
1 / 19

Automatic parallelization of vector parallel codes for

preconditioned iterative solvers

Oleg Batrashev

June 1, 2011



Background

❖ Background

Domain and related
work

Our approach

2 / 19

● University of Tartu, Estonia (one of Baltic States)

✦ Eero Vainikko: professor at Distributed Systems Group

■ Scientific Computing and HPC

✦ Me: PhD student

■ HPC + Software Engineering

■ Programming Languages

● DOUG – Domain Decomposition on Unstructured Grids

✦ two-level Schwarz preconditioners M−1 = M
−1
AS + M

−1
C

✦ theory: University of Bath, UK

✦ implementation: Fortran 90 + MPI



Domain and related work

❖ Background

Domain and related
work
❖ Schwarz
preconditioner

❖ Coarse grid
preconditioner

❖ Overlaps

❖ Patterns and
problems

❖ Related work
❖ SMVM in Intel
ArBB

Our approach

3 / 19



Schwarz preconditioner

❖ Background

Domain and related
work
❖ Schwarz
preconditioner

❖ Coarse grid
preconditioner

❖ Overlaps

❖ Patterns and
problems

❖ Related work
❖ SMVM in Intel
ArBB

Our approach

4 / 19

V1 V2

V3

R1 =













1 0 0 · · · 0

0 0 1 0
...

. . .
...

0 0 0 · · · 1













● subdomain injection matrix Ri picks the nodes (unknowns xj)
corresponding to subdomain Ωi

● Ai = RiART
i is a minor matrix of A

● During each CG iteration apply

M
−1
AS =

s
∑

i=1

R
T
i A

−1
i Ri



Coarse grid preconditioner

❖ Background

Domain and related
work
❖ Schwarz
preconditioner

❖ Coarse grid
preconditioner

❖ Overlaps

❖ Patterns and
problems

❖ Related work
❖ SMVM in Intel
ArBB

Our approach

5 / 19

W1 W2

● coarse space restriction matrix Rc combines the nodes
corresponding to supports Wi

● coarse matrix Ac = RcART
c defines the problem on coarse grid

● During each CG iteration apply

M
−1
C = R

T
c A

−1
c Rc



Overlaps

❖ Background

Domain and related
work
❖ Schwarz
preconditioner

❖ Coarse grid
preconditioner

❖ Overlaps

❖ Patterns and
problems

❖ Related work
❖ SMVM in Intel
ArBB

Our approach

6 / 19

Ṽ1 W̃2

U1 ∩ Ũ2 Ũ1 ∩ U2

(Ũ1 \ U1) ∩ (Ũ2 \ U2)

● Both subdomains Vi and supports Wj may be extended

● Values on the overlap usually added (depends on algorithm)

● Process regions Uk union of all local Ṽi and W̃j



Patterns and problems

❖ Background

Domain and related
work
❖ Schwarz
preconditioner

❖ Coarse grid
preconditioner

❖ Overlaps

❖ Patterns and
problems

❖ Related work
❖ SMVM in Intel
ArBB

Our approach

7 / 19

● Unstructured grids

✦ irregular problem

✦ no stencils for regular grids

● Managing overlaps on process boundaries

✦ synchronize values

✦ exclude duplicates:

■ dot product

■ in Ac

✦ several slightly different overlaps

✦ more sophisticated preconditioners



Related work

❖ Background

Domain and related
work
❖ Schwarz
preconditioner

❖ Coarse grid
preconditioner

❖ Overlaps

❖ Patterns and
problems

❖ Related work
❖ SMVM in Intel
ArBB

Our approach

8 / 19

● DUNE – the Distributed and Unified Numerics Environment

✦ partition value types: interior, border, overlap, front, ghost

✦ index sets (owner, ghost)

● HPF-2, Vienna Fortran, Fortran D

✦ SPARSE(CRS(Data,Col,Row))

✦ DECOMPOSITION, ALIGN, DISTRIBUTE

● Nested Data Parallelism: NESL, Intel ArBB

✦ array languages

✦ combining scatter (histogram reduction)

✦ for SMP systems



SMVM in Intel ArBB

❖ Background

Domain and related
work
❖ Schwarz
preconditioner

❖ Coarse grid
preconditioner

❖ Overlaps

❖ Patterns and
problems

❖ Related work
❖ SMVM in Intel
ArBB

Our approach

9 / 19

void Ax(const Matrix &A,
const dense<f64> &x,
dense<f64> &y)

{
dense<f64> colvals = gather(x, A.cols);
dense<f64> mvals = colvals * A.vals;
nested<f64> nmvals =

reshape_nested_offsets(mvals, A.nrows);
y = add_reduce(nmvals);

