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5-pt 2D Stencil 9-pt 2D Stencil

» Operate on each point in a discrete n-dimensional space
» Use neighboring points in computation
» Often surrounded by time loop

» Have diverse boundary conditions
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Why do we need a domain-specific language?
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Why do we need a domain-specific language?

» Easier for application developers and scientists
» Write stencil as point-function and grid instead of loop nest
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Domain-Specific Language for Stencils

Why do we need a domain-specific language?
» Easier for application developers and scientists
» Write stencil as point-function and grid instead of loop nest

» More opportunity for compiler optimization

> Restricted to a simple expression language
» Not restricted by C/C++/Fortran specification
e.g. aliasing, memory life-cycle
» Control-flow is implicit instead of discovered at compile-time
> Iteration domain is easily obtained, enabling polyhedral
transformations for tiling, parallelism, memory optimizations
» Computations on grids ease dependency analysis
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Domain-Specific Language for Stencils

Why do we need a domain-specific language?
» Easier for application developers and scientists
» Write stencil as point-function and grid instead of loop nest

» More opportunity for compiler optimization
> Restricted to a simple expression language
» Not restricted by C/C++/Fortran specification
e.g. aliasing, memory life-cycle
» Control-flow is implicit instead of discovered at compile-time
» lIteration domain is easily obtained, enabling polyhedral
transformations for tiling, parallelism, memory optimizations
» Computations on grids ease dependency analysis

Goal
Use high-level abstractions to achieve write-once performance
portability for stencil computations.
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Stencil DSL Compiler

Generated
Code

Sequential C
Back-End

OpenCL Generated
Back-End Code
Stencil DSL Stencil AST Generic Cscy':‘pelzr
Parser Optimizer (gee, icc)
CUDA
Back-End

Generated
Code

OpenMP C
Back-End

Stencil Compiler Workflow
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Define stencil operation as a point-function over a grid using
[time]grid[i-offset] [j-offset] notation:

1| pointfunction five_point_avg(p) {

2 float ONE_FIFTH;

3 ONE_FIFTH = 0.2;

4 [11p[0][0] = ONE_FIFTH*([0]lp[-1]1[0] + [0]lp[0][-1] + [0lp([0][O]
5 + [0lplol[1] + [0lpl[1]1[01);
6|3
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Define stencil operation as a point-function over a grid using
[time]grid[i-offset] [j-offset] notation:

float ONE_FIFTH;
ONE_FIFTH = 0.2;

G E WN

pointfunction five_point_avg(p) {

[11p[0][0] = ONE_FIFTH*([0]lp[-1]1[0] + [0]lp[0][-1] + [0lp([0][O]

+ [0lplol[1] + [0lpl[1]1[01);

Define stencil range, functions, and convergence:

1| iterate 1000 {

2 stencil jacobi_2d {

3 [0][0:Nx-1] [11afo][0] = [0]al0]([0];
4 [Ny-1]1[0:Nx-1] [11afo][0] = [0]a[0]([0];
5 [0:Ny-1][0] [11af0][0] = [0]a[0]([0];
6 [0:Ny-1] [Nx-1] [11afo][0] = [0]a[0]([0];
7

8 [1:Ny-2]1[1:Nx-2] : five_point_avg(a);

9 }

10

11 reduction max_diff max {

12 [0:Ny-1]1[0:Nx-1]
}

14| } check (max_diff < .00001) every 4 iterations

[1]afo][0] - [0Jalo0l[0];
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int Nx;
int Ny;
grid g [Nyl][Nx];

float griddata a on g at 0,1;

pointfunction five_point_avg(p) {

float ONE_FIFTH;

ONE_FIFTH = 0.2;
10 [11p[0]1[0] = ONE_FIFTH*([0lp[-1]1[0] + [0lp[0]1[-1] + [0lp[0][0]
11 + [0]lp[01[1] + [0lp[11[01);
12| ¥

OO0 ~NOOUTEWN -

14| iterate 1000 {
15 stencil jacobi_2d {

16 [0]1[0:Nx-1] : [1]afo0l[0] = [0Ja[0][0];
17 [Ny-11[0:Nx-1] : [1]a[0][0] = [0]a[0][0];
18 [0:Ny-1][0] : [1]af0l[0] = [0Ja[0][0];
19 [0:Ny-1] [Nx-1] : [1]a[0][0] = [0]a[0][0];
20

