
Kunle Olukotun

Pervasive Parallelism Laboratory
Stanford University

 Motivation for DSLs
  Liszt for mesh-based PDEs
 OptiML for machine learning
 Delite a framework for DSLs

  Power
  Performance
  Productivity
  Portability

Source: DARPA Exascale Hardware and Software Studies

100x

FIXED

  Heterogeneous HW for energy efficiency
  Multi-core, ILP, threads, data-parallel engines, custom engines

  H.264 encode study

1

10

100

1000

4 cores + ILP + SIMD + custom
inst

ASIC

Performance

Energy Savings

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10)

~3 orders of
magnitude

Future performance gains will mainly come from heterogeneous
hardware with different specialized resources

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize

100 times more power efficient

Molecular dynamics computer

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Altera
FPGA

MPI
PGAS

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Too many different low-level programming
models

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Altera
FPGA

MPI
PGAS

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Virtual
Worlds

Personal
Robotics

Data
informatics

Scientific
Engineering

Applications

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Altera
FPGA

MPI
PGAS

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Virtual
Worlds

Personal
Robotics

Data
informatics

Scientific
Engineering

Applications

Ideal Parallel
Programming Language

Performance

Productivity Generality

Performance

Productivity Generality

Domain
Specific

Languages

Performance
(Heterogeneous Parallelism)

Productivity Generality

  Domain Specific Languages (DSLs)
  Definition: A language or library with restrictive expessiveness

that exploits domain knowledge for productivity and efficiency
  High-level, usually declarative, and deterministic

Productivity
• Shield average programmers from the difficulty of parallel
programming

• Focus on developing algorithms and applications and not on low
level implementation details

Performance
• Match high level domain abstraction to generic parallel execution
patterns

• Restrict expressiveness to more easily and fully extract available
parallelism

• Use domain knowledge for static/dynamic optimizations

Portability and forward scalability
• DSL & Runtime can be evolved to take advantage of latest
hardware features

• Applications remain unchanged
• Allows innovative HW without worrying about application portability

Domain Embedding Language (Scala)

Virtual
Worlds

Personal
Robotics

Data
informatics

Scientific
Engineering

Physics
(Liszt)

Data Analytics
(OptiQL)

Graph Alg.
(Green Marl)

Machine
Learning
(OptiML)

Statistics
(R)

Parallel Runtime (Delite, GRAMPS)

Dynamic Domain Spec. Opt. Locality Aware Scheduling

Staging Polymorphic Embedding

Applications

Domain
Specific

Languages

Heterogeneous
Hardware

DSL
Infrastructure

Task & Data Parallelism

Static Domain Specific Opt.

New
Arch.

  Z. DeVito, N. Joubert, P. Hanrahan
  Solvers for mesh-based PDEs

  Complex physical systems
  Huge domains
  millions of cells
  Example: Unstructured Reynolds-

averaged Navier Stokes (RANS)
solver

  Goal: simplify code of mesh-based
PDE solvers
  Write once, run on any type of

parallel machine
  From multi-cores and GPUs to

clusters

  State-of-the-art unstructured Reynolds-averaged
Navier Stokes (RANS) solver

  Main tool for system-level simulation
  Highly optimized for MPI clusters
  Fortran heritage

Fuel injection
Transition Thermal

Turbulence

Turbulence

Combustion

  Find Parallelism

  Data-parallelism on mesh elements

  Expose Data Locality

  PDE Operators have local support

  Stencil captures exact region of support

  Reason about Synchronization

  Iterative solvers

  Read old values to calculate new values

  Minimal Programming language
  Aritmetic, short vectors, functions, control flow

  Built-in mesh interface for arbitrary polyhedra
  Vertex, Edge, Face, Cell	
  Optimized memory representation of mesh	

  Collections of mesh elements
  Element Sets: faces(c:Cell), edgesCCW(f:Face)	

  Mapping mesh elements to fields
  Fields: val vert_position = position(v)	

