization efficiently supported in hardware;

block synchronization is not
▶ Use host to synchronize across time tiles

1 for(t = 0; t < TIME_STEPS; t += TIME_TILE_SIZE) {
2 invoke_kernel(input, output);
3 swap(input, output);
4 // Implicit barrier
5 }

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 30

Overlapped Tiling
GPU Implementation

▶ Schedule extra threads for redundant border cell computations
▶ In general, need (n + 2 ∗ r ∗ (t − 1))× (m + 2 ∗ r ∗ (t − 1))

threads

▶ Use shared memory to store results across time
▶ Only need to access global memory in first and last time step

of tile
▶ Synchronize threads, not blocks, after each time step

▶ Thread synchronization efficiently supported in hardware;
block synchronization is not

▶ Use host to synchronize across time tiles
1 for(t = 0; t < TIME_STEPS; t += TIME_TILE_SIZE) {
2 invoke_kernel(input, output);
3 swap(input, output);
4 // Implicit barrier
5 }

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 31

Overlapped Tiling
GPU Implementation

▶ Schedule extra threads for redundant border cell computations
▶ In general, need (n + 2 ∗ r ∗ (t − 1))× (m + 2 ∗ r ∗ (t − 1))

threads

▶ Use shared memory to store results across time
▶ Only need to access global memory in first and last time step

of tile
▶ Synchronize threads, not blocks, after each time step

▶ Thread synchronization efficiently supported in hardware;
block synchronization is not

▶ Use host to synchronize across time tiles
1 for(t = 0; t < TIME_STEPS; t += TIME_TILE_SIZE) {
2 invoke_kernel(input, output);
3 swap(input, output);
4 // Implicit barrier
5 }

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 32

What about block size?
Block size considerations

▶ Block size has large impact on performance
▶ Need enough threads to keep compute units busy...

▶ ... but it is also beneficial to use smaller blocks to increase the
number of available registers per block

▶ Problem size: 4096× 4096× 256

10 20 30 40 50 60

Block Size (X)

10

20

30

40

50

60

B
lo

ck
 S

iz
e
 (

Y
)

NVidia Tesla C2050 (GFlop/s)

0

15

30

45

60

75

90

105

120

135

10 15 20 25 30

Block Size (X)

10

15

20

25

30

B
lo

ck
 S

iz
e
 (

Y
)

AMD Radeon HD 6970 (GFlop/s)

0

15

30

45

60

75

90

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 33

What about block size?
Block size considerations

▶ Block size has large impact on performance
▶ Need enough threads to keep compute units busy...
▶ ... but it is also beneficial to use smaller blocks to increase the

number of available registers per block

▶ Problem size: 4096× 4096× 256

10 20 30 40 50 60

Block Size (X)

10

20

30

40

50

60

B
lo

ck
 S

iz
e
 (

Y
)

NVidia Tesla C2050 (GFlop/s)

0

15

30

45

60

75

90

105

120

135

10 15 20 25 30

Block Size (X)

10

15

20

25

30

B
lo

ck
 S

iz
e
 (

Y
)

AMD Radeon HD 6970 (GFlop/s)

0

15

30

45

60

75

90

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 34

What about block size?
Block size considerations

▶ Block size has large impact on performance
▶ Need enough threads to keep compute units busy...
▶ ... but it is also beneficial to use smaller blocks to increase the

number of available registers per block
▶ Problem size: 4096× 4096× 256

10 20 30 40 50 60

Block Size (X)

10

20

30

40

50

60

B
lo

ck
 S

iz
e
 (

Y
)

NVidia Tesla C2050 (GFlop/s)

0

15

30

45

60

75

90

105

120

135

10 15 20 25 30

Block Size (X)

10

15

20

25

30

B
lo

ck
 S

iz
e
 (

Y
)

AMD Radeon HD 6970 (GFlop/s)

0

15

30

45

60

75

90

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 35

Arithmetic Intensity
Arithmetic intensity matters too...

NVidia
Tesla

C2050

NVidia
GTX 280

NVidia
Quadro
FX 5800

AMD
HD6970

AMD
HD5870

0

50

100

150

200

250

300

G
Fl

o
p
/s

OpenCL on GPUs (4096x4096x256)

Base (9 FLOP/pt)

Overlapped (9 FLOP/pt)

Base (17 FLOP/pt)

Overlapped (17 FLOP/pt)

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 36

Performance

512 1024 2048 4096 8192

Problem Size (N x N)

0

2

4

6

8

10

12

14

16

G
Fl

o
p
/s

Jacobi 5-pt on Multi-Core with OpenMP

Intel Xeon E5640

Intel Core i7 2600K

Intel Core 2 Quad Q6600

AMD Phenom 9850

512 1024 2048 4096 8192

Problem Size (N x N)

0

20

40

60

80

100

G
Fl

o
p
/s

Jacobi 5-pt on GPU with OpenCL

NVidia GTX 280

NVidia Tesla C2050

AMD Radeon HD6970

AMD Radeon HD5870

▶ Fixed CPU tile sizes
▶ Fixed GPU block/tile sizes

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 37

Conclusion

▶ A DSL for stencils enables high productivity and performance
▶ Higher-level for application developers
▶ More information for compilers
▶ Increased performance-portability

▶ Overlapped tiling enables high-performance stencils on GPUs
▶ Trade redundant computation for less communication
▶ Exploit high compute-per-memory-op ratio on GPUs

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 38

Questions?

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 39

Performance Evaluation

Intel
Xeon E5640
4 Threads

NVidia
Tesla C2050

Base

NVidia
Tesla C2050
Overlapped

0

500

1000

1500

2000

2500

3000

3500

4000
E
la

p
se

d
 T

im
e
 (

m
s)

Jacobi 5-pt on CPU and GPU (4096x4096x256)

GPU Block Size: 64× 8 (512 of 1024 max)

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 40

Performance Evaluation

Intel
Xeon
E5640

2x4 Threads

Intel
Core i7
2600K

4 Threads

Intel
Core 2
Q6600

4 Threads

AMD
Phenom

9850
4 Threads

0

5

10

15

20

G
Fl

o
p
/s

OpenMP on CPUs (4096x4096x256)

icc -parallel -fast

icc+openmp with pocc

NVidia
Tesla

C2050

NVidia
GTX 280

NVidia
Quadro
FX 5800

AMD
HD6970

AMD
HD5870

0

50

100

150

200

250

300

G
Fl

o
p
/s

OpenCL on GPUs (4096x4096x256)

Naive (9 FLOP/pt)

Overlapped (9 FLOP/pt)

Naive (17 FLOP/pt)

Overlapped (17 FLOP/pt)

FP Through-put for Jacobi 9-pt

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 41

Performance Evaluation

512 1024 2048 4096 8192

Problem Size (N x N)

0

20

40

60

80

100

120

G
Fl

o
p
/s

Jacobi 5-pt on GPUs

NVidia GTX 280

NVidia Tesla C2050

AMD Radeon HD6970

AMD Radeon HD5870

Problem Size Evaluation for GPUs

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 42

	Stencils
	Stencil DSL
	CPU vs. GPU
	Overlapped Tiling
	Performance Evaluation
	Conclusion

