
AlphaZ & the���
Polyhedral Equational Model

Tomofumi Yuki, Sanjay Rajopadhye

Polyhedral Compilation

n  The Polyhedral Model
n  Established approach for automatic

parallelization
n  Based on mathematical formalism

n Many tools and compilers:
n  PIPS, PLuTo, MMAlpha, Par4All, RStream, XLF/

XLC GRAPHITE (gcc), Polly (LLVM), …
n  and AlphaZ

2

Design Space (a subset)

n  Space-Time + Tiling: schedule + parallel loops
n  Primary focus of existing tools

n Memory Allocation
n  Most tools do not modify the original allocation
n  Complex interaction with space time

n Higher-level Optimizations
n  Detection/parallelization of reductions & scans
n  Simplifying Reductions (complexity reduction)
n  Equational Programming

3

AlphaZ

n  Tool for Exploration
n  Provides a collection of analyses,

transformations, and code generators
n  Unique Features

n  Memory Allocation
n  Reductions

n Can be used as a push-button system (e.g.,
Parallelization à la PLuTo is possible) but not
our current focus
n  [caveat: a push button MPI code generator is

now available]
4

Two Examples

n  adi.c from PolyBench
n  Re-considering memory allocation allows the

program to be fully tiled
n  Outperforms PLuTo that only tiles inner loops

n  LU Decomposition (illustration)
n  Deriving an equational program from first

principles

5

Focus on Memory

n  Tiling requires more memory
n  e.g., Smith-Waterman dependence

6

Sequential Tiled

ADI-like Computation

n Updates 2D grid with outer time loop
n  PLuTo only tiles inner two dimensions

n  Due to a memory based dependence
n  With an extra scalar, all three dimensions can

be tiled

n  PolyBench implementation has a bug
n  It does not correctly implement ADI
n  All dimensions of a correct ADI program cannot

be tiled

7

adi.c: Original Allocation

for (t=0; t < tsteps; t++) {!
 for (i = 0; i < n; i++)!
 for (j = 0; j < n; j++)!
 X[i][j] = foo(X[i][j], X[i][j-1], …)!
 …!
 for (i = 0; i < n; i++)!
 for (j = n-1; j >= 1; j--)!
 X[i][j] = bar(X[i][j], X[i][j-1], …)!
 …!
}!
!

for (t=0; t < tsteps; t++) {!
 for (i = 0; i < n; i++)!
 for (j = 0; j < n; j++)!
 X[i][j] = foo(X[i][j], X[i][j-1], …)!
 …!
 for (i = 0; i < n; i++)!
 for (j = n-1; j >= 1; j--)!
 X[i][j] = bar(X[i][j], X[i][j-1], …)!
 …!
}!

n Not tilable because of the reverse loop
n  Memory based dependence: (i,j -> i,j+1)�
n  Requires all dependences to be non-negative

8

adi.c: Original Allocation

S1 X[i]!

S2 X[i]!

!
!
 for (j = 0; j < n; j++)!
S1: X[i][j] = foo(X[i][j], X[i][j-1], …)!
 …!
!
 for (j = n-1; j >= 1; j--)!
S2: X[i][j] = bar(X[i][j], X[i][j-1], …)!
 …!

9

n Once the two loops are fused:
n  Value of X only needs to be preserved for one

iteration of j
n  We don’t need a full array X’, just a scalar

adi.c: With Extra Memory

X[i]!

X’[i]!

!
!
 for (j = 0; j < n; j++)!
S1: X[i][j] = foo(X[i][j], X[i][j-1], …)!
 …!
!
 for (j = 1; j < n; j++)!
S2: X’[i][j] = bar(X[i][j], X[i][j-1], …)!
 …!

10

n  PLuTo does not scale because the outer loop is
not tiled

adi.c: Performance

Speedup of Optimized Code on Xeon

Number of Threads (Cores)

Sp
ee

d
up

 c
om

pa
re

d
to

 o
rig

in
al

 c
od

e

AlphaZ
PLuTo

0 1 2 4 8

0
1

2
4

8
Speedup of Optimized Code on Cray XT6m

Number of Threads (Cores)
Sp

ee
d

up
 c

om
pa

re
d

to
 o

rig
in

al
 c

od
e

AlphaZ
PLuTo

0 4 8 12 16 20 24

0
4

8
12

16
20

24

11

Moral

n War is too serious a matter
to entrust to military men.
n  Georges Clemenceau, early

20th century French PM

12

n Memory is too serious to entrust to
programmers

Equational Programming: E=mc2

13

LU Decomposition (derivation)

14

Ai, j = Li,kUk, j
k=1

n

!Ai, j = Li,kUk, j
k=1

min(i, j)

!Ai, j =
i ! j Li,kUk, j

k=1

i

"

i > j Li,kUk, j
k=1

j

"

#

$

%
%

&

%
%

Ai, j =
i ! j Ui, j + Li,kUk, j

k=1

i"1

#

i > j Li, jU j, j + Li,kUk, j
k=1

j"1

#

$

%

&
&

'

&
&

LU Decomposition (derivation)

15

Ui, j = Ai, j ! Li,kUk, j
k=1

i!1

"

Li, j = Ai, j ! Li,kUk, j
k=1

j!1

"
#

$
%

&

'
(/Uj, j

This is the Alpha program

affine LUD {N|1<N}!
input !
 float A {i,j | 0<(i,j)<=N}!
output!
 float L {i,j | 0<j<i<=N}!
 float U {i,j | 0<i<=j<=N}!
let!
 L[i,j] = A[i,j] - reduce(+, [k] L[i,k]*U[k,j])!
 U[i,j] = (A[i,j] - reduce(+, [k] L[i,k]*U[k,j]))/U[j,j]!
}!

16

AlphaZ System Overview

n  Target Mapping:
n  Specifies schedule,

memory allocation, etc.

17

C Alpha

Polyhedral
Representation

Target
Mapping

Analyses

Transformations

Code Gen

C+OpenMP

C+CUDA

C+MPI

Human-in-the-Loop

n Automatic parallelization—“holy grail” goal
n  Current automatic tools are restrictive

n  A strategy that works well is “hard-coded”
n  difficult to pass domain specific knowledge

n Human-in-the-Loop
n  Provide full control to the user

n  Help finding new “good” strategies
n  Guide the transformation with domain specific

knowledge

18

Conclusions

n  There are more strategies worth exploring
n  some may currently be difficult to automate

n  Two examples
n  adi.c: memory
n  Deriving LU decopostition (first principles)

n AlphaZ: Tool for trying out new ideas: see
n  https://www.cs.colostate.edu/AlphaZ/wiki
n  http://www.cs.colostate.edu/TechReports�

n  12-101 [AlphaZ details] & others

19

Acknowledgements

n AlphaZ Developers/Users
n  Members of MÉLANGE at CSU
n  Members of CAIRN at IRISA, Rennes
n  Dave Wonnacott and students, Haverford

University

20

Key: Simplifying Reductions

n  Simplifying Reductions [POPL 2006]
n  Finds “hidden scans” in reductions
n  Rare case: compiler can reduce complexity

n Main idea:

n  becomes

21

X[i]= A[i]
k=0

i

!

!

X[i] =
i = 0 : A[i]

i > 0 : X[i "1]+A[i]

$
%

O(n2)

O(n)