  Parallelizable iteration
  forall statements: for(f <- faces(cell)) { … }	

val	 Position	 =	 FieldWithLabel[Vertex,Float3](“position”)	
val	 Temperature	 =	 FieldWithConst[Vertex,Float](0.0f)	
val	 Flux	 =	 FieldWithConst	 [Vertex,Float](0.0f)	
val	 JacobiStep	 =	 FieldWithConst[Vertex,Float](0.0f)	
var	 i	 =	 0;	
while	 (i	 <	 1000)	 {	
	 	 for	 (e	 <-‐	 edges(mesh))	 {	
	 	 	 	 val	 v1	 =	 head(e)	
	 	 	 	 val	 v2	 =	 tail(e)	
	 	 	 	 val	 dP	 =	 Position(v1)	 -‐	 Position(v2)	
	 	 	 	 val	 dT	 =	 Temperature(v1)	 -‐	 Temperature(v2)	
	 	 	 	 val	 step	 =	 1.0f/(length(dP))	
	 	 	 	 Flux(v1)	 +=	 dT*step	
	 	 	 	 Flux(v2)	 -‐=	 dT*step	
	 	 	 	 JacobiStep(v1)	 +=	 step	
	 	 	 	 JacobiStep(v2)	 +=	 step	
	 	 }	 	
	 	 for	 (p	 <-‐	 vertices(mesh))	 {	
	 	 	 	 Temperature(p)	 +=	 0.01f*Flux(p)/JacobiStep(p)	
	 	 }	
	 	 for	 (p	 <-‐	 vertices(mesh))	 {	 	
	 	 	 	 Flux(p)	 =	 0.f;	 JacobiStep(p)	 =	 0.f;	 	 	
	 	 }	
	 	 i	 +=	 1	
}	

Mesh Elements	

Topology Functions	

Sets	

Fields (Data storage)	

Parallelizable for	

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

  “Stencil” of a piece of code:
  Captures just the memory accesses it

performs

  Infer stencil for each for-comprehension
in Liszt

  Analyze code to detect memory access stencil of
each top-level for-all comprehension
  Extract nested mesh element reads
  Extract field operations
  Difficult with a traditional library

for	 (e	 <-‐	 edges(mesh))	 {	
	 	 val	 v1	 =	 head(e)	
	 	 val	 v2	 =	 tail(e)	
	 	 val	 dP	 =	 Position(v1)	 -‐	 Position(v2)	
	 	 val	 dT	 =	 Temperature(v1)	 -‐	 Temperature(v2)	
	 	 val	 step	 =	 1.0f/(length(dP))	
	 	 Flux(v1)	 +=	 dT*step	
	 	 Flux(v2)	 -‐=	 dT*step	
	 	 JacobiStep(v1)	 +=	 step	
	 	 JacobiStep(v2)	 +=	 step	
}	 	

e in
edges(mesh)

head(e) tail(e)

Write Flux, JacobiStep Write Flux, JacobiStep
Read Position,Temperature Read Position, Temperature

vertices(mesh)

Read/Write Flux

Write Temperature
Read/Write JacobiStep

Simple Set Comprehension
Functions, Function Calls
Mesh Topology Operators

Field Data Storage

for(edge	 <-‐	 edges(mesh))	 {	
	 	 	 val	 flux	 =	 flux_calc(edge)	
	 	 	 val	 v0	 =	 head(edge)	
	 	 	 val	 v1	 =	 tail(edge)	
	 	 	 Flux(v0)	 +=	 flux	
	 	 	 Flux(v1)	 -‐=	 flux	
}	

Code contains possible write conflicts!
We use architecture specific strategies guided

by domain knowledge
  MPI: Ghost cell-based message passing
  GPU: Coloring-based use of shared memory

  Partitioning
  Assign partition to each computational

unit
  Use ghost elements to coordinate

cross-boundary communication.
  Ideal for single computational unit per

memory space

  Coloring
  Calculate interference between work

items on domain
  Schedule work-items into non-

interfering batches
  Ideal for many computational

units per memory space

Owned Cell	

Ghost Cell	

1 58 1011 73 0 24 9

Batch 4Batch 3Batch 2Batch 1

Schedule set of nonconflicting threads per color

Runtime

Platform

Native
Compiler

Liszt Compiler

Scala Compiler

.scala Scala frontend

platform-independent analysisLiszt plugin

runtime-specific code gen

MPI CUDA pthreads

Cluster SMP GPU.mesh

MPI
app

partitioning

pthreads
app

coloring

CUDA
app
coloring

mpicxx c++ nvcc

  4 example codes with Liszt and C++
implementations:
  Euler solver from Joe
  Navier-Stokes solver from Joe
  Shallow Water simulator

  Free-surface simulation on globe as per Drake et al.
  Second order accurate spatial scheme

  Linear FEM
  Hexahedral mesh
  Trilinear basis functions with support at vertices
  CG solver

  Runtime comparisons between hand-tuned
C++ and Liszt

  Liszt performance within 12% of C++

Euler	
 Navier-
Stokes	

FEM	
 Shallow
Water	

Mesh size	
 367k	
 668k	
 216k	
 327k	

Liszt	
 0.37s	
 1.31s	
 0.22s	
 3.30s	

C++	
 0.39s	
 1.55s	
 0.19s	
 3.34s	

  4-socket 6-core 2.66Ghz Xeon CPU per
node (24 cores), 16GB RAM per node. 256
nodes, 8 cores per node