21 [1:Ny-2]1[1:Nx-2] : five_point_avg(a);

22 }

23

24 reduction max_diff max {

25 [0:Ny-1]1[0:Nx-1] : [1]a[0]l[0] - [0la[0][0];
26 }

27|} check (max_diff < .00001) every 4 iterations

Complete stencil program

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University

10



Floating-Point Throughput
> Need fine-grain and coarse-grain parallelism
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Floating-Point Throughput
> Need fine-grain and coarse-grain parallelism
» Ona CPU
» Use vector processing units (SIMD)
» Use threads to exploit multi-/many-cores
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Floating-Point Throughput

> Need fine-grain and coarse-grain parallelism

» Ona CPU
» Use vector processing units (SIMD)
» Use threads to exploit multi-/many-cores

» On a GPU
» Exploit SIMT parallelism across hundreds of cores
» Multiprocessors operate in lock-step = divergence = BAD

But this is not the whole story...
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Optimizing CPU vs. GPU Performance

Floating-Point Throughput
> Need fine-grain and coarse-grain parallelism
» Ona CPU
» Use vector processing units (SIMD)
» Use threads to exploit multi-/many-cores
» On a GPU
» Exploit SIMT parallelism across hundreds of cores
» Multiprocessors operate in lock-step = divergence = BAD
But this is not the whole story...

Jacobi 5-pt on Core i7 2600K (single-threaded, no time tiling)
18

EEm base
B AVX intrinsics

GFlop/s

Bandwidth Starved

10x41 1202x5852
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Memory Hierarchy

» Increasingly complex (multiple levels)
» Fast but small on-chip memory

» Slow but abundant off-chip memory
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Memory Hierarchy

» Increasingly complex (multiple levels)

Fast but small on-chip memory

vV v v

On a CPU

Slow but abundant off-chip memory

» Exploit hardware caches through data re-use
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Optimizing CPU vs. GPU Performance

Memory Hierarchy
» Increasingly complex (multiple levels)
» Fast but small on-chip memory

» Slow but abundant off-chip memory
» Ona CPU

» Exploit hardware caches through data re-use

» On a GPU

» Exploit per-multiprocessor shared/local memory
» Maximize work per read/write operation

> Need time tiling to efficiently utilize available main memory
bandwidth
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Typical Approach

» Use spatial tiling to distribute work among thread blocks

» Use shared/local memory as program-controlled cache
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Optimizing Stencils on GPUs

Typical Approach
> Use spatial tiling to distribute work among thread blocks
» Use shared/local memory as program-controlled cache
Problems
» Global (off-chip) memory latency is high
> Limited data re-use within a thread block
» Cannot schedule enough threads to hide memory latency

» Traditional time tiling is not efficient due to branch divergence
and a lack of memory access coalescing
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Optimizing Stencils on GPUs

Typical Approach
> Use spatial tiling to distribute work among thread blocks
» Use shared/local memory as program-controlled cache
Problems
» Global (off-chip) memory latency is high
> Limited data re-use within a thread block
» Cannot schedule enough threads to hide memory latency

» Traditional time tiling is not efficient due to branch divergence
and a lack of memory access coalescing

Result

» Compute units are mostly idle waiting for memory operations
to complete
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Optimizing Stencils on GPUs

Typical Approach
> Use spatial tiling to distribute work among thread blocks
» Use shared/local memory as program-controlled cache
Problems
» Global (off-chip) memory latency is high
> Limited data re-use within a thread block
» Cannot schedule enough threads to hide memory latency

» Traditional time tiling is not efficient due to branch divergence
and a lack of memory access coalescing

Result

» Compute units are mostly idle waiting for memory operations
to complete

A possible solution?
» Overlapped tiling
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Replace inter-tile communication with redundant computation
» Tile borders are redundantly computed by all neighboring tiles
» Trades extra FLOPs for a decrease in needed synchronization

» Enables time tiling without skewing (introduces divergence,
load imbalance, and bank conflicts)
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Overlapped Tiling

