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Current and Past Uintah Applications
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Uintah Data Parallelism 

Structured Grid(Flows) + 
Particles System(Solids)
Patch-based Domain 
Decomposition for Parallel 
Processing
Adaptive Mesh Refinement
Dynamic Load Balancing

Profiling + Forecasting Model
Parallel Space Filling Curves
Data Migration

Uintah uses both data and task parallelism

Gird and Patches
(Physical Domain)



Uintah Task Parallelism
and Uintah Task Graph

Cores

Patch-based domain decomposition

tasks on patch

User defines Uintah Tasks:
Serial code (call back functions) 
Input and output variables

Distributed: only creates tasks on local patches
Framework analyzes task dependencies and creates TG

Automatic MPI message generation
Dynamic Task Execution (Data Driven Overlap) 

Task Graph

Compile



Uintah Runtime System:
How Uintah Runs Tasks

Memory Manager: Uintah Data Warehouse (DW)
Variable dictionary (hashed map from: Variable 
Name, Patch ID, Material ID keys to memory)
Provide interfaces for tasks to
– Allocate variables 
– Put variables into DW 
– Get variables from DW

Automatic Scrubbing (garbage collection)
Checkpointing & Restart (data archiver)

Task Manager:  Uintah schedulers
Decides when and where to run tasks
Decides when to process MPI



Thread/MPI Scheduler (De-centralized)

Memory saving: reduce ghost copies and metadata
Work stealing inside node: all threads directly pull 
tasks from task queues, no on-node MPI
Full Overlapping: All threads process MPI 
sends/receives and execute tasks
Use lock-free data structure (avoid locking overhead)
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Scalability Improvement
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Strong
Weak
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Strong
Weak

Original Dynamic MPI-only Scheduler De-centralized MPI/Thread Hybrid Scheduler 
(with Lock-free Data Warehouse)

• Achieve much better CPU Scalability 
• 95% weak scaling efficiency on 256K cores (Jaguar XK6)
• Use GPUs to accelerate Uintah Components



Generated by Google profiling tool, visualized by Kcachegrind

First step to GPU
1

12

2

Profile & find most time consuming task 
Port task’s serial CPU code to GPU 
Call CUDA  API inside task code
Framework unaware of GPU(s)
Result: ~2x speedup (stencil code)

must hide PCIe latency



Uintah GPU Task Management
Framework manages all CUDA data movement (NOT inside task) 

Use Asynchronous API 

Automatically generate CUDA 
stream for each dependency

Concurrently execute kernels 
and memcopies

Prefetching data before task 
kernel execute 

Multi-GPU support  

Two call back functions for both 
CPU version and GPU version: 
Compatible for non-GPU nodes

hostComputes

hostRequires

existing host 
memory

devComputes

devRequires

Pin this memory with 
cudaHostRegister()

Page locked buffer

cudaMemcpyAsync(H2D)

computation

cudaMemcpyAsync(D2H)

Free pinned host 
memory

Result back on host

Call-back executed here
(kernel run)

Component requests D2H 
copy here

1

2

3

5

6

4

Stages of GPU task in Uintah runtime

Data Transfer Kernel Execution Kernel Execution
Data Transfer

Normal Page-locked Memory

GPU Task GPU Task

Data Transfer
Data Transfer
Kernel Execution



Multistage Task Queues 
Architecture

Fully Overlap computation with
PCIe transfers and MPI communication



Unified Heterogeneous Scheduler & Runtime 

Running CPU Task
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GPU RMCRT Speedup Results
(Multi-Node)

All CPU cores vs Single GPU

Keeneland

Initial
Delivery 
System

Nodes CPU(sec) CPU+GPU 
(sec)

Speedup (x)

1 319.769 8.49714 38 X

2 163.773 7.68571 21X

4 70.0943 4.80571 14X

8 39.5686 2.62857 15X

16 20.2414 3.52857 6X

32 18.8043 2.73857 6X

64 9.11571 2.95714 3X

CPU Core – (2) Intel Xeon 6-core X5660 (Westmere) @2.8GHz
GPU – (1) Nvidia M2090

* GPU implementation quickly runs out of work, scaling breaks down

*



Scaling Comparisons
Uintah strong scaling 
results when using:

MPI-only
Multi-threaded MPI
Multi-threaded MPI w/ GPU

Two Problems:
AMR MPMICE

Nearest neighbors communication
3.62 billion particles

GPU-enabled ray tracer
All-to-all communication
100 rays per cell 1283 cells

Uintah Scaling Overview
• MPI only AMR MPMICE: N=6144 CPU cores; Largest = 98K CPU cores
• Thread/MPI AMR MPMICE: N=8192 CPU cores; Largest=256K CPU cores
• Thread/MPI RayTracing: N=16 CPU cores; Largest=1024 CPU cores
• Thread/MPI/GPU RayTracing: N=16 CPU and 1 GPU; Largest=1024 CPU and 64 GPU



Future Work
Scheduler – Infrastructure

GPU affinity for multi socket/GPU nodes

Support Intel MIC (Xeon Phi) offload-mode

PETSc GPU interface utilization

Mechanism to dynamically determine 
whether to run GPU or CPU version task

Optimize GPU codes for Nvidia Kepler
CUDA 5.0 – Dynamic Parallelism
GPU sub-scheduler 



Questions?

Software Homepage  http://www.uintah.utah.edu/

Alstom Clean Coal Boiler Simulation
Monte Carlo Ray Tracing on GPU, Flow simulation on CPU



Using GPUs in
Energy Applications

ARCHES Combustion Component
Alstom Clean Coal Boiler Problem 

Need to approximate radiation transfer equation
Reverse Monte Carlo Ray Tracing (RMCRT)

Rays mutually exclusive - traced simultaneously
Ideal for SIMD parallelization of GPU

Offload Ray Tracing and RNG to GPU(s)
CPU cores can perform other computation



Performance Comparisons
Master-Slave Model vs. Unified

Execution Times – CPU Only
#Cores 2 4 8 16 32

Master
Slave 57.28 20.72 9.40 4.81 2.95

Unified 29.79 15.70 8.23 4.54 2.78

CPU Problem: Combined MPMICE problem using AMR
Run on single Cray XE6 node with two 16-core AMD Opteron 6200 Series (Interlagos cores @2.6GHz) processors

Execution Times – With GPU
#Cores 2 4 6 8 10 12
Master
Slave 4.55 4.09 3.95 3.68 3.64 3.34

Unified 3.82 3.52 3.09 2.90 2.50 2.09

GPU Problem: Reverse Monte Carlo Ray Tracer
Run on a single 12-core heterogeneous node (two Intel Xeon X5650 processors each with Westmere 6-core 

@2.67GHz, (2) Nvidia Tesla C2070 GPUs and (1) Nvidia GeForce 570 GTX GPU)


