
The Uintah Framework:
A Unified Heterogeneous Task

Scheduling and Runtime System

Qingyu Meng, Alan Humphrey,
Martin Berzins

DOE for funding the CSAFE project (97-10), DOE NETL, DOE NNSA
NSF for funding via SDCI and PetaApps

Thanks to: John Schmidt and J. Davison de St. Germain, SCI Institute
Justin Luitjens and Steve Parker, NVIDIA

Current and Past Uintah Applications

Shaped Charges
Fires

Explosions

Foam
Compaction

Angiogenesis

Sandstone
Compaction

CPU pins

Coal Boiler

Virtual
Soldier

Gas mixing

Uintah Data Parallelism

Structured Grid(Flows) +
Particles System(Solids)
Patch-based Domain
Decomposition for Parallel
Processing
Adaptive Mesh Refinement
Dynamic Load Balancing

Profiling + Forecasting Model
Parallel Space Filling Curves
Data Migration

Uintah uses both data and task parallelism

Gird and Patches
(Physical Domain)

Uintah Task Parallelism
and Uintah Task Graph

Cores

Patch-based domain decomposition

tasks on patch

User defines Uintah Tasks:
Serial code (call back functions)
Input and output variables

Distributed: only creates tasks on local patches
Framework analyzes task dependencies and creates TG

Automatic MPI message generation
Dynamic Task Execution (Data Driven Overlap)

Task Graph

Compile

Uintah Runtime System:
How Uintah Runs Tasks

Memory Manager: Uintah Data Warehouse (DW)
Variable dictionary (hashed map from: Variable
Name, Patch ID, Material ID keys to memory)
Provide interfaces for tasks to
– Allocate variables
– Put variables into DW
– Get variables from DW

Automatic Scrubbing (garbage collection)
Checkpointing & Restart (data archiver)

Task Manager: Uintah schedulers
Decides when and where to run tasks
Decides when to process MPI

Thread/MPI Scheduler (De-centralized)

Memory saving: reduce ghost copies and metadata
Work stealing inside node: all threads directly pull
tasks from task queues, no on-node MPI
Full Overlapping: All threads process MPI
sends/receives and execute tasks
Use lock-free data structure (avoid locking overhead)

Running Task

N
etw

ork

Data
Warehouse

(variables)

PUT

GET

Running Task

Running Task
completed task

Task Queues
satisfied task

completed task

Threads

Shared
Data

Ready task

sends

receives

Task
Graph

PUT

GET

MPI
Data ready

Scalability Improvement

12 24 48 96 192 384 768 1.5K 3K 6K 12K 24K 49K 98K

10
0M

ea
n

T
im

e
P

er
 T

im
es

te
p

(s
)

 Cores

AMR MPMICE: Scaling

Strong
Weak

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K
10

0

10
1

M
ea

n
T

im
e

P
er

 T
im

es
te

p
(s

)
 Cores

AMR MPMICE: Scaling

Strong
Weak

Original Dynamic MPI-only Scheduler De-centralized MPI/Thread Hybrid Scheduler
(with Lock-free Data Warehouse)

• Achieve much better CPU Scalability
• 95% weak scaling efficiency on 256K cores (Jaguar XK6)
• Use GPUs to accelerate Uintah Components

Generated by Google profiling tool, visualized by Kcachegrind

First step to GPU
1

12

2

Profile & find most time consuming task
Port task’s serial CPU code to GPU
Call CUDA API inside task code
Framework unaware of GPU(s)
Result: ~2x speedup (stencil code)

must hide PCIe latency

Uintah GPU Task Management
Framework manages all CUDA data movement (NOT inside task)

Use Asynchronous API

Automatically generate CUDA
stream for each dependency

Concurrently execute kernels
and memcopies

Prefetching data before task
kernel execute

Multi-GPU support

Two call back functions for both
CPU version and GPU version:
Compatible for non-GPU nodes

hostComputes

hostRequires

existing host
memory

devComputes

devRequires

Pin this memory with
cudaHostRegister()

Page locked buffer

cudaMemcpyAsync(H2D)

computation

cudaMemcpyAsync(D2H)

Free pinned host
memory

Result back on host

Call-back executed here
(kernel run)

