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● University of Tartu, Estonia (one of Baltic States)

✦ Eero Vainikko: professor at Distributed Systems Group

■ Scientific Computing and HPC

✦ Me: PhD student

■ HPC + Software Engineering

■ Programming Languages

● DOUG – Domain Decomposition on Unstructured Grids

✦ two-level Schwarz preconditioners M−1 = M
−1
AS + M

−1
C

✦ theory: University of Bath, UK

✦ implementation: Fortran 90 + MPI
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● subdomain injection matrix Ri picks the nodes (unknowns xj)
corresponding to subdomain Ωi

● Ai = RiART
i is a minor matrix of A

● During each CG iteration apply

M
−1
AS =

s
∑

i=1

R
T
i A

−1
i Ri
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W1 W2

● coarse space restriction matrix Rc combines the nodes
corresponding to supports Wi

● coarse matrix Ac = RcART
c defines the problem on coarse grid

● During each CG iteration apply

M
−1
C = R

T
c A

−1
c Rc
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Ṽ1 W̃2

U1 ∩ Ũ2 Ũ1 ∩ U2

(Ũ1 \ U1) ∩ (Ũ2 \ U2)

● Both subdomains Vi and supports Wj may be extended

● Values on the overlap usually added (depends on algorithm)

● Process regions Uk union of all local Ṽi and W̃j



Patterns and problems

❖ Background

Domain and related
work
❖ Schwarz
preconditioner

❖ Coarse grid
preconditioner

❖ Overlaps

❖ Patterns and
problems

❖ Related work
❖ SMVM in Intel
ArBB

Our approach

7 / 19

● Unstructured grids

✦ irregular problem

✦ no stencils for regular grids

● Managing overlaps on process boundaries

✦ synchronize values

✦ exclude duplicates:

■ dot product

■ in Ac

✦ several slightly different overlaps

✦ more sophisticated preconditioners
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● DUNE – the Distributed and Unified Numerics Environment

✦ partition value types: interior, border, overlap, front, ghost

✦ index sets (owner, ghost)

● HPF-2, Vienna Fortran, Fortran D

✦ SPARSE(CRS(Data,Col,Row))

✦ DECOMPOSITION, ALIGN, DISTRIBUTE

● Nested Data Parallelism: NESL, Intel ArBB

✦ array languages

✦ combining scatter (histogram reduction)

✦ for SMP systems
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void Ax(const Matrix &A,
const dense<f64> &x,
dense<f64> &y)

{
dense<f64> colvals = gather(x, A.cols);
dense<f64> mvals = colvals * A.vals;
nested<f64> nmvals =

reshape_nested_offsets(mvals, A.nrows);
y = add_reduce(nmvals);

}

● Enough to express CG

✦ PCG requires more abstractions
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The following is enough for Conjugate Gradient. Let x, y, and z are
arrays:

● array creation: y=zeros(N), y=copy_like(x)

● array copy: y=copy(x)

● binary, element-wise: z=x+y, z=x*y, y=sqrt(x), x==y

● reduction: r=reduce(x, op)

● gather: z=x[y]

● scatter: z[y]=x

● combining scatter: z=hreduce(y, x, op=’+’), i.e. z[y]+=x
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def Ax(A, x):
tmp = x[A.icols]*A.vals
y = ops.hreduce(A.irows, tmp, like=x)
return y

A.icolsx

x[A.icols]

A.vals

A.irows

tmp

y

subscripts

*
subscripts

same domain

● A.irows to calculate distribution

● A.icols to calculate ghost values
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The following is almost enough for 1-level Schwarz preconditioner:

● z=index(x) – gather indexes into array z of boolean array x

● z=set_in(x,y) – find x elements which values are in array y

● z=set_union(x,y) – combine arrays as sets

● z=inverse(x) – inverse array

def add_layer(domain, A):
r = ops.set_in(A.irows, domain)
t = ops.index(r)
v = A.icols[t]
newDomain = ops.set_union(domain, v)
return newDomain
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● Apply to a subdomain

def apply_prec(self, r):
N_ITER=8
x = ops.zeros_like(r)
rl = r[self.d]
xl = stationary.sym_gauss_seidel(self.Al,
rl, N_ITER)

x[self.d] += xl
return x

● Problem: some code impossible to vectorize



Overview of analysis

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

15 / 19

● Python code with calls to ops package

✦ special comment “parallelize : x - domains”

● Get python AST (Abstract Syntax Tree)

✦ ast package starting from Python 2.6

● Generate IR (Intermediate Representation) from AST

● Analyze IR

✦ Find arrays and their relations

✦ Decide where to insert communication code

● Generate Python code from IR
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def Ax(A, x):
tmp = x[A.icols]*A.vals
y = ops.hreduce(A.irows, tmp, like=x)
return y

● Corresponding IR

0 = A.icols : A(INT)
1 := x[0] : A(FLOAT)
2 = A.vals : A(FLOAT)
3 := 1 * 2 : A(FLOAT)
tmp = 3 : A(FLOAT)
5 = A.irows : A(INT)
6 = ops.hreduce : oF(hreduce)
7 = 6(5,tmp,x) : A(FLOAT)
y = 7 : A(FLOAT)
return = y : A(FLOAT)



Data-flow analysis

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

17 / 19

● Pointer analysis (+ Type Analysis)

✦ Find definitions: z=ops.zeros(), z=x+y

✦ track each definition

● Find definition (array) relations
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Using definition relation graph

● decide which belong to the same distribution

✦ x=y+z, x=y[z]

● find the partitioning that has been specified

✦ decide how to infer other distributions

✦ ghost values

The rest: generate code
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● CG and preconditioners – a lot of work

● express using vector parallel (array) code

● find array relations

✦ one array defines distribution of another

✦ find ghost values

● Up-to-date

✦ parallel CG works

✦ parallel Schwarz preconditioner is ongoing
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