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Outline P
m Motivation for DSLs

m Liszt for mesh-based PDEs
m OptiML for machine learning

m Delite a framework for DSLs




Computing Goals: The 4 Ps
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m Power

m Performance
m Productivity
m Portability
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Heterogeneous Hardware limPP

m Heterogeneous HW for energy efficiency
= Multi-core, ILP, threads, data-parallel engines, custom engines

m H.264 encode study
1000

—+—Performance 7‘

=S-Enerqgy Savings T

Future performance gains will mainly come from heterogeneous
hardware with different specialized resources
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4 cores + ILP + SIMD + custom ASIC
inst

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA'10)
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Molecular dynamics computer
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100 times more power efficient

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize




Heterogeneous Parallel
Programming Today
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Nvidia
= Fermi

Altera
FPGA
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Programmability Chasm
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Applications

Scientific
Engineering
Virtual
Worlds

Personal
Robotics
MPI

Data
informatics
PGAS

Too many different low-level programming
models

Verilog
VHDL

Nvidia
Fermi

Altera
FPGA

Cray
Jaguar




Programmability Chasm
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Programming Language iy I

Performance

Productivity Generality
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Successful Languages i 24

Performance

Productivity Generality

@ python %
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Domain Specific Languages  umm

Performance
(Heterogeneous Parallelism)

Domain
Specific
Languages

SQL.

MATLAB

Productivity Generality

@, python %
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m Domain Specific Languages (DSLs)

s Definition: A language or library with restrictive expessiveness
that exploits domain knowledge for productivity and efficiency

s High-level, usually declarative, and deterministic

p e n G L MATLAB

MySQOL:
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DSL Benifits e

Productivity

e Shield average programmers from the difficulty of parallel
programming
AN * Focus on developing algorithms and applications and not on low
\ level implementation details

Performance

e Match high level domain abstraction to generic parallel execution
patterns

e Restrict expressiveness to more easily and fully extract available
parallelism

e Use domain knowledge for static/dynamic optimizations

Portability and forward scalability

e DSL & Runtime can be evolved to take advantage of latest
hardware features

e Applications remain unchanged
e Allows innovative HW without worrying about application portability

/




Bridging the
Programmability Chasm
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. . Scientific

Domain
Specific Statistics
Languages (R)

Physics
(Liszt)

Virtual Data

informatics

Personal
Robotics

Graph Alg.
(Green Marl)

Machine
Learning
(OptiML)

Data Analytics
(OptiQL)

DSL |
Infrastructure

Polymorphic Embedding

Dynamic Domain Spec. Opt.

Domain Embedding Language (Scala)

Staging Static Domain Specific Opt.

Parallel Runtime (Delite, GRAMPS)

Task & Data Parallelism Locality Aware Scheduling

Heterogeneous
Hardware
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Liszt: DSL for Mesh PDEs  liumF

m Z. DeVito, N. Joubert, P. Hanrahan
m Solvers for mesh-based PDEs
Complex physical systems
Huge domains
millions of cells

Example: Unstructured Reynolds-

averaged Navier Stokes (RANS)
solver

m Goal: simplify code of mesh-based
PDE solvers

= Write once, run on any type of
parallel machine

s From multi-cores and GPUs to
clusters
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PSAAP’s Joe T

m State-of-the-art unstructured Reynolds-averaged
Navier Stokes (RANS) solver

= Main tool for system-level simulation
= Highly optimized for MPI clusters
s Fortran heritage

BT [ TTTT777 1 e

Mach: 0 05 1 15 2 25 3 35 4 455556 657 75

bustion

Turbulence\




Features of high it >

performance PDE solvers  immk

= Find Parallelism
Data-parallelism on mesh elements
s Expose Data Locality
PDE Operators have local support
Stencil captures exact region of support
s Reason about Synchronization

Iterative solvers
Read old values to calculate new values
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Liszt Language Features  lumF

= Minimal Programming language
s Aritmetic, short vectors, functions, control flow

Built-in mesh interface for arbitrary polyhedra
= Vertex, Edge, Face, Cell

s Optimized memory representation of mesh

Collections of mesh elements
s Element Sets: faces(c:Cell), edgesCCW(f:Face)

