Colorado State University

AlphaZ & the
Polyhedral Equational Model

Tomofumi Yuki, Sanjay Rajopadhye

Polyhedral Compilation

The Polyhedral Model

m Established approach for automatic
parallelization

m Based on mathematical formalism

Many tools and compilers:

PIPS, PLuTo, MMAIpha, Par4All, RStream, XLF/
XLC GRAPHITE (gcc), Polly (LLVM), ...

and AlphaZ

Colorado State University

Design Space (a subset)

Space-Time + Tiling: schedule + parallel loops
m Primary focus of existing tools

Memory Allocation
® Most tools do not modify the original allocation
m Complex interaction with space time

Higher-level Optimizations

m Detection/parallelization of reductions & scans
m Simplifying Reductions (complexity reduction)
m Equational Programming

Colorado State University -

AlphaZ

Tool for Exploration

m Provides a collection of analyses,
transformations, and code generators
m Unique Features
Memory Allocation
Reductions

Can be used as a push-button system (e.g.,
Parallelization a la PLuTo is possible) but not
our current focus

m [caveat: a push button MPI code generator is

now available] Colorado State University 4

Two Examples

adi.c from PolyBench

m Re-considering memory allocation allows the
program to be fully tiled

m Outperforms PLuTo that only tiles inner loops

LU Decomposition (illustration)

m Deriving an equational program from first
principles

Colorado State University -

Focus on Memory

Tiling requires more memory
e.g., Smith-Waterman dependence 1

Sequential Tiled
A A
00000 §§ 000000 0Q0OQE@
Q0000 00000000
Q0000 200000000
00000 000000 Q0OQ®@
Q0000 000000
Q0000 Q000000
Q0000 000000
0 0@ Q000
Q000 Q000
000 000
Q000 Q0 0@
Q000 Q000
> -

Colorado State University .

ADI-like Computation

Updates 2D grid with outer time loop

PLuTo only tiles inner two dimensions

m Due to a memory based dependence

m With an extra scalar, all three dimensions can

be tiled
PolyBench implementation has a bug

m |t does not correctly implement ADI

m All dimensions of a correct ADI program cannot
be tiled

Colorado State University -

adi.c: Original Allocation

for (t=0; t < tsteps; t++) {
for (1 = 0; i < n; i++)
for (j = 0; j < n; jt++)
X[i]1[3] foo(X[1][Jj], X[i][]j-1]1, ..)

;or (1 =0; i < n; i++)
for (j = n-1; j >=1; j--)
X[i]l[3] = bar(X[i]1[j1, X[i]1[]j-11, ..)

}
Not tilable because of the reverse loop
m Memory based dependence: (i,j -> i,j+1)

m Requires all dependences to be non-negative

Colorado State University .

adi.c: Original Allocation

for (j = 0; j < n; j++)
Sl: X[i][]j] = foo(X[i]l[j1, X[i]l[Jj-11, ..)

for (j = n-1; j >= 1; j--)
S$2: X[i]1[j] = bar(X[i]l[]j], X[i][3-11, -.)

S1 X[1i]

s2 x1i1 |l

Colorado State University .

adi.c: With Extra Memory

Once the two loops are fused:

m Vatee of ¥ mnly<needstb be preserved for one
Sl’“i.terati’(‘)[n”df”j' foo(X[11[31, X[il[j-11,)

m We don’t need a full array X', just a scalar
for (j = 1; j < n; j++)

S2: X'[1]1[]J] = bar(X[i]1[]J], X[1i]1[]-11, ..)

Y¥Y¥¥Y¥YY YY)
X[1]
X'[1]

Colorado State University

adi.c: Performance

Speedup of Optimized Code on Xeon

Speedup of Optimized Code on Cray XT6m

% 0 % N

© —8— Alphaz ° ~ l-=— Alphaz

_S --o-- PLuTo £ g {9 PLuTo

2 2

o o)

S S e

kS B o

s ¥ 3 -

o o

5 E o

(&) (]

a Al o

-} 35 <

© T ©

(0] (0]

2 S o

(% © | | | ~ & T 1 | | | | I
0o 1 2 4 8 0O 4 8 12 16 20 24

Number of Threads (Cores) Number of Threads (Cores)

PLuTo does not scale because the outer loop is
not tiled

Colorado State University .

Moral

War Is too serious a matter
to entrust to military men.

m Georges Clemenceau, early
20" century French PM

Memory Is too serious to entrust to
programmers

Colorado State University ..

Equational Programming: E=mc?

Colorado State University -

LU Decomposition (derivation)

i i~1
I<7 ELU LU, .
.n(i,j)J ik L ik k.

zlel]klj;l] j-1
> EJU, Gt JE LUy,
k=1 k=1

Colorado State University .

LU Decomposition (derivation)

i—1
Ul] = Al] o ELi,kUk,j
k=1
[S \
L = \Al., = ELi,kUk,j) /U,
k=1

Colorado State University -

This is the Alpha program

affine LUD {N|1<N}

input

float A {i,]

output
float L
float U

let
L[i,]]
Ui, Jjl

{1,3
{i,3

0<(i,])<=N}

0<j<i<=N}
0<i<=j<=N}

A[1,]J] - reduce(+, [k] L[i,k]*U[k,]])
(A[i,J] - reduce(+, [k] L[i,k]*Ulk,J]1))/U[J,]]

Colorado State University .

AlphaZ System Overview

Target Mapping:
@_ L m Specifies schedule,
i memory allocation, etc.

C+OpenMP

C+CUDA
V4
K/
l’
e © -
oe BEl C-+MPI

Colorado State University

Transformations

Analyses

Human-in-the-Loop

Automatic parallelization—"holy grail” goal
m Current automatic tools are restrictive
A strategy that works well is “hard-coded”
difficult to pass domain specific knowledge
Human-in-the-Loop
m Provide full control to the user
Help finding new “good” strategies

Guide the transformation with domain specific
knowledge

Colorado State University -

Conclusions

There are more strategies worth exploring

m some may currently be difficult to automate
Two examples

m adi.c: memory

m Deriving LU decopostition (first principles)
AlphaZ: Tool for trying out new ideas: see

m https://www.cs.colostate.edu/Alphaz/wiki

m http://www.cs.colostate.edu/TechReports
12-101 [AlphaZ details] & others

Colorado State University -

Acknowledgements

AlphaZ Developers/Users
= Members of MELANGE at CSU

m Members of CAIRN at IRISA, Rennes

m Dave Wonnacott and students, Haverford
University

Colorado State University -

Key: Simplifying Reductions

Simplifying Reductions [POPL 2006]

m Finds “hidden

scans” in reductions

m Rare case: compiler can reduce complexity

Main idea:

m becomes

Xli] =+

X[i]=") Ali] o)

1 =0: Ali]

r

i>0: X[-1]+A[l] o)

Colorado State University .

