The Uintah Framework:
A Unified Heterogeneous Task
Scheduling and Runtime System

Qingyu Meng, Alan Humphrey,

Martin Berzins

Thanks to: John Schmidt and J. Davison de St. Germain, SCI Institute
Justin Luitjens and Steve Parker, NVIDIA U
E

mSSTgu:uI § DOE for funding the CSAFE project (97-10), DOE NETL, DOE NNSA UNIVERSITY
— NSF for funding via SDCI and PetaApps OF UTAH

Coal Boiler

THE
UNIVERSITY
OFUTAH

Uintah Data Parallelism

Uintah uses both data and task parallelism

@ Structured Grid(Flows) +
Particles System(Solids)

@ Patch-based Domain
Decomposition for Parallel
Processing

@ Adaptive Mesh Refinement

@ Dynamic Load Balancing
@ Profiling + Forecasting Model

@ Parallel Space Filling Curves
Gird and Patches @ Data Migration
(Physical Domain) U

THE
UNIVERSITY
OFUTAH

Uintah Task Parallelism
and Uintah Task Graph

Patch-based domain decomposition

Local patch
MPI > < MPI >
Ghost cells ——» .
| __Pi Compile

tasks on patch -

@ User defines Uintah Tasks:
@ Serial code (call back functions)
@ Input and output variables Task Graph

@ Distributed: only creates tasks on local patches

@ Framework analyzes task dependencies and creates TG
@ Automatic MPI message generation U

UNIVERSITY

@ Dynamic Task Execution (Data Driven Overlap) —vm

Uintah Runtime System:
How Uintah Runs Tasks

@ Memory Manager: Uintah Data Warehouse (DW)

@ Variable dictionary (hashed map from: Variable
Name, Patch ID, Material ID keys to memory)

@ Provide interfaces for tasks to
— Allocate variables
— Put variables into DW
— Get variables from DW
@ Automatic Scrubbing (garbage collection)
@ Checkpointing & Restart (data archiver)
@ Task Manager: Uintah schedulers
@ Decides when and where to run tasks
@ Decides when to process MPI

U

THE
UNIVERSITY
OFUTAH

Thread/MPI Scheduler (De-centralized)

completed task

completed task

1
1
Threads ":

Task Ready task

I
|
1 | Graph
|
Shared | =b| Task Queues —
Data i satisfied task Data ready

———

,f
\i-----,

@ Memory saving: reduce ghost copies and metadata

@ Work stealing inside node: all threads directly pull
tasks from task queues, no on-node MPI

@ Full Overlapping: All threads process MPI
sends/receives and execute tasks U

@ Use lock-free data structure (avoid locking overhead) "=

Scalability Improvement

AMR MPMICE: Scaling AMR MPMICE: Scaling
TN\ - e '—e—VStr'ong',
-e-Weak

—e—Strong||
-e-Weak |

Mean Time Per Timestep (s)
Mean Time Per Timestep (S)

=
o
©

- 1 0
| | | | -_ - = 4 L L L L L 10 i i i i i i i i i i i i i i
Cores Cores

Original Dynamic MPI-only Scheduler De-centralized MPI/Thread Hybrid Scheduler
(with Lock-free Data Warehouse)

* Achieve much better CPU Scalability
* 95% weak scaling efficiency on 256K cores (Jaguar XK6)
» Use GPUs to accelerate Uintah Components

First step to GPU

Generated by Google profiling tool, visualized by Kcachegrind

@ Profile & find most time consuming tas
@ Port task’s serial CPU code to GPU
@ Call CUDA API inside task code

@ Framework unaware of GPU(s)
@ Result: ~2x speedup (stencil code) *bw
@ must hide PCle latency i

UNIVERSITY
OFUTAH

Uintah GPU Task Management

Framework manages all CUDA data movement (NOT inside task)

Pin this memory with

Q Use AsynChrOHOUS API cudaHostRegister() @

existing host

Call-back executed here

@ Automatically generate CUDA

9 memory (kernel run)
stream for each dependency | @ adaMemeyASyIGH2D)

@ Concurrently execute kernels hostRequires —)[devRequires "
and memCOpIeS Page locked buffer @
. mputation

@ Prefetching data before task] @ i
esult back on host
kernel execute @
hostComputes H devComputes
0 MUItI_GPU Support \l' cudaMemcpyAsync(D2H)
@ Two call back functions for both | Free pinned host @ Component requests D2H
memory copy here

CPU version and GPU version:

Compatible for non-GPU nodes Stages of GPU task in Uintah runtime
Normal Page-locked Memor¥
: > — Data Transfer
| Data Transfer | Kernel Execution | Data Transfer : Kernel Execution | Kernel Execution
SRS
GPU Task GPU Task UNIVERSITY

