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 Motivation for DSLs 
  Liszt for mesh-based PDEs 
 OptiML for machine learning 
 Delite a framework for DSLs 



  Power 
  Performance 
  Productivity 
  Portability 



Source: DARPA Exascale Hardware and Software Studies 
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  Heterogeneous HW for energy efficiency 
  Multi-core, ILP, threads, data-parallel engines, custom engines 

  H.264 encode study 
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Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10) 

~3 orders of 
magnitude 

Future performance gains will mainly come from heterogeneous 
hardware with different specialized resources  



D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize 

100 times more power efficient  
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  Domain Specific Languages (DSLs)  
  Definition: A language or library with restrictive expessiveness 

that exploits domain knowledge for productivity and efficiency 
  High-level, usually declarative, and deterministic 



Productivity 
• Shield average programmers from the difficulty of parallel 
programming 

• Focus on developing algorithms and applications and not on low 
level implementation details 

Performance 
• Match high level domain abstraction to generic parallel execution 
patterns 

• Restrict expressiveness to more easily and fully extract available 
parallelism 

• Use domain knowledge for static/dynamic optimizations 

Portability and forward scalability 
• DSL & Runtime can be evolved to take advantage of latest 
hardware features 

• Applications remain unchanged 
• Allows innovative HW without worrying about application portability 
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  Z. DeVito, N. Joubert, P. Hanrahan 
  Solvers for mesh-based PDEs 

  Complex physical systems 
  Huge domains  
  millions of cells 
  Example: Unstructured Reynolds-

averaged Navier Stokes (RANS) 
solver 

  Goal: simplify code of mesh-based 
PDE solvers 
  Write once, run on any type of 

parallel machine 
  From multi-cores and GPUs to 

clusters 



  State-of-the-art unstructured Reynolds-averaged 
Navier Stokes (RANS) solver 

  Main tool for system-level simulation 
  Highly optimized for MPI clusters 
  Fortran heritage 

Fuel injection 
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Turbulence 

Turbulence 
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  Find Parallelism 

  Data-parallelism on mesh elements 

  Expose Data Locality 

  PDE Operators have local support  

  Stencil captures exact region of support 

  Reason about Synchronization 

  Iterative solvers 

  Read old values to calculate new values 



  Minimal Programming language 
  Aritmetic, short vectors, functions, control flow 

  Built-in mesh interface for arbitrary polyhedra 
  Vertex, Edge, Face, Cell	
  Optimized memory representation of mesh	

  Collections of mesh elements 
  Element Sets: faces(c:Cell), edgesCCW(f:Face)	

  Mapping mesh elements to fields 
  Fields: val vert_position = position(v)	

  Parallelizable iteration 
  forall statements: for( f <- faces(cell) ) { … }	



val	  Position	  =	  FieldWithLabel[Vertex,Float3](“position”)	  
val	  Temperature	  =	  FieldWithConst[Vertex,Float](0.0f)	  
val	  Flux	  =	  FieldWithConst	  [Vertex,Float](0.0f)	  
val	  JacobiStep	  =	  FieldWithConst[Vertex,Float](0.0f)	  
var	  i	  =	  0;	  
while	  (i	  <	  1000)	  {	  
	  	  for	  (e	  <-‐	  edges(mesh))	  {	  
	  	  	  	  val	  v1	  =	  head(e)	  
	  	  	  	  val	  v2	  =	  tail(e)	  
	  	  	  	  val	  dP	  =	  Position(v1)	  -‐	  Position(v2)	  
	  	  	  	  val	  dT	  =	  Temperature(v1)	  -‐	  Temperature(v2)	  
	  	  	  	  val	  step	  =	  1.0f/(length(dP))	  
	  	  	  	  Flux(v1)	  +=	  dT*step	  
	  	  	  	  Flux(v2)	  -‐=	  dT*step	  
	  	  	  	  JacobiStep(v1)	  +=	  step	  
	  	  	  	  JacobiStep(v2)	  +=	  step	  
	  	  }	  	  
	  	  for	  (p	  <-‐	  vertices(mesh))	  {	  
	  	  	  	  Temperature(p)	  +=	  0.01f*Flux(p)/JacobiStep(p)	  
	  	  }	  
	  	  for	  (p	  <-‐	  vertices(mesh))	  {	  	  
	  	  	  	  Flux(p)	  =	  0.f;	  JacobiStep(p)	  =	  0.f;	  	  	  
	  	  }	  
	  	  i	  +=	  1	  
}	  

