Directive-based Programming Models for
Scientific Applications - A Comparison

Rengan Xu, Sunita Chandrasekaran,
Barbara Chapman, Christoph F. Eick

WOLFHPC'12 in conjunction with SC12

November 16, 2012

Outline

Motivation

Related Work

Overview of Directive-based Models
Experiments and Results

Conclusion and Future Work

HOUSTON

Motivation

e GPUs have high compute capability in HPC, but programming
these devices is a challenge

e Low-level models: CUDA, OpenCL

e Language extension
e Time-consuming to write and error-prone

e High-level models: PGI, HMPP, OpenACC
e High level directives: simplify GPU programming
e Hiding low-level details from the programmer - main goals of
abstraction
e Reduce learning curve and development time

HOUSTON

3/19

Related Work

e hiCUDA, Mint: automatically translate C code to CUDA
code

e CUDA-lite: apply global memory optimization via
annotations, but it needs separate CUDA kernel functions

e OpenMPC, OMPCUDA: source-to-source translation of
OpenMP program to CUDA program

HOUSTON

4/19

Overview of Directive-based Models

HMPP: Hybrid Multicore Parallel Programming workbench
e Two main directives: codelet and callsite

e Codelet: the function that will be offloaded to accelerator
o Callsite: the place to call the codelet

Region directive is the combination of codelet and callsite

Different codelets can be grouped together to share data

A set of directives to enhance code generation

Support multi-GPUs programming

HOUSTON

Overview of directive-based models

PGI Accelerator Programming Model
o A set of directives

e Compute directive specifies a portion of the program to be
offloaded to accelerator

e Loop mapping directive maps loop parallelism in a
fine-grained manner. Two level parallelism: parallel and vector

e Data directive is used to optimize data transfer

e Runtime library routines

e Environment variables

HOUSTON

6/19

Overview of directive-based models

OpenACC

e Establishes a standard for directive-based accelerator
programming

Contains directives, runtime library routines and environment
variables

Similar to PGI accelerator programming model

Two types of compute directives: " parallel” and " kernels”

Three levels parallelism: gang, worker and vector

HOUSTON

7/19

Experimental Setup

e Evaluate HMPP, PGI and OpenACC for three scientific

applications
e GCC 4.4.7 for all sequential programs as well as for HMPP
host compiler, -O3 optimization flag

Table: Specification of experiment machine

[tem Description

Architecture Intel Xeon x86_64

Cores 16

CPU frequency 2.27GHz

Main memory 32GB

GPU Model Tesla C2075

GPU cores 448

GPU clock rate 1.15GHz

GPU global & constant memory | 5375MB & 64K HOUSTON
Shared memory per block 48KB

2D Heat Conduction

e Formula:

oT 2T 0?T
E:Q(W—i—a—yz)
DEEEE
IEEEE []
EEEEE EEE
EEEEE
EEEEE []

2D Heat Conduction

e The kernel that does temperature updating is executed on
GPU
e Optimizations
e Loop collapse in kernel region

e Data transfer optimization: make pointer swapping operation
occur only in GPU

e Mirror directive in HMPP
e Deviceptr in PGl and OpenACC

e Disable FMA to maintain same computation strategy in
different implementations

HOUSTON

10/19

Speedup

1000

100

10

0.1

2D Heat Conduction

T T
HMPP (S33N
PGl 7772

OpenACC_Comp A C—1

OpenACC_Comp_B w7s~zs ~_
E CUDA : :
N7
V,
Y /]
E V
V/ Y,
v/
: Y,
7] v/ Y /)
L % v
7 S
V/
% 7 %
V/
512 1024 2048 4096

Dimension of square grid

Figure: 2D Heat Conduction Speedup

11/19

FDK Algorithm
FDK: Feldkamp-Davis-Kress
e CT is widely used in medical industry to produce tomographic
image of specific area of human body
e FDK is one of the popular 3D-object reconstruction
techniques used in CT

o Complexity: O(N*), where N is the number of detector pixels
in one dimension
e Implementation:
o Code is restructured so that the outmost three loops are
tightly nested and collapsed
e The innermost loop is sequentially executed by every thread
e Data transfer optimization to remove unnecessary data transfer

e Data: 3D Shepp-Logan head phantom data
e Input: 300 detected images and the resolution of each image
is 200*200
e Output: 200*¥200*200 reconstructed cube

12 /19

FDK Algorithm

40 [

Speedup
w
[ee]
T

Accelerator programming models

Figure: FDK Speedup with Different Models

HOUSTON

13/19

CLEVER Algorithm

CLEVER: CLustEring using representatiVEs and Randomized hill
climing
e A prototype-based clustering algorithm that seeks for clusters
maximizing a plug-in fitness function
e It constructs clusters by seeking an optimal set of
representatives one for each clusters; clusters are then created

by assigning objects in the dataset to the closet cluster
representatives.

HOUSTON

14 /19

CLEVER Algorithm

Implementation:
e Code is converted from C++ to C for better compilation

e Profiling result shows the most time consuming part is the
part that assigns objects to the closet representative which
computes and compares a lot of distances

e The user-defined structure of dataset and the pointer
operation are too complicated to be parsed by compiler. So
the code needs to be restructured.

e The whole dataset is read only, so it will stay in GPU global
memory during execution

HOUSTON

15/19

CLEVER Algorithm

Table: L100vals Dataset Characteristics

Item Description

Data size 335,900 objects
Attributes <x,y, class label>
Distance Function Euclidean Distance

Plug-in Fitness Function | Purity:

Percentage of objects belonging
to the majority class of

the cluster

Table: Earthquake Dataset Characteristics

Item Description

Data size 330,561 objects

Attributes <latitude, longitude, depth >
Distance Function Euclidean Distance

Plug-in Fitness Function | High Variance:
Measures how far the objects in

in the cluster are spread
out with respect to earthquake depth HOUSTON

16 /19

Speedup

35

30 -

25

20

15

10

Figure: CLEVER Speedup with Different Models

CLEVER Algorithm

T
L100vals £
Earthquake 7777

N

NN

INNN

\

HMPP

PGI

OpenACC_Comp_B

Accelerator programming models

CUDA

HOUSTON

17 /19

Summary

Table: Time(in sec) consumed by serial, CUDA, HMPP, PGI and
OpenACC versions of the code, only for most time-consuming dataset

Applications | Serial | CUDA | HMPP PGI OpenACC
A B
2D Heat 8922.81 | 59.13 | 60.78 | 72.74 | 75.65 | 84.76
FDK 363.50 8.99 10.40 9.71 9.39 | 10.04
CLEVER 116.15 | 23.04 | 25.08 | 101.51 - 73.31

Conclusion and Future Work

e Conclusions:

e High-level models provide a high-level abstraction by hiding
most of the low-level complexities of the GPU platform

e The performance is highly dependent on the application
characteristics.

e Directive-based models can achieve around 80% and
sometimes more than 90% performance of CUDA code

e OpenACC is still being constructed and may require fine tuning

e Future Work:

e Multi-GPUs support in OpenACC
e Add more loop optimization clauses in OpenACC

HOUSTON

19/19