32

128

256

512

1024

32 128 256 512 1024

Sp
ee

du
p

Cores

Euler
23M cell mesh

Liszt
C++

32

128

256

512

1024

32 128 256 512 1024
Cores

Navier-Stokes
21M cell mesh

Liszt
C++

  Tesla C2050, Double Precision, compared to
single core, Nehalem E5520 2.26Ghz, 8GB RAM

0

5

10

15

20

25

30

35

40

Euler NS FEM SW

Sp
ee

du
p

ov
er

 S
ca

la
r (

x)

Applications

GPU Performance
cuda on tesla c2050

  Tested both pthreads
(coloring) and MPI
(partitioning) runtime
on:
  8-core Nehalem E5520

2.26Ghz, 8GB RAM

  32-core Nehalem-EX
X7560 2.26GHz, 128GB
RAM

0

5

10

15

20

25

30

35

40

Euler NS FEM SW

Sp
ee

du
p

ov
er

 S
ca

la
r (

x)

Applications

Comparison between Liszt runtimes
pthreads on 8-core

mpi on 8-core
pthreads on 32-core

mpi on 32-core
cuda on tesla c2050

  A. Sujeeth and H. Chafi
  Machine Learning domain

  Learning patterns from data
  Applying the learned models to tasks

  Regression, classification, clustering, estimation
  Computationally expensive
  Regular and irregular parallelism

  Motivation for OptiML
  Raise the level of abstraction
  Use domain knowledge to identify coarse-grained

parallelism
  Single source ⇒ multiple heterogeneous targets
  Domain specific optimizations

  Provides a familiar (MATLAB-like) language and
API for writing ML applications
  Ex. val c = a * b (a, b are Matrix[Double])

  Implicitly parallel data structures
  General data types : Vector[T], Matrix[T]

  Independent from the underlying implementation
  Special data types : TrainingSet, TestSet, IndexVector,

Image, Video ..
  Encode semantic information

  Implicitly parallel control structures
  sum{…}, (0::end) {…}, gradient { … }, untilconverged { … }
  Allow anonymous functions with restricted semantics to be

passed as arguments of the control structures

% x : Matrix, y: Vector
% mu0, mu1: Vector

n = size(x,2);
sigma = zeros(n,n);

parfor i=1:length(y)
 if (y(i) == 0)
 sigma = sigma + (x(i,:)-mu0)’*(x(i,:)-mu0);
 else
 sigma = sigma + (x(i,:)-mu1)’*(x(i,:)-mu1);
 end
end

// x : TrainingSet[Double]
// mu0, mu1 : Vector[Double]

val sigma = sum(0,x.numSamples) {
 if (x.labels(_) == false) {
 (x(_)-mu0).trans.outer(x(_)-mu0)
 }
 else {
 (x(_)-mu1).trans.outer(x(_)-mu1)
 }
}

OptiML code (parallel) MATLAB code

ML-specific data types

Implicitly parallel
control structures

Restricted index
semantics

OptiML Parallelized MATLAB C++

1
.6

1
.8

1
.9

4
1

.3

0
.5

0
.9

1
.4

1
.6

2
.6

0
.6

0.00

0.50

1.00

1.50

2.00

2.50

1 CPU 2 CPU 4 CPU 8 CPU CPU
+

GPU N
o

rm
a
li
ze

d
 E

x
e
cu

ti
o

n

T
im

e

GDA

1
.0

1
.9

3
.6

5
.8

1
.1

0
.1

0
.2

0
.2

0
.3

1
.2

 0.00
 2.00
 4.00
 6.00
 8.00

 10.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

0
.0

1

100.00
110.00

Naive Bayes

...

1
.0

1
.7

2
.7

3
.5

1
1

.0

1
.0

1
.9

3
.2

4
.7

8
.9

0
.6

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

RBM

2
.1

4
.1

7
.1

2
.3

0
.3

0
.4

0
.4
 0

.3

1
.2

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

K-means

1
.0

1
.9

3
.1

4
.2

1
.1

0
.9

1
.2

1
.4

1
.4

 0
.8

 0.00

 0.50

 1.00

 1.50

 2.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

0
.1

7.00
15.00

SVM

...

1
.4

2
.0

2
.3

1
.7

0
.5

1
.3

1
.1

0
.4

0
.5

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

Linear Regression

  Graphs and graph algorithms
  BFS, maximum flow, matching, assignment, components and

connectivity, . . .
  Social networks, data analysis

  Bio-simulation
  Molecular dynamics, cells & viruses , drug-design, prosthetics

  Query Language
  Relations, data analytics, financial trading

  Computational Geometry
  Arbitrary polyhedra, convex hull, delauny triangulation, . . .