Mesh Elements	


Topology Functions	


Sets	


Fields (Data storage)	
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  “Stencil” of a piece of code: 
  Captures just the memory accesses it 

performs 

  Infer stencil for each for-comprehension 
in Liszt  



  Analyze code to detect memory access stencil of 
each top-level for-all comprehension 
  Extract nested mesh element reads 
  Extract field operations 
  Difficult with a traditional library 

for	  (e	  <-‐	  edges(mesh))	  {	  
	  	  val	  v1	  =	  head(e)	  
	  	  val	  v2	  =	  tail(e)	  
	  	  val	  dP	  =	  Position(v1)	  -‐	  Position(v2)	  
	  	  val	  dT	  =	  Temperature(v1)	  -‐	  Temperature(v2)	  
	  	  val	  step	  =	  1.0f/(length(dP))	  
	  	  Flux(v1)	  +=	  dT*step	  
	  	  Flux(v2)	  -‐=	  dT*step	  
	  	  JacobiStep(v1)	  +=	  step	  
	  	  JacobiStep(v2)	  +=	  step	  
}	  	  

e in 
edges(mesh)

head(e) tail(e)

Write Flux, JacobiStep Write Flux, JacobiStep
Read Position,Temperature Read Position, Temperature

vertices(mesh)

Read/Write Flux

Write Temperature
Read/Write JacobiStep



Simple Set Comprehension 
Functions, Function Calls 
Mesh Topology Operators 

Field Data Storage 

for(edge	  <-‐	  edges(mesh))	  {	  
	  	  	  val	  flux	  =	  flux_calc(edge)	  
	  	  	  val	  v0	  =	  head(edge)	  
	  	  	  val	  v1	  =	  tail(edge)	  
	  	  	  Flux(v0)	  +=	  flux	  
	  	  	  Flux(v1)	  -‐=	  flux	  
}	  

Code contains possible write conflicts!  
We use architecture specific strategies guided 

by domain knowledge 
  MPI: Ghost cell-based message passing 
  GPU: Coloring-based use of shared memory 



  Partitioning 
  Assign partition to each computational 

unit 
  Use ghost elements to coordinate                                            

cross-boundary communication. 
  Ideal for single computational unit per                                  

memory space 

  Coloring 
  Calculate interference between work 

items on domain 
  Schedule work-items into non-

interfering batches 
  Ideal for many computational                                                     

units per memory space  

Owned Cell	


Ghost Cell	


1 58 1011 73 0 24 9

Batch 4Batch 3Batch 2Batch 1

Schedule set of nonconflicting threads per color



Runtime

Platform

Native 
Compiler

Liszt Compiler

Scala Compiler

.scala Scala frontend

platform-independent analysisLiszt plugin

runtime-specific code gen

MPI CUDA pthreads 

Cluster SMP GPU.mesh

MPI
app

partitioning

pthreads
app

coloring

CUDA 
app
coloring

mpicxx c++ nvcc



  4 example codes with Liszt and C++ 
implementations: 
  Euler solver from Joe 
  Navier-Stokes solver from Joe 
  Shallow Water simulator 

  Free-surface simulation on globe as per Drake et al. 
  Second order accurate spatial scheme 

  Linear FEM 
  Hexahedral mesh 
  Trilinear basis functions with support at vertices 
  CG solver 



  Runtime comparisons between hand-tuned 
C++ and Liszt 

  Liszt performance within 12% of C++ 

Euler	
 Navier-
Stokes	


FEM	
 Shallow 
Water	


Mesh size	
 367k	
 668k	
 216k	
 327k	


Liszt	
 0.37s	
 1.31s	
 0.22s	
 3.30s	


C++	
 0.39s	
 1.55s	
 0.19s	
 3.34s	




  4-socket 6-core 2.66Ghz Xeon CPU per 
node (24 cores), 16GB RAM per node. 256 
nodes, 8 cores per node 
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  Tesla C2050, Double Precision, compared to 
single core, Nehalem E5520 2.26Ghz, 8GB RAM 
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  Tested both pthreads 
(coloring) and MPI 
(partitioning) runtime 
on: 
  8-core Nehalem E5520 