Mapping mesh elements to fields
s Fields: val vert_position = position(v)

Parallelizable iteration
m forall statements: for( f <- faces(cell) ) { .. }
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Example: Heat Conduction mury
> PARALLELIGM s
on Grid BORATRY
val Position = FieldWithLabel[Vertex,Float3](“position”)
val Temperature = FieldWithConst[Vertex,Float](0.0f)
val Flux = FieldWithConst [Vertex,Float](@.0f)
val JacobiStep = FieldWithConst[Vertex,Float](@.0f)
var i = 0;
while (i < 1000) {
for (e <- (mesh)) { Sets
val vi (e)
val v2 (e)
val dP = Position(vl) - Position(v2)
val dT = Temperature(vl) - Temperature(v2)
val step = 1.0f/(length(dP)) Parallelizable for
Flux(vl) += dT*step
Flux(v2) -= dT*step
JacobiStep(vl) += step
JacobiStep(v2) += step
¥
for (p <- (mesh)) {
Temperature(p) += 0.01f*Flux(p)/JacobiStep(p)
}
for (p <- (mesh)) {
Flux(p) = @.f; JacobiStep(p) = 0.f;

Mesh Elements

Fields (Data storage)




Infer Data Accesses from R
Liszt i |

m "Stencil” of a piece of code:

s Captures just the memory accesses it
performs

m Infer stencil for each for-comprehension
In Liszt




Domain Specific Transform: Wi

Stencil Detection fim |

m Analyze code to detect memory access stencil of
each top-level for-all comprehension

s Extract nested mesh element reads
s Extract field operations
s Difficult with a traditional library

for (e <- (mesh)) {
val vl (e)
val v2 (e) —
val dP Position(vl) - Position(v2) edges(mesh) vertices(mesh)
val dT = Temperature(vl) - Temperature(v2) ‘// \\\\ R e P Sten
val Step = 1.@'F/(length(dp)) Write Temperature
Flux(vl) += dT*step
F l o ( V2 ) - dT* St € p Read Position,Temperature Read Position, Temperature
JacobiStep(vl) += step Write Flux, JacobiStep ~ Write Flux, JacobiStep
JacobiStep(v2) += step

head(e) tail(e)
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for(edge <- edges(mesh)) { €——— Simple Set Comprehension

val flux = flux_calc(edge) e— Functions, Function Calls
val v@ = head(edge)

val vl = tail(edge) ) © Mesh Topology Operators

(v@) += flux ].< Field Data Storage
Flux(vl) -= flux

Code contains possible write conflicts!

We use architecture specific strategies guided
by domain knowledge

= MPI: Ghost cell-based message passing
= GPU: Coloring-based use of shared memory




Execution Strategies
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m Partitioning
s Assign partition to each computational
unit
s Use ghost elements to coordinate
cross-boundary communication.
s Ideal for single computational unit per
memory space
m Coloring

s Calculate interference between work
items on domain

- SChedU|e Work_|tems into non- Schedule set of nonconflicting threads per color

interfering batches

s Ideal for many computational
units per memory space

Batch 2
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Architecture e

Scala Compiler

Scala frontend Liszt Compiler
|
Liszt plugin platform-independent analysis

runtime-specific code gen

1

Native ,
mpicxx c++

Compiler 1 1

MPI pthreads CUDA
Runtime app app app

Rcoloring coloring

rd OO
. = Platform 5556 i
.mesh Cluster SMP
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m 4 example codes with Liszt and C++
implementations:
= Euler solver from Joe
s Navier-Stokes solver from Joe
s Shallow Water simulator

Free-surface simulation on globe as per Drake et al.
Second order accurate spatial scheme

m Linear FEM

Hexahedral mesh
Trilinear basis functions with support at vertices
CG solver
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Comparisons i o |

m Runtime comparisons between hand-tuned
C++ and Liszt

m Liszt performance within 12% of C++

Euler Navier- FEM Shallow
Stokes Water

Mesh size 367k 668k 327k

Liszt 0.37s |.31s 3.30s

C++ 0.39s |.55s 3.34s




PERVASIVE
MPI| Performance ﬁ“a'%%%ﬁ%ﬁ%

m 4-socket 6-core 2.66Ghz Xeon CPU per
node (24 cores), 16GB RAM per node. 256
nodes, 8 cores per node