  Visualization
  Protovis, Data wrangler

  Your DSL goes here

  We need to develop all of these DSLs

  Current DSL methods are unsatisfactory

  Stand-alone DSLs
  Can include extensive optimizations
  Enormous effort to develop to a sufficient degree of maturity

  Actual Compiler/Optimizations
  Tooling (IDE, Debuggers,…)

  Interoperation between multiple DSLs is very difficult

  Purely embedded DSLs ⇒ “just a library”
  Easy to develop (can reuse full host language)
  Easier to learn DSL
  Can Combine multiple DSLs in one program
  Can Share DSL infrastructure among several DSLs
  Hard to optimize using domain knowledge
  Target same architecture as host language

Need to do better

 Goal: Develop embedded DSLs that
perform as well as stand-alone ones

  Intuition: General-purpose languages
should be designed with DSL
embedding in mind

  Mixes OO and FP paradigms
  Targets JVM

  Expressive type system allows
powerful abstraction

  Scalable language

  Stanford/EPFL collaboration on
leveraging Scala for parallelism

  “Language Virtualization for
Heterogeneous Parallel
Computing” Onward 2010, Reno

  Constructs of the embedding language can be
overriden by the DSL:

 maps to

  DSL developer can control the meaning of
conditionals by providing overloaded variants
specialized to DSL types

if	 (cond)	 something	 else	 somethingElse	

__ifThenElse(cond, something, somethingElse)	

  What we lift into the embedding world
  DSL-defined methods
  Basic Scala types (primitives, Arrays, Lists,

Tuples, etc.)
  Control structures (If, For, While, …)
  Equality
  Variable declaration and assignment
  Functions

  What we don’t lift (yet)
  Classes
  Methods

Embedded DSL gets it all for free,
but can’t change any of it

Lexer Parser Type
checker Analysis Optimization Code

gen

DSLs adopt front-end from
highly expressive

embedding language

but can customize IR and
participate in backend phases

Stand-alone DSL
implements everything

 Typical Compiler

Modular Staging provides a hybrid approach

GPCE’10: Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs

Lexer Parser Type
checker Analysis Optimization Code

gen

DSLs adopt front-end from
highly expressive

embedding language

but can customize IR and
participate in backend phases

 Need a framework to simplify
development of DSL backends

Delite

H. Chafi, A. Sujeeth, K. Brown, H. Lee

Intermediate Representation (IR)

  Provide a common IR that
can be extended while still
benefitting from generic
analysis and opt.

  Extend common IR and
provide IR nodes that
encode data parallel
execution patterns
  Now can do parallel

optimizations and
mapping

  DSL extends appropriate
data parallel nodes for
their operations
  Now can do domain-

specific analysis and opt.

 Scala Embedding
 Framework

Delite Parallelism
Framework

Base IR

Generic
Analysis & Opt.

Liszt
program

OptiML
program

DS IR

Domain
Analysis & Opt.

Delite IR

Parallelism Analysis,
Opt. & Mapping

⇒ ⇒

Matrix
Plus

Vector
Exp

Matrix
Sum

Reduce Map ZipWith

Expression

s = sum(M) V1 = exp(V2) M1 = M2 + M3

Domain Analysis
& Opt.

Domain User
Interface

Parallelism
Analysis & Opt.

Code Generation

DSL
User

Generic Analysis
& Opt.

Application

DS IR

Delite Op IR

Base IR

DSL
Author

Delite

Delite

Collection
Quicksort

Divide &
Conquer

C2 = sort(C1)

  Common subexpression elimination
  Global dictionary tracks what’s been seen before

  Dead code elimination
  All code is emitted due to dependencies on

computing a required result
  Dead code is never encountered in this process

  Constant folding
  Constants are lifted into the IR lazily
  Operations on constants are computed as program

runs
  Code motion

  Pull computation out of loops
  Push computation into conditionals

  Use domain-specific knowledge to make
optimizations in a modular fashion

  Override IR node creation
  Construct Optimized IR nodes if possible
  A * B + A *C = A * (B + C) // Matrix A, B, C
  Construct default otherwise

  Rewrite rules are simple, yet powerful
optimization mechanism

  Access to the full domain specific IR allows for
application of much more complex optimizations

  A straightforward translation of the Gaussian Discriminant
Analysis (GDA) algorithm from the mathematical
description produces the following code:

  A much more efficient implementation recognizes that

  Transformed code was 20.4x faster with 1 thread and
48.3x faster with 8 threads.

val sigma = sum(0,m) { i =>!
 if (x.labels(i) == false) {!
 ((x(i) - mu0).t) ** (x(i) - mu0)!
 else!
 ((x(i) - mu1).t) ** (x(i) - mu1)!
 }!
}!