Replace inter-tile communication with redundant computation
» Tile borders are redundantly computed by all neighboring tiles
» Trades extra FLOPs for a decrease in needed synchronization

» Enables time tiling without skewing (introduces divergence,
load imbalance, and bank conflicts)

Originally proposed by Krishnamoorthy et al. for parallelization
» We want fully-automatic code generation for arbitrary stencils

» Use OpenCL for performance-portable code generation, but
tune parameters for different GPU architectures
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Overlapped Tiling

Replace inter-tile communication with redundant computation
» Tile borders are redundantly computed by all neighboring tiles
» Trades extra FLOPs for a decrease in needed synchronization

» Enables time tiling without skewing (introduces divergence,
load imbalance, and bank conflicts)

Originally proposed by Krishnamoorthy et al. for parallelization
» We want fully-automatic code generation for arbitrary stencils

» Use OpenCL for performance-portable code generation, but
tune parameters for different GPU architectures

Let us look at an example for a 2 x 2 tile with a time tile size of 2...
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Tile at time t +1
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Computed in time step t

Data needed at time t +1
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Also computed by neighboring tiles

Computation at time t

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 27



Halo/Shadow data

Data needed at time t
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GPU Implementation

» Schedule extra threads for redundant border cell computations

> In general, need (n+ 2% rx (t—1)) x (m+2xrx (t—1))
threads
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GPU Implementation
» Schedule extra threads for redundant border cell computations
> In general, need (n+ 2% r* (t—1)) x (m+2xrx (t— 1))
threads
> Use shared memory to store results across time

» Only need to access global memory in first and last time step
of tile
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Overlapped Tiling

GPU Implementation
» Schedule extra threads for redundant border cell computations
» In general, need (n+2x*rx (t—1)) x (m+2*rx (t—1))
threads
» Use shared memory to store results across time

» Only need to access global memory in first and last time step
of tile

» Synchronize threads, not blocks, after each time step

» Thread synchronization efficiently supported in hardware;
block synchronization is not
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Overlapped Tiling

GPU Implementation
» Schedule extra threads for redundant border cell computations
» In general, need (n+2x*rx (t—1)) x (m+2*rx (t—1))
threads
» Use shared memory to store results across time

» Only need to access global memory in first and last time step
of tile

» Synchronize threads, not blocks, after each time step

» Thread synchronization efficiently supported in hardware;
block synchronization is not

» Use host to synchronize across time tiles

for(t = 0; t < TIME_STEPS; t += TIME_TILE_SIZE) {
invoke_kernel (input, output);
swap (input, output);
// Implicit barrier

}

GAWN
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Block size considerations
» Block size has large impact on performance
> Need enough threads to keep compute units busy...
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Block size considerations
» Block size has large impact on performance
> Need enough threads to keep compute units busy...
» ... but it is also beneficial to use smaller blocks to increase the
number of available registers per block
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What about block size?

Block size considerations

» Block size has large impact on performance

» Need enough threads to keep compute units busy...

> ... but it is also beneficial to use smaller blocks to increase the
number of available registers per block
Problem size: 4096 x 4096 x 256

v

NVidia Tesla C2050 (GFlop/s) AMD Radeon HD 6970 (GFlop/s)
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Arithmetic Intensity
Arithmetic intensity matters too...

OpenCL on GPUs (4096x4096x256)
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Jacobi 5-pt on Multi-Core with OpenMP

Jacobi 5-pt on GPU with OpenCL
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Problem Size (N x N)

» Fixed CPU tile sizes

» Fixed GPU block/tile sizes
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» A DSL for stencils enables high productivity and performance
» Higher-level for application developers
» More information for compilers
> Increased performance-portability

» Overlapped tiling enables high-performance stencils on GPUs

» Trade redundant computation for less communication
» Exploit high compute-per-memory-op ratio on GPUs
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Performance Evaluation

Jacobi 5-pt on CPU and GPU (4096x4096x256)
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Performance Evaluation

OpenMP on CPUs (4096x4096x256)

OpenCL on GPUs (4096x4096x256)
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Jacobi 5-pt on GPUs
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Problem Size Evaluation for GPUs
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