Euler Navier- Stokes
1024 1024

23M cell mesh 21M cell mesh

=

256 |

128 |

32 : : : 32 ' ' '
32 128 256 512 32 128 256 512
Cores Cores
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GPU Performance il 4 |

m Tesla C2050, Double Precision, compared to

single core, Nehalem E5520 2.26Ghz, 8GB RAM
GPU Performance

cuda on tesla 2050

N N w w A
o (S} o O o

Speedup over Scalar (x)

O

Euler FEM
Applications




Portability
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m Tested both pthreads
(coloring) and MPI
(partitioning) runtime
on:

m 8-core Nehalem E5520
2.26Ghz, 8GB RAM

m 32-core Nehalem-EX
X7560 2.26GHz, 128GB
RAM

Speedup over Scalar (x)

Comparison between Liszt runtimes

pthreads on 8-core
mpi on 8-core T
pthreads on 32-core T
mpi on 32-core Emmm
cuda on tesla 2050 mmm

Euler NS FEM

Applications
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OptiML: A DSL for ML i

m A. Sujeeth and H. Chafi

Finding movies you ' @
just got easier...
Rate a few mq

= Machine Learning domain
s Learning patterns from data

s Applying the learned models to tasks
Regression, classification, clustering, estimation
= Computationally expensive

——
= Regular and irregular parallelism ( re CAPTCHA

= Motivation for OptiML

s Raise the level of abstraction

s Use domain knowledge to identify coarse- gralned |
parallelism

= Single source = multiple heterogeneous targets
= Domain specific optimizations
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OptiML Language Features ik

m Provides a familiar (MATLAB-like) language and
API for writing ML applications

m EX. valc=a * b (a, b are Matrix[Double])

m Implicitly parallel data structures
s General data types : Vector[T], Matrix[T]
Independent from the underlying implementation

m Special data types : TrainingSet, TestSet, IndexVector,
Image, Video ..

Encode semantic information

= Implicitly parallel control structures
= sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }

= Allow anonymous functions with restricted semantics to be
passed as arguments of the control structures




Example OptiML / MATLAB code

(Gaussian Discriminant Analysis)/iiF

ML-specific data types
Ilx: II'rainingSet[DoubIe] — % x : Matrix, y: Vector

/[ mu0O, mu1 : Vector[Double] % mu0, mu1: Vector

val sigma 3 sum]O,x.numSampIes) { n = size(X,2);
if (x.IabeIs(T == false) { sigma = zeros(n,n);

(x(_)-muQ).trans.outer@x( ){mu0)
} parfor i=1:length(y)
else { if (y(i) ==0)
(x(_)-muf).trans.outer(x(_)-knu1) sigma = sigma + (x(i,:)-mu0)*(x(i,:)-mu0);
} else
} sigma = sigma + (x(i,:)-mu1)™*(x(i,:)-mu1);
end
end

Implicitly parallel Restricted index
control structures semantics

OptiML code (parallel) MATLAB code
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OptiML vs. Matlab vs. C++ [

B OptiML ™ Parallelized MATLAB C++

Naive Bayes K-means

A
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More DSLs ... i |

Graphs and graph algorithms

= BFS, maximum flow, matching, assignment, components and
connectivity, . ..

m Social networks, data analysis
Bio-simulation

s Molecular dynamics, cells & viruses , drug-design, prosthetics
Query Language

m Relations, data analytics, financial trading
Computational Geometry

m Arbitrary polyhedra, convex hull, delauny triangulation, . . .

Visualization
= Protovis, Data wrangler

Your DSL goes here
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m We need to develop all of these DSLs

m Current DSL methods are unsatisfactory




Current DSL Development g

Approaches ABRATOR

m Stand-alone DSLs
= Can include extensive optimizations
s Enormous effort to develop to a sufficient degree of maturity
Actual Compiler/Optimizations
Tooling (IDE, Debuggers,...)
m Interoperation between multiple DSLs is very difficult

m Purely embedded DSLs = “just a library”
m Easy to develop (can reuse full host language)
Easier to learn DSL
Can Combine multiple DSLs in one program
Can Share DSL infrastructure among several DSLs
Hard to optimize using domain knowledge
Target same architecture as host language

