Automatic parallelization of vector parallel codes for preconditioned iterative solvers

Oleg Batrashev

June 1, 2011

Background

✤ Background

Domain and related work

- University of Tartu, Estonia (one of Baltic States)
 - Eero Vainikko: professor at Distributed Systems Group
 - Scientific Computing and HPC
 - Me: PhD student
 - HPC + Software Engineering
 - Programming Languages
- DOUG Domain Decomposition on Unstructured Grids
 - ♦ two-level Schwarz preconditioners $M^{-1} = M_{AS}^{-1} + M_C^{-1}$
 - theory: University of Bath, UK
 - ♦ implementation: Fortran 90 + MPI

✤ Background

Domain and related work Schwarz

preconditioner

Coarse grid preconditioner

✤ Overlaps

Patterns and problems

Related workSMVM in Intel

ArBB

Our approach

Domain and related work

Schwarz preconditioner

✤ Background

Domain and related work

Schwarzpreconditioner

Coarse grid preconditioner

- ✤ Overlaps
- Patterns and problems
- Related work
 SMVM in Intel ArBB

- subdomain *injection matrix* R_i picks the nodes (unknowns x_j) corresponding to subdomain Ω_i
- $A_i = R_i A R_i^T$ is a minor matrix of A
- During each CG iteration apply

$$M_{AS}^{-1} = \sum_{i=1}^{s} R_i^T A_i^{-1} R_i$$

Coarse grid preconditioner

- ✤ Background
- Domain and related work Schwarz
- preconditioner
- Coarse grid preconditioner
- ✤ Overlaps
- Patterns and problems
- Related workSMVM in Intel ArBB

- coarse space *restriction matrix* R_c combines the nodes corresponding to supports W_i
- coarse matrix $A_c = R_c A R_c^T$ defines the problem on coarse grid
- During each CG iteration apply

$$M_C^{-1} = R_c^T A_c^{-1} R_c$$

Overlaps

✤ Background

Domain and related work

Schwarz preconditioner

Coarse grid preconditioner

♦ Overlaps

Patterns and problems

Related workSMVM in Intel ArBB

- Both subdomains V_i and supports W_j may be extended
- Values on the overlap usually added (depends on algorithm)
- Process regions U_k union of all local \tilde{V}_i and \tilde{W}_j

Patterns and problems

Background

Domain and related work

Schwarz preconditioner

Coarse grid preconditioner

Overlaps

Patterns and problems

Related workSMVM in Intel ArBB

Our approach

• Unstructured grids

- irregular problem
- no stencils for regular grids
- Managing overlaps on process boundaries
 - synchronize values
 - exclude duplicates:
 - dot product
 - in A_c
 - several slightly different overlaps
 - more sophisticated preconditioners

Related work

✤ Background

Domain and related work

Schwarz

preconditioner

Coarse grid preconditioner

✤ Overlaps

Patterns and problems

 Related work
 SMVM in Intel ArBB

- DUNE the Distributed and Unified Numerics Environment
 - partition value types: *interior, border, overlap, front, ghost*index sets (*owner, ghost*)
- HPF-2, Vienna Fortran, Fortran D
 - SPARSE(CRS(Data,Col,Row))
 - ✤ DECOMPOSITION, ALIGN, DISTRIBUTE
- Nested Data Parallelism: NESL, Intel ArBB
 - ♦ array languages
 - combining scatter (histogram reduction)
 - for SMP systems

SMVM in Intel ArBB

✤ Background	
Domain and related work Schwarz preconditioner	<pre>void Ax(const Matrix &A,</pre>
Coarse grid preconditioner	$\{ dongo < f(x) = a + b o r(x) + a - a + b o r(x) + a - a - a + b - a - a - a - a - a - a - a - a - a -$
✤ Overlaps	dense<104> corvars - gather(x, A.cors),
 Patterns and problems 	dense <f64> mvals = colvals * A.vals; nested<f64> nmvals =</f64></f64>
Related work	rectance neared officity(much a nrowg):
♦ SMVM in Intel ArBB	<pre>y = add_reduce(nmvals);</pre>
Our approach	}

- Enough to express CG
 - PCG requires more abstractions

✤ Background

Domain and related work

Our approach

Array operations

✤ Array relations

Complex array operations

Apply on a

subdomain

Overview of

analysis

Intermediate Representation

Data-flow analysis

 \clubsuit Distribution

propagation

Summary

Array operations

Background

Domain and related work

Our approach

- Array operations
- Array relations
- Complex array operations
- Apply on a
- subdomain
- Overview of
- analysis
- Intermediate Representation
- Data-flow analysis
- \bullet Distribution

The following is enough for Conjugate Gradient. Let x, y, and z are arrays:

