

Metanumerical Computing for
PDE: Accomplishments and

Opportunities for High-Level Finite
Element Tools

Robert C. Kirby
Texas Tech University

WOLFHPC May 31, 2011

The Stack

Applications

Analysis

Algorithms

Architecture

Or is it a graph...?

K's Recursive Conundrum

● Computers were invented to automate
tedious and error-prone tasks

● Programming a computer is a tedious and
error-prone task

● So get a computer to do it

Metanumerical Computing: Using high-level mathematical
structure to generate, reason about, manipulate, and/or
optimize numerical code

Pieces to consider

Variational Forms Matrices/Operators

Meshes
Basis Functions

Integration

Library
Language

Library approach (e.g. Deal.II)

● 2007 Wilkinson Award Winner
● Library of basis functions, quadrature,

meshes, degrees of freedom, etc
– All codes require these pieces

– Reduce programmer time for hp adaptivity

● “High-level”, but no fancy automation

Language approach

● Natural grammar for
variational forms

● Enumeration?
● Language:

– DSL (Analysa,
FreeFEM)

– DSEL (Life,
Sundance,
FEniCS)

Performance Challenges

● Data locality (global)
– Mesh entities (unstructured)

– Sparse matrices

● Dense calculations:
– Elementwise operations

● Interactions:
– App, solver, PC, FEM algorithms

Interactions

Solver
(Krylov)

Preconditioner

Matrix data structures

FEM
Algorithms

Some PDE projects

Sundance FEniCS

● Tool suite
● Generate C++
● Python top-level

● C++ Run-time
● Trilinos
● “All differentiation”

Goals for automation

● Developer perspective:
– Reliability, Time-to-code

● Application perspective:
– “Works”, Feature set, Time-to-answer

● Hardware perspective
– Flexibility to target hardware (MPI, CUDA,

etc)

Sundance basic overview

● General form for FE variational problems

● Algebraic system defined by derivatives

Sundance AD

● “Low-level” code never generated
● Weak form expression graph analyzed at

run-time
● Form evaluation mapped to Evaluation

Engine kernels for operators

FeniCS Overview

● Begun 2003 (RCK, Logg, Hoffman, …)
● Collection of tools

– Form compilers (ffc, syfc)

– Optimizers (FErari)

– Basis functions (FIAT)

– Meshes, Linear algebra (DOLFIN)

– Vis (Viper)

● Relies on generating code from UFL

FEniCS Code Generation

● AST represented in Python (embedded)
● Form analyzed (similar canonical form to

Sundance)
● Tensor vs. Quadrature
● C++ generated for element matrix

assembly
● Link against DOLFIN
● See K,Logg (ACM TOMS 2005-6) and also

Oelgaard, Wells, Rognes

Code snippet (ffc)

 Expr source=exp(u);
 Expr eqn
 = Integral(interior, (grad*u)*(grad*v)+v*source, quad4);

 a = inner(grad(u),grad(v))*dx - exp(u)*v*dx

 Expr source=exp(u);
 Expr eqn
 = Integral(interior, (grad*u)*(grad*v)+v*source, quad4);

Code snippet (Sundance)

Let's look at some code
● Given demos:

– Sundance: Poisson-Boltzman

– DOLFIN: Nonlinear Poisson

● These are documented/distributed
● Break to shell...

Where do they shine?

● Sundance:
– Performance (Parallel & serial)

– Mathematical framework

– UQ

● FeniCS:
– FEM features (DG, H(div), H(curl), etc)

– Active global user community (+Ubuntu)

– Integrated Python environment

– Standards (Rathberger → CUDA)

Sundance versus FEniCS

Matrix-free?

● 16x16x16 hex mesh, assemble Poisson
Degree PreAlloc,OneMat Apply Mat-free

GEMM
Mat-free
tensor

1 3.24E-002 3.66E-004 7.84E-004 4.73E-003

2 6.36E-001 3.83E-003 3.97E-003 1.71E-002

3 7.30E+000 1.13E-002 1.05E-002 4.88E-002

4 3.04E+002 6.56E-001 2.85E-002 9.54E-002

Insert >> construct >> apply

Matrix-free algorithms?

Preconditioners?

Matrix Construction

● Assume mesh & DOF done “right”
● All work is in element matrix construction

Matrices of basis functions at
quadrature points: local density

Optimizing Matrix Construction

DGEMM
● Element computations

batched

● Use a library

● Coarse-grained

FErari
● Discrete structure in

matrix construction

● Joint with Knepley,
Logg, Scott, Terrel

● For each basis, degree,
form, generate specific
code

● Fine-grained

Ongoing work: Matrix-Free

● Reduced costs

● Separation of concerns:

● Manycore possibilities

Basic Spectral

Work per cell

Mem per cell

Towards Manycore?

● Sundance (Arch-neutral interface)
– Intrepid/Kokkos

● FFC (Arch-specific back-ends)
– Rathberger, et al – generate CUDA from

UFL (preliminary)

● Bernstein polynomials:
– RCK (Numerische, 2010), RCK+Kieu

(submitted), Ainsworth

– High order, simplex, spectral complexity,
de Rham complex!

Conclusions

● Successes of PDE automation:
– Map variational forms onto code onto

algorithms

– User experience

– Reasonable – good performance

● Ongoing challenges:
– Architecture-awareness

– New architecture → new algorithms?

– Portability to new platforms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

