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Accelerators (mainly GPUs)

I GPU architectures are becoming popular accelerators

I GPUs: high performance and low energy consumption

Problems:

I Highly optimized code is hard to write

I Optimization for diverse platforms

I Maintenance of multiple sources

→ DSLs are being used to target accelerators



DSLs enable more optimization opportunities

I Problem: general purpose languages are not
optimization-friendly

I no semantic information about the algorithm
I expressive → ambiguity disables optimizations (e.g., aliasing).

I But compiling DSLs directly into OpenCL or CUDA is not
advisable.

I Solution: target an appropriate intermediate language (IL)
and benefit from the optimization framework



Pencil: a Platform-Neutral Compute Intermediate
Language for DSLs

I An intermediate language for DSL compilers

I C based intermediate language

I A set of coding rules, language extensions and directives on
top of C

Design goals
I Unlock the power of optimization frameworks by

I keeping a maximum of information expressed by the DSL
I eliminating ambiguity for optimizers

I Users: Code generators + expert developers



How to use Pencil



More about Pencil

I An equivalent LLVM IR will be provided

I Platform neutral

I Only computation intensive code regions need to be
Pencil-compliant

I Pencil does not compete with other DSL ILs such as Delite
IR; they are complementary

I The runtime system schedules the kernels



Platform-Neutral Compute Intermediate Language

I Coding rules

I no pointers aside from function arguments
I pointer arguments should be declared with restrict const

I no recursion
I no unstructured control flow (no gotos)

I Extensions

I access summary functions
I describe access pattern of a function if automatic analysis

cannot be performed (no source or not Pencil compliant) or
if the results are too inaccurate

I information used in calling function

I Directives

I #pragma pencil independent [(l1, . . . , ln)]

listed statements (all if unspecified) do not carry any
dependences across the loop following the directive
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Example of Pencil code

int function(int A[const restrict 100][100],

int C[const restrict 100][100]) {

#pragma pencil independent

for (int k = 0; k < N; k++)

for (int j = 0; j < N; j++)

A[k][t[j]] = foo(C);

}



Example of Pencil code

void foo_summary(int C[const restrict n][n]) {

USE(C);

}

void foo(int C[const restrict n][n])

ACCESS(foo_summary(C));

int function(int A[const restrict 100][100],

int C[const restrict 100][100]) {

#pragma pencil independent

for (int k = 0; k < N; k++)

for (int j = 0; j < N; j++)

A[k][t[j]] = foo(C);

}



PPCG, an Example of an Optimization Framework

PPCG (http://freecode.com/projects/ppcg)

I Input: C (Pencil to be implemented)
I Output:

I CUDA
I OpenMP and OpenCL (soon)

Steps:

I Extract polyhedral model from Pencil code

I Dependence analysis
I Scheduling

I Expose parallelism and tiling opportunities
I Separate schedule into parts mapped on host and GPU

I Memory management
I Add transfers of data to/from GPU

I Generate AST

http://freecode.com/projects/ppcg
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PPCG Results
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I Experiments performed by Juan Carlos Juega

I Benchmarks: PolyBench

I Platform: Tesla M2070

I Baseline: sequential CPU execution



Summary

I Work in progress: Pencil an IL for DSLs
I C based
I no pointers
I summary access functions
I independent pragma

I Provide an optimization framework (polyhedral optimization)


