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Stencil Computations

5-pt 2D Stencil 9-pt 2D Stencil

1 for(i = 1; i < N-1; ++i) {
2 for(j = 1; j < N-1; ++j) {
3 A[i][j] = CNST * (B[i ][j ] +
4 B[i ][j-1] +
5 B[i ][j+1] +
6 B[i-1][j ] +
7 B[i+1][j ]);
8 }
9 }

▶ Operate on each point in a discrete n-dimensional space
▶ Use neighboring points in computation
▶ Often surrounded by time loop
▶ Have diverse boundary conditions
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Domain-Specific Language for Stencils

Why do we need a domain-specific language?

▶ Easier for application developers and scientists
▶ Write stencil as point-function and grid instead of loop nest

▶ More opportunity for compiler optimization
▶ Restricted to a simple expression language
▶ Not restricted by C/C++/Fortran specification

e.g. aliasing, memory life-cycle
▶ Control-flow is implicit instead of discovered at compile-time
▶ Iteration domain is easily obtained, enabling polyhedral

transformations for tiling, parallelism, memory optimizations
▶ Computations on grids ease dependency analysis

.Goal..

......
Use high-level abstractions to achieve write-once performance
portability for stencil computations.
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Domain-Specific Language for Stencils
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Domain-Specific Language for Stencils

Define stencil operation as a point-function over a grid using
[time]grid[i-offset][j-offset] notation:

1 pointfunction five_point_avg(p) {
2 float ONE_FIFTH;
3 ONE_FIFTH = 0.2;
4 [1]p[0][0] = ONE_FIFTH*([0]p[-1][0] + [0]p[0][-1] + [0]p[0][0]
5 + [0]p[0][1] + [0]p[1][0]);
6 }

Define stencil range, functions, and convergence:
1 iterate 1000 {
2 stencil jacobi_2d {
3 [0][0:Nx-1] : [1]a[0][0] = [0]a[0][0];
4 [Ny-1][0:Nx-1] : [1]a[0][0] = [0]a[0][0];
5 [0:Ny-1][0] : [1]a[0][0] = [0]a[0][0];
6 [0:Ny-1][Nx-1] : [1]a[0][0] = [0]a[0][0];
7
8 [1:Ny-2][1:Nx-2] : five_point_avg(a);
9 }

10
11 reduction max_diff max {
12 [0:Ny-1][0:Nx-1] : [1]a[0][0] - [0]a[0][0];
13 }
14 } check (max_diff < .00001) every 4 iterations
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Domain-Specific Language for Stencils

1 int Nx;
2 int Ny;
3 grid g [Ny][Nx];
4
5 float griddata a on g at 0,1;
6
7 pointfunction five_point_avg(p) {
8 float ONE_FIFTH;
9 ONE_FIFTH = 0.2;

10 [1]p[0][0] = ONE_FIFTH*([0]p[-1][0] + [0]p[0][-1] + [0]p[0][0]
11 + [0]p[0][1] + [0]p[1][0]);
12 }
13
14 iterate 1000 {
15 stencil jacobi_2d {
16 [0][0:Nx-1] : [1]a[0][0] = [0]a[0][0];
17 [Ny-1][0:Nx-1] : [1]a[0][0] = [0]a[0][0];
18 [0:Ny-1][0] : [1]a[0][0] = [0]a[0][0];
19 [0:Ny-1][Nx-1] : [1]a[0][0] = [0]a[0][0];
20
21 [1:Ny-2][1:Nx-2] : five_point_avg(a);
22 }
23
24 reduction max_diff max {
25 [0:Ny-1][0:Nx-1] : [1]a[0][0] - [0]a[0][0];
26 }
27 } check (max_diff < .00001) every 4 iterations

Complete stencil program
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Optimizing CPU vs. GPU Performance
Floating-Point Throughput

▶ Need fine-grain and coarse-grain parallelism

▶ On a CPU
▶ Use vector processing units (SIMD)
▶ Use threads to exploit multi-/many-cores

▶ On a GPU
▶ Exploit SIMT parallelism across hundreds of cores
▶ Multiprocessors operate in lock-step ⇒ divergence = BAD

But this is not the whole story...
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Optimizing CPU vs. GPU Performance

Memory Hierarchy
▶ Increasingly complex (multiple levels)
▶ Fast but small on-chip memory
▶ Slow but abundant off-chip memory

▶ On a CPU
▶ Exploit hardware caches through data re-use

▶ On a GPU
▶ Exploit per-multiprocessor shared/local memory
▶ Maximize work per read/write operation

▶ Need time tiling to efficiently utilize available main memory
bandwidth
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Optimizing Stencils on GPUs
Typical Approach

▶ Use spatial tiling to distribute work among thread blocks
▶ Use shared/local memory as program-controlled cache

Problems
▶ Global (off-chip) memory latency is high
▶ Limited data re-use within a thread block
▶ Cannot schedule enough threads to hide memory latency
▶ Traditional time tiling is not efficient due to branch divergence

and a lack of memory access coalescing
Result

▶ Compute units are mostly idle waiting for memory operations
to complete

A possible solution?
▶ Overlapped tiling
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Overlapped Tiling

Replace inter-tile communication with redundant computation
▶ Tile borders are redundantly computed by all neighboring tiles
▶ Trades extra FLOPs for a decrease in needed synchronization
▶ Enables time tiling without skewing (introduces divergence,

load imbalance, and bank conflicts)

Originally proposed by Krishnamoorthy et al. for parallelization
▶ We want fully-automatic code generation for arbitrary stencils
▶ Use OpenCL for performance-portable code generation, but

tune parameters for different GPU architectures

Let us look at an example for a 2× 2 tile with a time tile size of 2...
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Overlapped Tiling

Tile at time t +1
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Overlapped Tiling

Data needed at time t +1

Computed in time step t
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Overlapped Tiling

Computation at time t

Also computed by neighboring tiles
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Overlapped Tiling

Data needed at time t

Halo/Shadow data
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Overlapped Tiling
GPU Implementation

▶ Schedule extra threads for redundant border cell computations
▶ In general, need (n + 2 ∗ r ∗ (t − 1))× (m + 2 ∗ r ∗ (t − 1))

threads

▶ Use shared memory to store results across time
▶ Only need to access global memory in first and last time step

of tile
▶ Synchronize threads, not blocks, after each time step

▶ Thread synchronization efficiently supported in hardware;
block synchronization is not

▶ Use host to synchronize across time tiles
1 for(t = 0; t < TIME_STEPS; t += TIME_TILE_SIZE) {
2 invoke_kernel(input, output);
3 swap(input, output);
4 // Implicit barrier
5 }
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What about block size?
Block size considerations

▶ Block size has large impact on performance
▶ Need enough threads to keep compute units busy...

▶ ... but it is also beneficial to use smaller blocks to increase the
number of available registers per block

▶ Problem size: 4096× 4096× 256
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Arithmetic Intensity
Arithmetic intensity matters too...
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Performance
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Conclusion

▶ A DSL for stencils enables high productivity and performance
▶ Higher-level for application developers
▶ More information for compilers
▶ Increased performance-portability

▶ Overlapped tiling enables high-performance stencils on GPUs
▶ Trade redundant computation for less communication
▶ Exploit high compute-per-memory-op ratio on GPUs
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Questions?

Holewinski et al.: Stencil Computations with a High-Level DSL HPC Research Laboratory, The Ohio State University 39



Performance Evaluation
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Performance Evaluation
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Performance Evaluation
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