PENCIL: Towards a Platform-Neutral Compute
Intermediate Language for DSLs

Riyadh Baghdadi A. Cohen S. Guelton S. Verdoolaege
J. Inoue T. Grosser G. Kouveli A. Kravets

A. Lokhmotov ~ C. Nugteren F. Waters A. Donaldson

ARM
Imperial College
ENS/INRIA, Paris

Riyadh.Baghdadi@inria.fr

November 16, 2012

Riyadh.Baghdadi@inria.fr

Accelerators (mainly GPUs)

» GPU architectures are becoming popular accelerators

» GPUs: high performance and low energy consumption

-

.mali

AW £ Visual Computing by ARM

Problems:
» Highly optimized code is hard to write
» Optimization for diverse platforms
» Maintenance of multiple sources

— DSLs are being used to target accelerators

DSLs enable more optimization opportunities

» Problem: general purpose languages are not
optimization-friendly
» no semantic information about the algorithm
» expressive — ambiguity disables optimizations (e.g., aliasing).
» But compiling DSLs directly into OpenCL or CUDA is not
advisable.
» Solution: target an appropriate intermediate language (IL)
and benefit from the optimization framework

PENcIL: a Platform-Neutral Compute Intermediate
Language for DSLs

» An intermediate language for DSL compilers

» C based intermediate language

> A set of coding rules, language extensions and directives on
top of C

Design goals
» Unlock the power of optimization frameworks by
» keeping a maximum of information expressed by the DSL
» eliminating ambiguity for optimizers

> Users: Code generators + expert developers

How to use PENCIL

[Domain Specific Languages J

DSL -> PENCIL compilers

PENCIL — Platform Neutral Compute
Intermediate Language

Polyhedral compilation

s
Direct OpenCL f
programming OpenCL

NVIDIA AMD ARM Other
GPUs GPUs GPUs """| accelerators

More about PENCIL

» An equivalent LLVM IR will be provided
» Platform neutral

» Only computation intensive code regions need to be
PENCIL-compliant

» PENCIL does not compete with other DSL ILs such as Delite
IR; they are complementary

» The runtime system schedules the kernels

Platform-Neutral Compute Intermediate Language

» Coding rules

» Extensions

» Directives

Platform-Neutral Compute Intermediate Language

» Coding rules

» no pointers aside from function arguments

> pointer arguments should be declared with restrict const
> no recursion

» no unstructured control flow (no gotos)

» Extensions

» Directives

Platform-Neutral Compute Intermediate Language

» Coding rules

>

>

| 4

>

no pointers aside from function arguments

pointer arguments should be declared with restrict const
no recursion

no unstructured control flow (no gotos)

» Extensions

>

access summary functions

> describe access pattern of a function if automatic analysis
cannot be performed (no source or not PENCIL compliant) or
if the results are too inaccurate

» information used in calling function

» Directives

Platform-Neutral Compute Intermediate Language

» Coding rules

» no pointers aside from function arguments
> pointer arguments should be declared with restrict const
> no recursion
» no unstructured control flow (no gotos)
» Extensions
» access summary functions
> describe access pattern of a function if automatic analysis
cannot be performed (no source or not PENCIL compliant) or
if the results are too inaccurate
» information used in calling function

> Directives
> #ipragma pencil independent [(/1, ey /,,)]

listed statements (all if unspecified) do not carry any
dependences across the loop following the directive

Example of PENCIL code

int function(int A[const restrict 100][100],
int C[const restrict 100] [100]) {
#pragma pencil independent
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
Alk] [t [j1] = foo(C);

Example of PENCIL code

void foo_summary(int C[const restrict n][n]) {
USE(C) ;
}

void foo(int C[const restrict n][n])
ACCESS (foo_summary(C)) ;

int function(int A[const restrict 100][100],
int C[const restrict 100] [100]) {
#pragma pencil independent
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
Alk] [t [j1] = foo(C);

PPCG, an Example of an Optimization Framework

PPCG (http://freecode.com/projects/ppcg)

» Input: C (PENCIL to be implemented)
» Output:

» CUDA
» OpenMP and OpenCL (soon)

http://freecode.com/projects/ppcg

PPCG, an Example of an Optimization Framework

PPCG (http://freecode.com/projects/ppcg)
» Input: C (PENCIL to be implemented)

» Output:

» CUDA
» OpenMP and OpenCL (soon)

Steps:
» Extract polyhedral model from PENCIL code
» Dependence analysis
» Scheduling

» Expose parallelism and tiling opportunities
» Separate schedule into parts mapped on host and GPU

» Memory management
» Add transfers of data to/from GPU

» Generate AST

http://freecode.com/projects/ppcg

PPCG Results

1000 W Pluto OpenMP
@ Par4All
100 OPPCG
10
[=N
=]
; l h I“Ji] i] ”
[
Q
2]
01 c o o c > F] ~x x o c
— po P
EEEESFETEZECEESRERT R RS
T 8 « ®» 2 2 ¢ E E E = 2 2 a 2 E E €
T = S © ¢ 3 o) @ 5 T T
E & ° oD 0 ¢ c = T T Q
s 3 S £ g - 8 =
s 8 g = 5 5 ¢
@ 8 8 o
@ (] [
g 8 g
> Experiments performed by Juan Carlos Juega

v

Benchmarks: PolyBench
Platform: Tesla M2070

Baseline: sequential CPU execution

v

v

Summary

» Work in progress: PENCIL an IL for DSLs

» C based

> no pointers

» summary access functions
> independent pragma

» Provide an optimization framework (polyhedral optimization)