OFUTAH

Multistage Task Queues

Architecture
L v |

|
ontroller ===- MPISend ==--J External

T D2H Copy Complete

T H2D Copy Complete
<

GPU-Enabled#l asks

External Data
Received

Satisfied

A A

Fully Overlap computation with

PCle transfers and MPI communication
U

THE
UNIVERSITY
OFUTAH

Unified Heterogeneous Scheduler & Runtime

GPU Kernels =

CPU Threads -=

Shared
Scheduler
Objects
(host MEM)i

[

PYETE P———"

completed tasks

GPUfready|tasks

stream

events

H2D | | D2H

: stream

A

GPU Task Queues

GPU-enabled tasksﬁ

——» CPU Task Queues

Internal ready tasks

MPI sends

-

J10M]oN

THEU

UNIVERSITY
OFUTAH

GPU RMCRT Speedup Results

(Multi-Node)
All CPU cores vs Single GPU
Nodes CPU(sec) CPU+GPU Speedup (x)
(sec)
1 319.769 8.49714 38 X
Keeneland 2 163.773 7.68571 21X
4 70.0943 4.80571 14X
Initial
Delivery 8 39.5686 2.62857 15X
System 16 20.2414 3.52857 6X 7
32 18.8043 2.73857 6X e
64 9.11571 2.95714 3X)

@ CPU Core — (2) Intel Xeon 6-core X5660 (Westmere) @2.8GHz
@ GPU - (1) Nvidia M2090

* GPU implementation quickly runs out of work, scaling breaks down U

UNIVERSITY
OFUTAH

Scaling Comparisons

@ Uintah strong scaling

. o
—&— MPI only, AMR MPMICE % TR
 ThreadMPl, AMR MPMICE . results when using:
32X —se— Thread/MPI, RayTracing s 7
—@— Thread/MPI/GPU, RayTracing ’ @ MPI-only
= = = |deal Scaling '

16X

@ Multi-threaded MPI
@ Multi-threaded MPI w/ GPU

8XT

@ Two Problems:
@ AMR MPMICE

Nearest neighbors communication
3.62 hillion particles

2N aN &N 6N 32N 6aN @ GPU-enabled ray tracer

Processing Units

Speedup (times)

4XF

2Xr

All-to-all communication

100 rays per cell 1283 cells
Uintah Scaling Overview
“MPI only AMR MPMICE: N=6144 CPU cores; Largest = 98K CPU cores
' Thread/MPI AMR MPMICE: N=8192 CPU cores; Largest=256K CPU cores
' Thread/MPI RayTracing: N=16 CPU cores; Largest=1024 CPU cores
' Thread/MPI/GPU RayTracing: N=16 CPU and 1 GPU; Largest=1024 CPU and 64 GPU THEU

UNIVERSITY
OFUTAH

Future Work

@ Scheduler — Infrastructure
@ GPU affinity for multi socket/GPU nodes

@ Support Intel MIC (Xeon Phi) offload-mode

@ PETSc GPU interface uti

@ Mechanism to dynamical

1zation

y determine

whether to run GPU or CPU version task

@ Optimize GPU codes for Nvidia Kepler
@ CUDA 5.0 — Dynamic Parallelism

@ GPU sub-scheduler

U

THE
UNIVERSITY
OFUTAH

Questions?

Alstom Clean Coal Boiler Simulation
Monte Carlo Ray Tracing on GPU, Flow simulation on CPU

S Software Homepage http://www.uintah.utah.edu/ Uﬁ‘;;gw

OFUTAH

Using GPUs In
k38l || Energy Applications

@ ARCHES Combustion Component
@ Alstom Clean Coal Boiler Problem

@ Need to approximate radiation transfer equation

o Reverse Monte Carlo Ray Tracing (RMCRT)
.~ @Rays mutually exclusive - traced simultaneously
@ldeal for SIMD parallelization of GPU

@ Offload Ray Tracing and RNG to GPU(Ss)

@ CPU cores can perform other computation U

THE
UNIVERSITY
OFUTAH

Performance Comparisons
Master-Slave Model vs. Unified

Execution Times — CPU Only

#Cores 2 4 8 16 32
HEETE 57.28 20.72 9.40 4.81 2.95
Slave

Unified 29.79 15.70 8.23 4.54 2.78

Execution Times — With GPU

#Cores 2 4 6 8 10 12

SEEIED | g e 4.09 3.95 3.68 3.64 3.34
Slave

Unified 3.82 3.52 3.09 2.90 2.50 2.09

CPU Problem: Combined MPMICE problem using AMR
Run on single Cray XE6 node with two 16-core AMD Opteron 6200 Series (Interlagos cores @2.6GHz) processors

GPU Problem: Reverse Monte Carlo Ray Tracer
Run on a single 12-core heterogeneous node (two Intel Xeon X5650 processors each with Westmere 6-core mu

@2.67GHz, (2) Nvidia Tesla C2070 GPUs and (1) Nvidia GeForce 570 GTX GPU) UNIVERSITY
OF UTAH

