
Directive-based Programming Models for
Scientific Applications - A Comparison

Rengan Xu, Sunita Chandrasekaran,
Barbara Chapman, Christoph F. Eick

WOLFHPC’12 in conjunction with SC12

November 16, 2012

1 / 19



Outline

• Motivation

• Related Work

• Overview of Directive-based Models

• Experiments and Results

• Conclusion and Future Work

2 / 19



Motivation

• GPUs have high compute capability in HPC, but programming
these devices is a challenge

• Low-level models: CUDA, OpenCL
• Language extension
• Time-consuming to write and error-prone

• High-level models: PGI, HMPP, OpenACC
• High level directives: simplify GPU programming
• Hiding low-level details from the programmer - main goals of

abstraction
• Reduce learning curve and development time

3 / 19



Related Work

• hiCUDA, Mint: automatically translate C code to CUDA
code

• CUDA-lite: apply global memory optimization via
annotations, but it needs separate CUDA kernel functions

• OpenMPC, OMPCUDA: source-to-source translation of
OpenMP program to CUDA program

4 / 19



Overview of Directive-based Models

HMPP: Hybrid Multicore Parallel Programming workbench

• Two main directives: codelet and callsite
• Codelet: the function that will be offloaded to accelerator
• Callsite: the place to call the codelet

• Region directive is the combination of codelet and callsite

• Different codelets can be grouped together to share data

• A set of directives to enhance code generation

• Support multi-GPUs programming

5 / 19



Overview of directive-based models

PGI Accelerator Programming Model

• A set of directives
• Compute directive specifies a portion of the program to be

offloaded to accelerator
• Loop mapping directive maps loop parallelism in a

fine-grained manner. Two level parallelism: parallel and vector
• Data directive is used to optimize data transfer

• Runtime library routines

• Environment variables

6 / 19



Overview of directive-based models

OpenACC

• Establishes a standard for directive-based accelerator
programming

• Contains directives, runtime library routines and environment
variables

• Similar to PGI accelerator programming model

• Two types of compute directives: ”parallel” and ”kernels”

• Three levels parallelism: gang, worker and vector

7 / 19



Experimental Setup
• Evaluate HMPP, PGI and OpenACC for three scientific

applications
• GCC 4.4.7 for all sequential programs as well as for HMPP

host compiler, -O3 optimization flag

Table: Specification of experiment machine

Item Description

Architecture Intel Xeon x86 64
Cores 16
CPU frequency 2.27GHz
Main memory 32GB
GPU Model Tesla C2075
GPU cores 448
GPU clock rate 1.15GHz
GPU global & constant memory 5375MB & 64K
Shared memory per block 48KB

8 / 19



2D Heat Conduction

• Formula:
∂T

∂t
= α(

∂2T

∂x2
+
∂2T

∂y2
)

9 / 19



2D Heat Conduction

• The kernel that does temperature updating is executed on
GPU

• Optimizations
• Loop collapse in kernel region

• Data transfer optimization: make pointer swapping operation
occur only in GPU

• Mirror directive in HMPP

• Deviceptr in PGI and OpenACC

• Disable FMA to maintain same computation strategy in
different implementations

10 / 19



2D Heat Conduction

 0.1

 1

 10

 100

 1000

256 512 1024 2048 4096

S
p
e
e
d
u
p

Dimension of square grid

HMPP
PGI

OpenACC_Comp_A
OpenACC_Comp_B

CUDA

Figure: 2D Heat Conduction Speedup

11 / 19



FDK Algorithm
FDK: Feldkamp-Davis-Kress

• CT is widely used in medical industry to produce tomographic
image of specific area of human body

• FDK is one of the popular 3D-object reconstruction
techniques used in CT

• Complexity: O(N4), where N is the number of detector pixels
in one dimension

• Implementation:
• Code is restructured so that the outmost three loops are

tightly nested and collapsed
• The innermost loop is sequentially executed by every thread
• Data transfer optimization to remove unnecessary data transfer

• Data: 3D Shepp-Logan head phantom data

• Input: 300 detected images and the resolution of each image
is 200*200

• Output: 200*200*200 reconstructed cube
12 / 19



FDK Algorithm

 36

 38

 40

H
M
PP

PG
I

O
penACC_Com

p_A

O
penACC_Com

p_B

CUD
A

S
p

e
e
d

u
p

Accelerator programming models

Figure: FDK Speedup with Different Models

13 / 19



CLEVER Algorithm

CLEVER: CLustEring using representatiVEs and Randomized hill
climing

• A prototype-based clustering algorithm that seeks for clusters
maximizing a plug-in fitness function

• It constructs clusters by seeking an optimal set of
representatives one for each clusters; clusters are then created
by assigning objects in the dataset to the closet cluster
representatives.

14 / 19



CLEVER Algorithm

Implementation:

• Code is converted from C++ to C for better compilation

• Profiling result shows the most time consuming part is the
part that assigns objects to the closet representative which
computes and compares a lot of distances

• The user-defined structure of dataset and the pointer
operation are too complicated to be parsed by compiler. So
the code needs to be restructured.

• The whole dataset is read only, so it will stay in GPU global
memory during execution

15 / 19



CLEVER Algorithm

Table: L10Ovals Dataset Characteristics

Item Description

Data size 335,900 objects
Attributes <x, y, class label>
Distance Function Euclidean Distance
Plug-in Fitness Function Purity:

Percentage of objects belonging
to the majority class of
the cluster

Table: Earthquake Dataset Characteristics

Item Description

Data size 330,561 objects
Attributes <latitude, longitude, depth >
Distance Function Euclidean Distance
Plug-in Fitness Function High Variance:

Measures how far the objects in
in the cluster are spread
out with respect to earthquake depth

16 / 19



CLEVER Algorithm

 0

 5

 10

 15

 20

 25

 30

 35

HMPP PGI OpenACC_Comp_B CUDA

S
p
e
e
d
u
p

Accelerator programming models

L10Ovals
Earthquake

Figure: CLEVER Speedup with Different Models

17 / 19



Summary

Table: Time(in sec) consumed by serial, CUDA, HMPP, PGI and
OpenACC versions of the code, only for most time-consuming dataset

Applications Serial CUDA HMPP PGI OpenACC
A B

2D Heat 8922.81 59.13 60.78 72.74 75.65 84.76
FDK 363.50 8.99 10.40 9.71 9.39 10.04
CLEVER 116.15 23.04 25.08 101.51 - 73.31

18 / 19



Conclusion and Future Work

• Conclusions:
• High-level models provide a high-level abstraction by hiding

most of the low-level complexities of the GPU platform
• The performance is highly dependent on the application

characteristics.
• Directive-based models can achieve around 80% and

sometimes more than 90% performance of CUDA code
• OpenACC is still being constructed and may require fine tuning

• Future Work:
• Multi-GPUs support in OpenACC
• Add more loop optimization clauses in OpenACC

19 / 19