2.26Ghz, 8GB RAM 

  32-core Nehalem-EX 
X7560 2.26GHz, 128GB 
RAM 
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  A. Sujeeth and H. Chafi 
  Machine Learning domain 

  Learning patterns from data 
  Applying the learned models to tasks 

  Regression, classification, clustering, estimation 
  Computationally expensive 
  Regular and irregular parallelism  

  Motivation for OptiML 
  Raise the level of abstraction 
  Use domain knowledge to identify coarse-grained 

parallelism 
  Single source ⇒ multiple heterogeneous targets 
  Domain specific optimizations 



  Provides a familiar (MATLAB-like) language and 
API for writing ML applications 
  Ex. val c = a * b (a, b are Matrix[Double])  

  Implicitly parallel data structures 
  General data types : Vector[T], Matrix[T] 

  Independent from the underlying implementation 
  Special data types : TrainingSet, TestSet, IndexVector, 

Image, Video .. 
  Encode semantic information 

  Implicitly parallel control structures 
  sum{…}, (0::end) {…}, gradient { … },  untilconverged { … } 
  Allow anonymous functions with restricted semantics to be 

passed as arguments of the control structures 



% x : Matrix, y: Vector 
% mu0, mu1: Vector 

n = size(x,2); 
sigma = zeros(n,n); 

parfor i=1:length(y) 
    if (y(i) == 0) 
        sigma = sigma + (x(i,:)-mu0)’*(x(i,:)-mu0); 
    else 
        sigma = sigma + (x(i,:)-mu1)’*(x(i,:)-mu1); 
    end 
end 

// x : TrainingSet[Double] 
// mu0, mu1 : Vector[Double] 

val sigma = sum(0,x.numSamples) {  
    if (x.labels(_) == false) { 
        (x(_)-mu0).trans.outer(x(_)-mu0) 
    } 
    else { 
        (x(_)-mu1).trans.outer(x(_)-mu1) 
    } 
} 

OptiML code (parallel) MATLAB code 

ML-specific data types 

Implicitly parallel 
control structures 

Restricted index 
semantics 



OptiML Parallelized MATLAB C++ 
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  Graphs and graph algorithms 
  BFS, maximum flow, matching, assignment, components and 

connectivity, . . . 
  Social networks, data analysis 

  Bio-simulation 
  Molecular dynamics, cells & viruses , drug-design, prosthetics 

  Query Language 
  Relations, data analytics, financial trading 

  Computational Geometry 
  Arbitrary polyhedra, convex hull, delauny triangulation, . . .  

  Visualization 
  Protovis, Data wrangler 

  Your DSL goes here 



  We need to develop all of these DSLs 

  Current DSL methods are unsatisfactory 



  Stand-alone DSLs 
  Can include extensive optimizations 
  Enormous effort to develop to a sufficient degree of maturity 

  Actual Compiler/Optimizations 
  Tooling (IDE, Debuggers,…) 

  Interoperation between multiple DSLs is very difficult 

  Purely embedded DSLs ⇒ “just a library” 
  Easy to develop (can reuse full host language) 
  Easier to learn DSL  
  Can Combine multiple DSLs in one program 
  Can Share DSL infrastructure among several DSLs 
  Hard to optimize using domain knowledge 
  Target same architecture as host language 

Need to do better 



 Goal: Develop embedded DSLs that 
perform as well as stand-alone ones 

  Intuition: General-purpose languages 
should be designed with DSL 
embedding in mind 



  Mixes OO and FP paradigms 
  Targets JVM 

  Expressive type system allows 
powerful abstraction 

  Scalable language 

  Stanford/EPFL collaboration on 
leveraging Scala for parallelism 

  “Language Virtualization for 
Heterogeneous Parallel 
Computing” Onward 2010, Reno 



