
Pencil: Towards a Platform-Neutral Compute
Intermediate Language for DSLs

Riyadh Baghdadi A. Cohen S. Guelton S. Verdoolaege
J. Inoue T. Grosser G. Kouveli A. Kravets

A. Lokhmotov C. Nugteren F. Waters A. Donaldson

ARM
Imperial College
ENS/INRIA, Paris

-
Riyadh.Baghdadi@inria.fr

November 16, 2012

Riyadh.Baghdadi@inria.fr


Accelerators (mainly GPUs)

I GPU architectures are becoming popular accelerators

I GPUs: high performance and low energy consumption

Problems:

I Highly optimized code is hard to write

I Optimization for diverse platforms

I Maintenance of multiple sources

→ DSLs are being used to target accelerators



DSLs enable more optimization opportunities

I Problem: general purpose languages are not
optimization-friendly

I no semantic information about the algorithm
I expressive → ambiguity disables optimizations (e.g., aliasing).

I But compiling DSLs directly into OpenCL or CUDA is not
advisable.

I Solution: target an appropriate intermediate language (IL)
and benefit from the optimization framework



Pencil: a Platform-Neutral Compute Intermediate
Language for DSLs

I An intermediate language for DSL compilers

I C based intermediate language

I A set of coding rules, language extensions and directives on
top of C

Design goals
I Unlock the power of optimization frameworks by

I keeping a maximum of information expressed by the DSL
I eliminating ambiguity for optimizers

I Users: Code generators + expert developers



How to use Pencil



More about Pencil

I An equivalent LLVM IR will be provided

I Platform neutral

I Only computation intensive code regions need to be
Pencil-compliant

I Pencil does not compete with other DSL ILs such as Delite
IR; they are complementary

I The runtime system schedules the kernels



Platform-Neutral Compute Intermediate Language

I Coding rules

I no pointers aside from function arguments
I pointer arguments should be declared with restrict const

I no recursion
I no unstructured control flow (no gotos)

I Extensions

I access summary functions
I describe access pattern of a function if automatic analysis

cannot be performed (no source or not Pencil compliant) or
if the results are too inaccurate

I information used in calling function

I Directives

I #pragma pencil independent [(l1, . . . , ln)]

listed statements (all if unspecified) do not carry any
dependences across the loop following the directive



Platform-Neutral Compute Intermediate Language

I Coding rules
I no pointers aside from function arguments
I pointer arguments should be declared with restrict const

I no recursion
I no unstructured control flow (no gotos)

I Extensions

I access summary functions
I describe access pattern of a function if automatic analysis

cannot be performed (no source or not Pencil compliant) or
if the results are too inaccurate

I information used in calling function

I Directives

I #pragma pencil independent [(l1, . . . , ln)]

listed statements (all if unspecified) do not carry any
dependences across the loop following the directive



Platform-Neutral Compute Intermediate Language

I Coding rules
I no pointers aside from function arguments
I pointer arguments should be declared with restrict const

I no recursion
I no unstructured control flow (no gotos)

I Extensions
I access summary functions

I describe access pattern of a function if automatic analysis
cannot be performed (no source or not Pencil compliant) or
if the results are too inaccurate

I information used in calling function

I Directives

I #pragma pencil independent [(l1, . . . , ln)]

listed statements (all if unspecified) do not carry any
dependences across the loop following the directive



Platform-Neutral Compute Intermediate Language

I Coding rules
I no pointers aside from function arguments
I pointer arguments should be declared with restrict const

I no recursion
I no unstructured control flow (no gotos)

I Extensions
I access summary functions

I describe access pattern of a function if automatic analysis
cannot be performed (no source or not Pencil compliant) or
if the results are too inaccurate

I information used in calling function

I Directives
I #pragma pencil independent [(l1, . . . , ln)]

listed statements (all if unspecified) do not carry any
dependences across the loop following the directive



Example of Pencil code

int function(int A[const restrict 100][100],

int C[const restrict 100][100]) {

#pragma pencil independent

for (int k = 0; k < N; k++)

for (int j = 0; j < N; j++)

A[k][t[j]] = foo(C);

}



Example of Pencil code

void foo_summary(int C[const restrict n][n]) {

USE(C);

}

void foo(int C[const restrict n][n])

ACCESS(foo_summary(C));

int function(int A[const restrict 100][100],

int C[const restrict 100][100]) {

#pragma pencil independent

for (int k = 0; k < N; k++)

for (int j = 0; j < N; j++)

A[k][t[j]] = foo(C);

}



PPCG, an Example of an Optimization Framework

PPCG (http://freecode.com/projects/ppcg)

I Input: C (Pencil to be implemented)
I Output:

I CUDA
I OpenMP and OpenCL (soon)

Steps:

I Extract polyhedral model from Pencil code

I Dependence analysis
I Scheduling

I Expose parallelism and tiling opportunities
I Separate schedule into parts mapped on host and GPU

I Memory management
I Add transfers of data to/from GPU

I Generate AST

http://freecode.com/projects/ppcg


PPCG, an Example of an Optimization Framework

PPCG (http://freecode.com/projects/ppcg)

I Input: C (Pencil to be implemented)
I Output:

I CUDA
I OpenMP and OpenCL (soon)

Steps:

I Extract polyhedral model from Pencil code

I Dependence analysis
I Scheduling

I Expose parallelism and tiling opportunities
I Separate schedule into parts mapped on host and GPU

I Memory management
I Add transfers of data to/from GPU

I Generate AST

http://freecode.com/projects/ppcg


PPCG Results

co
rr

e
la

tio
n

co
va

ria
n

c e

2
m

m

3
m

m

b
ic

g

d
o

itg
e

n

g
e

m
m

g
e

m
ve

r

g
e

su
m

m
v

g
ra

m
sc

h
m

id
t lu

m
vt

sy
m

m

sy
r2

k

sy
rk

tr
a

n
sp

o
se a
d

i

fd
td

-2
d

ja
co

b
i-1

d
-im

p
e

r

ja
co

b
i-2

d
-im

p
e

r

g
e

o
m

e
tr

ic
 m

e
a

n

0.1

1

10

100

1000
Pluto OpenMP
Par4All
PPCG

S
p

e
e

d
u

p

I Experiments performed by Juan Carlos Juega

I Benchmarks: PolyBench

I Platform: Tesla M2070

I Baseline: sequential CPU execution



Summary

I Work in progress: Pencil an IL for DSLs
I C based
I no pointers
I summary access functions
I independent pragma

I Provide an optimization framework (polyhedral optimization)