  Fuse Parallel Ops

 Reduces Op overhead
  Op setup
  Loop overhead

  Improves locality
  Fused Op communication through registers

0
.9

1
.8

3
.3

5
.6

1
.0

1
.9

3
.4

5
.8

0
.3

0
.6

0
.9

1
.0

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

N
o

rm
a
li
ze

d
 E

x
e
cu

ti
o

n
 T

im
e

Processors

C++ OptiML Fusing OptiML No Fusing

Intermediate Representation (IR)

  Provide a common IR that
can be extended while still
benefitting from generic
analysis and opt.

  Extend common IR and
provide IR nodes that
encode data parallel
execution patterns
  Now can do parallel

optimizations and
mapping

  DSL extends appropriate
data parallel nodes for
their operations
  Now can do domain-

specific analysis and opt.

  Generate an execution
graph, kernels and data
structures

 Scala Embedding
 Framework

Delite
Execution

Graph

Delite Parallelism
Framework

Base IR

Generic
Analysis & Opt.

Code Generation

Kernels
(Scala, C,

Cuda, MPI
Verilog, …)

Liszt
program

OptiML
program

DS IR

Domain
Analysis & Opt.

Delite IR

Parallelism Analysis,
Opt. & Mapping

⇒ ⇒

Data Structures
(arrays, trees,

graphs, …)

  Generates an execution graph with all
DeliteOps and their dependencies

  Calls all registered code generators (Scala,
Cuda, …) for each Op to create kernels
  Only 1 generator (currently Scala) has to succeed

  Every Op at top-level of program is emitted
as a kernel
  Creates a file and object header then calls

emitNode() on the Op
  Nested calls to emitNode() result in

implementation being inlined in current kernel

  With a library approach we can only launch pre-written kernels
  Code generation enables kernels containing user-defined

functions and optimization opportunities
  e.g., fuse operations into one kernel and keep intermediate results in

registers

1.0

2.3

5.5

0

0.2

0.4

0.6

0.8

1

1.2

RBM NB GDA

N
o

rm
a
li
ze

d
 E

x
e
cu

ti
o

n
 T

im
e

Library-Based Delite

Partial schedules, Fused & specialized kernels

Cluster

GPU SMP

Machine Inputs

Delite
Execution

Graph

Kernels
(Scala, C,

Cuda,
Verilog, …)

Data
Structures

(arrays, trees,
graphs, …)

Application Inputs

Scheduler Code Generator
 Fusion, Specialization, Synchronization

Walk-Time

Schedule Dispatch, Dynamic load balancing, Memory management,
Lazy data transfers, Kernel auto-tuning, Fault tolerance

  Maps the machine-
agnostic DSL compiler
output onto the machine
configuration for
execution

  Walk-time scheduling
produces partial
schedules

  Code generation
produces fused,
specialized kernels to be
launched on each
resource

  Run-time executor
controls and optimizes
execution

Run-Time

  Power

  Performance

  Productivity

  Portability

Application Specific Hardware

Domain Specific Languages

  DSLs have potential to solve the heterogeneous
parallel programming problem
  Don’t expose programmers to explicit parallelism

  Need to simplify the process of developing DSLs
for parallelism
  Need programming languages to be designed for flexible

embedding

  Lightweight modular staging in Scala allows for more
powerful embedded DSLs

  Delite provides a framework for adding parallelism

  Early embedded DSL results are very promising

  Machine
  Two quad-core Nehalem 2.67 GHz processors
  NVidia Tesla C2050 GPU

  Application Versions
  OptiML + Delite
  MATLAB

  version 1: multi-core (parallelization using
“parfor” construct and BLAS)

  version 2: GPU
  C++

  used Armadillo linear algebra library for a
sequential baseline

  Algorithmically identical to OptiML version

  6 machine learning applications
  Gaussian Discriminant Analysis (GDA)

  Generative learning algorithm for probability distribution

  Loopy Belief Propagation (LBP)
  Graph based inference algorithm

  Naïve Bayes (NB)
  Supervised learning algorithm for classification

  K-means Clustering (K-means)
  Unsupervised learning algorithm for clustering

  Support Vector Machine (SVM)
  Optimal margin classifier using SMO algorithm

  Restricted Boltzmann Machine (RBM)
  Stochastic recurrent neural network