  Constructs of the embedding language can be 
overriden by the DSL: 

    maps to 

  DSL developer can control the meaning of 
conditionals by providing overloaded variants 
specialized to DSL types 

if	  (cond)	  something	  else	  somethingElse	  

__ifThenElse(cond, something, somethingElse)	  



  What we lift into the embedding world 
  DSL-defined methods 
  Basic Scala types (primitives, Arrays, Lists, 

Tuples, etc.) 
  Control structures (If, For, While, …) 
  Equality 
  Variable declaration and assignment 
  Functions 

  What we don’t lift (yet) 
  Classes 
  Methods 



Embedded DSL gets it all for free, 
but can’t change any of it 

Lexer Parser Type 
checker Analysis Optimization Code 

gen 

DSLs adopt front-end from 
highly expressive 

embedding language 

but can customize IR and 
participate in backend phases 

Stand-alone DSL 
implements everything 

                 Typical Compiler  

Modular Staging provides a hybrid approach 

GPCE’10: Lightweight modular staging: a pragmatic  
approach to runtime code generation and compiled DSLs 



Lexer Parser Type 
checker Analysis Optimization Code 

gen 

DSLs adopt front-end from 
highly expressive 

embedding language 

but can customize IR and 
participate in backend phases 

  Need a framework to simplify 
development of DSL backends 

Delite 

H. Chafi, A. Sujeeth, K. Brown, H. Lee 



Intermediate Representation (IR) 

  Provide a common IR that 
can be extended while still 
benefitting from generic 
analysis and opt. 

  Extend common IR and 
provide IR nodes that 
encode data parallel 
execution patterns 
  Now can do parallel 

optimizations and 
mapping 

  DSL extends appropriate 
data parallel nodes for 
their operations 
  Now can do domain-

specific analysis and opt.  

        Scala Embedding  
              Framework 

Delite Parallelism 
Framework 

Base IR 

Generic 
Analysis & Opt. 

Liszt 
program 

OptiML 
program 

DS IR 

Domain 
Analysis & Opt. 

Delite IR 

Parallelism Analysis, 
Opt. & Mapping 

⇒ ⇒ 



Matrix 
Plus 

Vector 
Exp 

Matrix 
Sum 

Reduce Map ZipWith 

Expression 

s = sum(M) V1 = exp(V2) M1 = M2 + M3 

Domain Analysis 
& Opt. 

Domain User 
Interface 

Parallelism 
Analysis & Opt. 

Code Generation 

DSL 
User 

Generic Analysis 
& Opt. 

Application 

DS IR 

Delite Op IR 

Base IR 

DSL 
Author 

Delite 

Delite 

Collection
Quicksort 

Divide & 
Conquer 

C2 = sort(C1) 



  Common subexpression elimination 
  Global dictionary tracks what’s been seen before 

  Dead code elimination 
  All code is emitted due to dependencies on 

computing a required result 
  Dead code is never encountered in this process 

  Constant folding 
  Constants are lifted into the IR lazily 
  Operations on constants are computed as program 

runs 
  Code motion 

  Pull computation out of loops 
  Push computation into conditionals 



  Use domain-specific knowledge to make 
optimizations in a modular fashion 

  Override IR node creation 
  Construct Optimized IR nodes if possible 
  A * B + A *C = A * (B + C) // Matrix A, B, C 
  Construct default otherwise 

  Rewrite rules are simple, yet powerful 
optimization mechanism 

  Access to the full domain specific IR allows for 
application of much more complex optimizations 



  A straightforward translation of the Gaussian Discriminant 
Analysis (GDA) algorithm from the mathematical 
description produces the following code: 

  A much more efficient implementation recognizes that 

  Transformed code was 20.4x faster with 1 thread and 
48.3x faster with 8 threads.    

val sigma = sum(0,m) { i =>!
  if (x.labels(i) == false) {!
    ((x(i) - mu0).t) ** (x(i) - mu0)!
  else!
    ((x(i) - mu1).t) ** (x(i) - mu1)!
  }!
}!