Component requests D2H
copy here

1

2

3

5

6

4

Stages of GPU task in Uintah runtime

Data Transfer Kernel Execution Kernel Execution
Data Transfer

Normal Page-locked Memory

GPU Task GPU Task

Data Transfer
Data Transfer
Kernel Execution

Multistage Task Queues
Architecture

Fully Overlap computation with
PCIe transfers and MPI communication

Unified Heterogeneous Scheduler & Runtime

Running CPU Task

N
etw

ork

Data
Warehouse

(variables)

PUT

GET

Running CPU Task

Running CPU Task

CPU Task Queues
Internal ready tasks

CPU Threads

Shared
Scheduler

Objects
(host MEM)

MPI Data
Ready

MPI sends

MPI recvs

Task
Graph

PUT

GET

GPU
Data

Warehouse

H2D
stream

D2H
stream

Running GPU Task

GPU Task Queues

Running GPU Task PUT

GET
co

m
pl

et
ed

 ta
sk

s

stream
events

GPU Kernels

GPU-enabled tasks

ready tasks GPU ready tasks

GPU RMCRT Speedup Results
(Multi-Node)

All CPU cores vs Single GPU

Keeneland

Initial
Delivery
System

Nodes CPU(sec) CPU+GPU
(sec)

Speedup (x)

1 319.769 8.49714 38 X

2 163.773 7.68571 21X

4 70.0943 4.80571 14X

8 39.5686 2.62857 15X

16 20.2414 3.52857 6X

32 18.8043 2.73857 6X

64 9.11571 2.95714 3X

CPU Core – (2) Intel Xeon 6-core X5660 (Westmere) @2.8GHz
GPU – (1) Nvidia M2090

* GPU implementation quickly runs out of work, scaling breaks down

*

Scaling Comparisons
Uintah strong scaling
results when using:

MPI-only
Multi-threaded MPI
Multi-threaded MPI w/ GPU

Two Problems:
AMR MPMICE

Nearest neighbors communication
3.62 billion particles

GPU-enabled ray tracer
All-to-all communication
100 rays per cell 1283 cells

Uintah Scaling Overview
• MPI only AMR MPMICE: N=6144 CPU cores; Largest = 98K CPU cores
• Thread/MPI AMR MPMICE: N=8192 CPU cores; Largest=256K CPU cores
• Thread/MPI RayTracing: N=16 CPU cores; Largest=1024 CPU cores
• Thread/MPI/GPU RayTracing: N=16 CPU and 1 GPU; Largest=1024 CPU and 64 GPU

Future Work
Scheduler – Infrastructure

GPU affinity for multi socket/GPU nodes

Support Intel MIC (Xeon Phi) offload-mode

PETSc GPU interface utilization

Mechanism to dynamically determine
whether to run GPU or CPU version task

Optimize GPU codes for Nvidia Kepler
CUDA 5.0 – Dynamic Parallelism
GPU sub-scheduler

Questions?

Software Homepage http://www.uintah.utah.edu/

Alstom Clean Coal Boiler Simulation
Monte Carlo Ray Tracing on GPU, Flow simulation on CPU

Using GPUs in
Energy Applications

ARCHES Combustion Component
Alstom Clean Coal Boiler Problem

Need to approximate radiation transfer equation
Reverse Monte Carlo Ray Tracing (RMCRT)

Rays mutually exclusive - traced simultaneously
Ideal for SIMD parallelization of GPU

Offload Ray Tracing and RNG to GPU(s)
CPU cores can perform other computation

Performance Comparisons
Master-Slave Model vs. Unified

Execution Times – CPU Only
#Cores 2 4 8 16 32

Master
Slave 57.28 20.72 9.40 4.81 2.95

Unified 29.79 15.70 8.23 4.54 2.78

CPU Problem: Combined MPMICE problem using AMR
Run on single Cray XE6 node with two 16-core AMD Opteron 6200 Series (Interlagos cores @2.6GHz) processors

Execution Times – With GPU
#Cores 2 4 6 8 10 12
Master
Slave 4.55 4.09 3.95 3.68 3.64 3.34

Unified 3.82 3.52 3.09 2.90 2.50 2.09

GPU Problem: Reverse Monte Carlo Ray Tracer
Run on a single 12-core heterogeneous node (two Intel Xeon X5650 processors each with Westmere 6-core

@2.67GHz, (2) Nvidia Tesla C2070 GPUs and (1) Nvidia GeForce 570 GTX GPU)