Need to do better
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m Goal: Develop embedded DSLs that
perform as well as stand-alone ones

m Intuition: General-purpose languages

should be designed with DSL
embedding in mind
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DSL Embedding Language ik

m Mixes OO and FP paradigms
A comprehensive step-by-step guide - Ta r g et S JVM

Programming 1n Expressive type system allows

powerful abstraction
Scalable language

Stanford/EPFL collaboration on
leveraging Scala for parallelism

“Language Virtualization for
Heterogeneous Parallel
Computing” Onward 2010, Reno

Martin Odersky
. Lex Spoon
artima Bill Venners
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More Powerful Embedded DSLs ik

m Constructs of the embedding language can be
overriden by the DSL.:

if (cond) something else somethingElse

maps to

__ifThenElse(cond, something, somethingElse)

m DSL developer can control the meaning of
conditionals by providing overloaded variants
specialized to DSL types




Lifting Scala to IR
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= What we lift into the embedding world

s DSL-defined methods

m Basic Scala types (primitives, Arrays, Lists,

Tuples, etc.)

s Control structures (If, For, While, ...)

= Equality

s Variable declaration and assignment

m Functions

= What we don't lift (yet)

m Classes
s Methods




Lightweight Modular (T
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Staging Approach P F ‘

Modular Staging provides a hybrid approach

DSLs adopt front-el
highly express
embedding lang

Stand-alone DSL an customize IR and
implements everything  Elv=RiNsEo N iEHS

Parser
checker

Typical Compiler

GPCE’'10: Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs




Delite: A Framework for S
DSL Parallelism ol 2 ©

H. Chafi, A. Sujeeth, K. Brown, H. Lee

DSLs adopt front-end from :
highly expressive but can customize IR and
embedding language participate in backend phases

Type

checker (Tl Analysis — Del Ite =

Parser

Need a framework to simplify
development of DSL backends




Delite DSL Compiler
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Liszt OptiML
program program

Scala Embedding Delite Parallelism
Framework Framework

Intermediate Representation (IR)

Delite IR

</ \w/s &/
Generic Parallelism Analysis, Domain
Analysis & Opt. Opt. & Mapping Analysis & Opt.

Provide a common IR that
can be extended while still
benefitting from generic
analysis and opt.

Extend common IR and

provide IR nodes that

encode data parallel

execution patterns

= Now can do parallel

optimizations and
Mmapping

DSL extends appropriate

data parallel nodes for

their operations

= Now can do domain-
specific analysis and opt.
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The Delite Multiview IR o]

Application

M1 =M2 + M3 V1 = exp(V2) s = sum(M) C2 = sort(C1)

DSL
Matrix Vector Matrix Collection Author

Plus Exp Sum Quicksort

Divide &
Conquer

Generic Analysis E )
& Opt. xpression
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Generic Optimizations ]

@ Common subexpression elimination
= Global dictionary tracks what’s been seen before

m Dead code elimination

= All code is emitted due to dependencies on
computing a required result

s Dead code is never encountered in this process

m Constant folding
s Constants are lifted into the IR lazily

= Operations on constants are computed as program
runs

= Code motion
= Pull computation out of loops
s Push computation into conditionals
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DSL Optimizations HPPL

m Use domain-specific knowledge to make
optimizations in a modular fashion

m Override IR node creation

s Construct Optimized IR nodes if possible
s A*B+A*C=A*(B+ C)// Matrix A, B, C
s Construct default otherwise

m Rewrite rules are simple, yet powerful
optimization mechanism

m Access to the full domain specific IR allows for
application of much more complex optimizations




OptiML Linear Algebra i

Rewrites el |

m A straightforward translation of the Gaussian Discriminant
Analysis (GDA) algorithm from the mathematical
description produces the following code:

val sigma = sum(0,m) { i =>
if (x.labels(i) == false) {
((x(i) - mu0).t) ** (x(i) - mu0)
else
((x(1) - mul).t) ** (x(i) - mul)
}
}

= A much more efficient implementation recognizes that

n

n
E’*)T’iazX(:,i)*Y(i,:)zX*Y
=0

i=0

m Transformed code was 20.4x faster with 1 thread and
48.3x faster with 8 threads.
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Delite Op Fusing et

m Fuse Parallel Ops

m Reduces Op overhead
s Op setup
= Loop overhead

m Improves locality
s Fused Op communication through registers
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Benefits of Fusing it )

HC++

™
o

M OptiML Fusing u OptiML No Fusing

OV
Ul

OV

N
U1

-
= 01N
|

©
92
|

Normalized Execution Time
o
|

2

4
Processors
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Delite DSL Compiler ] <

Liszt OptiML _
program program Provide a common IR that
can be extended while still

Y benefitting from generic
Scala Embedding Delite Parallelism analysis and opt.