- array creation: y=zeros(N), y=copy_like(x)
- array copy: y=copy(x)
- binary, element-wise: z=x+y, z=x*y, y=sqrt(x), x==y
- reduction: r=reduce(x, op)
- gather: z=x[y]
- scatter: z[y]=x
- combining scatter: z=hreduce(y, x, op='+'), i.e. z[y]+=x

Array relations

✤ Background

Domain and related work

Our approach

Array operations

✤ Array relations

Complex array operations

Apply on a

subdomain

Overview of

analysis

Intermediate Representation

✤ Data-flow analysis

 \clubsuit Distribution

propagation

Summary

```
def Ax(A, x):
   tmp = x[A.icols]*A.vals
   y = ops.hreduce(A.irows, tmp, like=x)
   return y
```


- A.irows to calculate distribution
- A.icols to calculate ghost values

Complex array operations

Background

Domain and related work

Our approach

Array operations

 \clubsuit Array relations

Complex array operations

Apply on a subdomain

Overview of

analysis

Representation

✤ Data-flow analysis

 \bullet Distribution

propagation

Summary

The following is almost enough for 1-level Schwarz preconditioner:

- z=index(x) gather indexes into array z of boolean array x
- z=set_in(x,y) find x elements which values are in array y
 - z=set_union(x,y) combine arrays as sets
- s z=inverse(x) inverse array

```
def add_layer(domain, A):
    r = ops.set_in(A.irows, domain)
    t = ops.index(r)
    v = A.icols[t]
    newDomain = ops.set_union(domain, v)
    return newDomain
```

Apply on a subdomain

Background
 Domain and related
 work

Our approach

Array operations

✤ Array relations

Complex array operations

Apply on a subdomain

Overview of analysis

Intermediate Representation

✤ Data-flow analysis

 \bullet Distribution

propagation

Summary

```
• Apply to a subdomain

def apply_prec(self, r):
    N_ITER=8
    x = ops.zeros_like(r)
    rl = r[self.d]
    xl = stationary.sym_gauss_seidel(self.Al,
        rl, N_ITER)
    x[self.d] += xl
    return x
```

• Problem: some code impossible to vectorize

Overview of analysis

Background

Domain and related work

- Our approach
- Array operations
- Array relations
- Complex array operations
- Apply on a
- subdomain
- ♦ Overview of analysis
- Intermediate Representation
- Data-flow analysis
- Distribution
- propagation
- Summary

- Python code with calls to ops package
 - special comment "parallelize : x domains"
- Get python AST (Abstract Syntax Tree)
 - ♦ ast package starting from Python 2.6
- Generate IR (Intermediate Representation) from AST
- Analyze IR
 - Find arrays and their relations
 - Decide where to insert communication code
- Generate Python code from IR

Intermediate Representation

Background		
Domain and related work	<pre>def Ax(A, x): tmp = x[A.icols]*A.vals</pre>	
Our approach	y = ops.hreduce(A.irows,	tmp, like=x)
Array operations	return v	-
Array relations		
Complex array operations	Corresponding IR	
Apply on a	1 8	
subdomain	0 = A.icols	: A(INT)
analysis	1 := x[0]	: A(FLOAT)
✤ Intermediate Representation	2 = A.vals	: A(FLOAT)
Data-flow analysis	3 := 1 * 2	: A(FLOAT)
Distribution propagation	tmp = 3	: A(FLOAT)
Summary	5 = A.irows	: A(INT)
	6 = ops.hreduce	: oF(hreduce)
	7 = 6(5, tmp, x)	: A(FLOAT)
	y = 7	: A(FLOAT)
	return = y	: A(FLOAT)

Data-flow analysis

✤ Background

Domain and related work

- Our approach
- Array operations
- ♦ Array relations
- Complex array operations
- Apply on a
- subdomain
- Overview of
- analysis
- Intermediate Representation
- ✤ Data-flow analysis
- Distribution propagation
- Summary

• Pointer analysis (+ Type Analysis)

- Find definitions: z=ops.zeros(), z=x+y
- track each definition
- Find definition (array) relations

Distribution propagation

✤ Background

Domain and related work

Our approach

Array operations

Array relations

Complex array operations

Apply on a

subdomain

Overview of

analysis

Intermediate Representation

Data-flow analysis

Distribution propagation

Summary

Using definition relation graph

• decide which belong to the same distribution

✤ x=y+z, x=y[z]

- find the partitioning that has been specified
 - decide how to infer other distributions
 - ghost values

The rest: generate code

Summary

✤ Background

Domain and related work

- Our approach
- Array operations
- ♦ Array relations
- Complex array operations
- Apply on a
- subdomain
- Overview of
- analysis
- Intermediate Representation
- Data-flow analysis
- Distribution propagation
- Summary

- CG and preconditioners a lot of work
- express using vector parallel (array) code
- find array relations
 - one array defines distribution of another
 - find ghost values
- Up-to-date
 - parallel CG works
 - parallel Schwarz preconditioner is ongoing