}

● Enough to express CG

✦ PCG requires more abstractions



Our approach

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

10 / 19



Array operations

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

11 / 19

The following is enough for Conjugate Gradient. Let x, y, and z are
arrays:

● array creation: y=zeros(N), y=copy_like(x)

● array copy: y=copy(x)

● binary, element-wise: z=x+y, z=x*y, y=sqrt(x), x==y

● reduction: r=reduce(x, op)

● gather: z=x[y]

● scatter: z[y]=x

● combining scatter: z=hreduce(y, x, op=’+’), i.e. z[y]+=x



Array relations

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

12 / 19

def Ax(A, x):
tmp = x[A.icols]*A.vals
y = ops.hreduce(A.irows, tmp, like=x)
return y

A.icolsx

x[A.icols]

A.vals

A.irows

tmp

y

subscripts

*
subscripts

same domain

● A.irows to calculate distribution

● A.icols to calculate ghost values



Complex array operations

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

13 / 19

The following is almost enough for 1-level Schwarz preconditioner:

● z=index(x) – gather indexes into array z of boolean array x

● z=set_in(x,y) – find x elements which values are in array y

● z=set_union(x,y) – combine arrays as sets

● z=inverse(x) – inverse array

def add_layer(domain, A):
r = ops.set_in(A.irows, domain)
t = ops.index(r)
v = A.icols[t]
newDomain = ops.set_union(domain, v)
return newDomain



Apply on a subdomain

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

14 / 19

● Apply to a subdomain

def apply_prec(self, r):
N_ITER=8
x = ops.zeros_like(r)
rl = r[self.d]
xl = stationary.sym_gauss_seidel(self.Al,
rl, N_ITER)

x[self.d] += xl
return x

● Problem: some code impossible to vectorize



Overview of analysis

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

15 / 19

● Python code with calls to ops package

✦ special comment “parallelize : x - domains”

● Get python AST (Abstract Syntax Tree)

✦ ast package starting from Python 2.6

● Generate IR (Intermediate Representation) from AST

● Analyze IR

✦ Find arrays and their relations

✦ Decide where to insert communication code

● Generate Python code from IR



Intermediate Representation

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

16 / 19

def Ax(A, x):
tmp = x[A.icols]*A.vals
y = ops.hreduce(A.irows, tmp, like=x)
return y

● Corresponding IR

0 = A.icols : A(INT)
1 := x[0] : A(FLOAT)
2 = A.vals : A(FLOAT)
3 := 1 * 2 : A(FLOAT)
tmp = 3 : A(FLOAT)
5 = A.irows : A(INT)
6 = ops.hreduce : oF(hreduce)
7 = 6(5,tmp,x) : A(FLOAT)
y = 7 : A(FLOAT)
return = y : A(FLOAT)



Data-flow analysis

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

17 / 19

● Pointer analysis (+ Type Analysis)

✦ Find definitions: z=ops.zeros(), z=x+y

✦ track each definition

● Find definition (array) relations

8 , 3

1 8 , 1 1

5 , 2

1 6 , 7

8 , 2

3 , 5

1 8 , 1 0

3 2 , 3

1 8 , 1 5

1 8 , 1 4
3 1 , 2

3 , 7

6 , 0

3 , 1

1 8 , 7

3 3 , 1 8
1 6 , 3

3 3 , 2 4

1 6 , 1 1 8 , 5

1 8 , 8

1 4 , 5 6 1 4 , 2 9

4 , 4

4 , 5

3 1 , 0

4 , 3

8 , 0

3 2 , 5

3 4 , 4

3 4 , 0

6 , 1

4 , 6

3 3 , 2 1

3 2 , 6



Distribution propagation

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

18 / 19

Using definition relation graph

● decide which belong to the same distribution

✦ x=y+z, x=y[z]

● find the partitioning that has been specified

✦ decide how to infer other distributions

✦ ghost values

The rest: generate code



Summary

❖ Background

Domain and related
work

Our approach

❖ Array operations

❖ Array relations

❖ Complex array
operations

❖ Apply on a
subdomain
❖ Overview of
analysis

❖ Intermediate
Representation

❖ Data-flow analysis

❖ Distribution
propagation

❖ Summary

19 / 19

● CG and preconditioners – a lot of work

● express using vector parallel (array) code

● find array relations

✦ one array defines distribution of another

✦ find ghost values

● Up-to-date

✦ parallel CG works

✦ parallel Schwarz preconditioner is ongoing


	Background
	Domain and related work
	Schwarz preconditioner
	Coarse grid preconditioner
	Overlaps
	Patterns and problems
	Related work
	SMVM in Intel ArBB

	Our approach
	Array operations
	Array relations
	Complex array operations
	Apply on a subdomain
	Overview of analysis
	Intermediate Representation
	Data-flow analysis
	Distribution propagation
	Summary