Extend common IR and
provide IR nodes that
Intermediate Representation (IR) encode data parallel

Framework Framework

Base IR Delite IR execution pazijtternsII |
= Now can do paralle
\w/i \w/k P

optimizations and
Analysis & Opt. Opt. & Mapping Analysis & Opt. .
m DSL extends appropriate

data parallel nodes for
their operations

Code Generation = Now can do domain-
specific analysis and opt.

Delite Kernels Data Structures Generate an execution

Execution éigzla,l\nclgl (arrays, trees, graph, kernels and data
Graph Verilog, ...) graphs, ...) structures
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Delite Code Generator P

= Generates an execution graph with all
DeliteOps and their dependencies

m Calls all registered code generators (Scala,
Cuda, ...) for each Op to create kernels
= Only 1 generator (currently Scala) has to succeed

m Every Op at top-level of program is emitted
as a kernel

s Creates a file and object header then calls
emitNode() on the Op

s Nested calls to emitNode() result in
implementation being inlined in current kernel




Cuda Code Generation
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m  With a library approach we can only launch pre-written kernels

m Code generation enables kernels containing user-defined
functions and optimization opportunities
m e.g., fuse operations into one kernel and keep intermediate results in

registers

Normalized Execution Time

1.2

1
0.8
0.6
0.4
0.2

0

M| ibrary-Based M Delite

1.0




Delite Execution
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. Kernels Data
Dellt.e (Scala, C, Structures Sl
Execution =

Cuda, (arrays, trees,
el Verilog, ...) graphs, ...) SMP ~ GPU

Application Inputs Machine Inputs

Walk-Time

Code Generator

Scheduler Fusion, Specialization, Synchronization

Partial schedules, Fused & specialized kernels

Run-Time

Schedule Dispatch, Dynamic load balancing, Memory management,
Lazy data transfers, Kernel auto-tuning, Fault tolerance

Maps the machine-
agnostic DSL compiler
output onto the machine
configuration for
execution

Walk-time scheduling
produces partial
schedules

Code generation
produces fused,
specialized kernels to be
launched on each
resource

Run-time executor
controls and optimizes
execution
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Specialization and the 4 Ps ik

Power

Performance

Productivity

Portability

— Application Specific Hardware

——

\

— Domain Specific Languages
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Conclusions e

m DSLs have potential to solve the heterogeneous
parallel programming problem

= Don’t expose programmers to explicit parallelism

= Need to simplify the process of developing DSLs
for parallelism

Need programming languages to be designed for flexible
embedding

Lightweight modular staging in Scala allows for more
powerful embedded DSLs

Delite provides a framework for adding parallelism

m Early embedded DSL results are very promising
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Performance Results e |

m Machine

s TWO quad-core Nehalem 2.67 GHz processors
s NVidia Tesla C2050 GPU

m Application Versions
s OptiML + Delite

= MATLAB

version 1: multi-core (parallelization using
“parfor” construct and BLAS)

version 2: GPU
n C++

used Armadillo linear algebra library for a
sequential baseline

Algorithmically identical to OptiML version
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Benchmark Applications [k

m 6 machine learning applications
s Gaussian Discriminant Analysis (GDA)
Generative learning algorithm for probability distribution

Loopy Belief Propagation (LBP)

Graph based inference algorithm
Naive Bayes (NB)

Supervised learning algorithm for classification
K-means Clustering (K-means)

Unsupervised learning algorithm for clustering
Support Vector Machine (SVM)

Optimal margin classifier using SMO algorithm
Restricted Boltzmann Machine (RBM)

Stochastic recurrent neural network