  Fuse Parallel Ops 

 Reduces Op overhead 
  Op setup 
  Loop overhead 

  Improves locality 
  Fused Op communication through registers 
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Intermediate Representation (IR) 

  Provide a common IR that 
can be extended while still 
benefitting from generic 
analysis and opt. 

  Extend common IR and 
provide IR nodes that 
encode data parallel 
execution patterns 
  Now can do parallel 

optimizations and 
mapping 

  DSL extends appropriate 
data parallel nodes for 
their operations 
  Now can do domain-

specific analysis and opt.  

  Generate an execution 
graph, kernels and data 
structures 

        Scala Embedding  
              Framework 

Delite 
Execution 

Graph 

Delite Parallelism 
Framework 

Base IR 

Generic 
Analysis & Opt. 

Code Generation 

Kernels
(Scala, C, 

Cuda,  MPI 
Verilog, …) 

Liszt 
program 

OptiML 
program 

DS IR 

Domain 
Analysis & Opt. 

Delite IR 

Parallelism Analysis, 
Opt. & Mapping 

⇒ ⇒ 

Data Structures
(arrays, trees, 

graphs, …) 



  Generates an execution graph with all 
DeliteOps and their dependencies 

  Calls all registered code generators (Scala, 
Cuda, …) for each Op to create kernels 
  Only 1 generator (currently Scala) has to succeed  

  Every Op at top-level of program is emitted 
as a kernel 
  Creates a file and object header then calls 

emitNode() on the Op 
  Nested calls to emitNode() result in 

implementation being inlined in current kernel 



  With a library approach we can only launch pre-written kernels 
  Code generation enables kernels containing user-defined 

functions and optimization opportunities 
  e.g., fuse operations into one kernel and keep intermediate results in 

registers 
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Partial schedules, Fused &  specialized kernels 

Cluster 

GPU SMP 

Machine Inputs 

Delite 
Execution 

Graph  

Kernels 
(Scala, C, 

Cuda, 
Verilog, …) 

Data 
Structures 

(arrays, trees, 
graphs, …) 

Application Inputs 

Scheduler Code Generator 
 Fusion, Specialization, Synchronization 

Walk-Time 

Schedule Dispatch, Dynamic load balancing, Memory management, 
Lazy data transfers, Kernel auto-tuning, Fault tolerance 

  Maps the machine-
agnostic DSL compiler 
output onto the machine 
configuration for 
execution 

  Walk-time scheduling 
produces partial 
schedules 

  Code generation 
produces fused, 
specialized kernels to be 
launched on each 
resource 

  Run-time executor 
controls and optimizes 
execution 

Run-Time 



  Power 

  Performance 

  Productivity 

  Portability 

Application Specific Hardware 

Domain Specific Languages 



  DSLs have potential to solve the heterogeneous 
parallel programming problem 
  Don’t expose programmers to explicit parallelism 

  Need to simplify the process of developing  DSLs 
for parallelism 
  Need programming languages to be designed for flexible 

embedding 

  Lightweight modular staging in Scala allows for more 
powerful embedded DSLs 

  Delite provides a framework for adding parallelism 

  Early embedded DSL results are very  promising  



  Machine 
  Two quad-core Nehalem 2.67 GHz processors 
  NVidia Tesla C2050 GPU 

  Application Versions 
  OptiML + Delite 
  MATLAB 

  version 1: multi-core (parallelization using 
“parfor” construct and BLAS) 

  version 2: GPU  
  C++ 

  used Armadillo linear algebra library for a 
sequential baseline 

  Algorithmically identical to OptiML version 



  6 machine learning applications 
  Gaussian Discriminant Analysis (GDA) 

  Generative learning algorithm for probability distribution 

  Loopy Belief Propagation (LBP) 
  Graph based inference algorithm 

  Naïve Bayes (NB) 
  Supervised learning algorithm for classification 

  K-means Clustering (K-means) 
  Unsupervised learning algorithm for clustering 

  Support Vector Machine (SVM) 
  Optimal margin classifier using SMO algorithm 

  Restricted Boltzmann Machine (RBM) 
  Stochastic recurrent neural network 


