
Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

ICON DSL: A Domain-Specific Language for

climate modeling

Raul Torres, Leonidas Linardakis, Julian Kunkel, Thomas Ludwig

WOLFHPC 2013

18-11-2013

1 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

1 Introduction

2 ICON Domain-Specific Language

3 Design of the translation infrastructure

4 Evaluation
Power6 architecture
Intel Westmere architecture

5 On going and Future work

6 Conclusion

2 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Introduction

3 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Climate simulation models

Global climate simulations are one of the “Grand Challenges” of
computing

Composed by several hundreds of thousands of code lines in a
general-purpose language

Code complexity increases to simulate additional physical
processes

Modelers have to equilibrate efficiency and portability (not an
easy task)

Debugging and maintenance are difficult

Common high level approaches are the usage of backend
libraries or template-based operators, both being awkward
expressions of mathematical operators

4 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

ICON Climate Model

An initiative from Max Planck Institute for Meteorology and The
German Weather Service
(http://www.mpimet.mpg.de/en/science/models/icon.html)

Its goal is to integrate circulation models for the atmosphere
and the ocean in a unified framework

It is being written in Fortran for several years

It exhibits several explicit machine-dependent optimizations,
i.e:

Nested Do loops were written originally to exploit vectorization on
a vector machine
But for cache-based architectures, the order of the loops should
be changed
The change was achieved by using preprocessing directives
What about the index order? and the memory layout?

5 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Our proposal

We aim to provide an abstraction framework for the ICON model in
the form of a Domain-Specific Language (DSL)

It is an extension of Fortran

New keywords hide memory dimension and layout of variables
with specific model semantics

A source-to-Source translator converts DSL code into fully
compatible Fortran code, where the computation details are
expressed

It uses an Intermediate Representation (IR) suitable for
simplification and high level optimizations

It has the ability to express climate mathematical operators in
an easy and natural way.

And the capability to adapt the implementation of these
operators to different architectures and parallel levels

The current implementation is preliminary, but demonstrates a
great potential for adaptivity and user-friendliness.

6 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

ICON Domain-Specific Language

7 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Keyword specification

Keywords of the DSL and their corresponding behavior are defined
in a separated platform-specific file. Each new keyword is defined
as 3-field tuple separated by spaces, as follows:

<keyword_name> <platform_specific_settings> <keyword_type>

keyword_name : new keyword

platform_specific_settings : keyword feature

keyword_type : where in Fortran

Example:

Platform A: BASIC_ARRAY 1,0 declare

Platform B: BASIC_ARRAY 0,1 declare

8 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Array declarations

Configuration:

ON_CELLS {1,2,0,3} declare

Usage of the keyword:

REAL, ON_CELLS, POINTER :: my_variable
my_variable(i , j , k, l) = 2

Generated Fortran code:

REAL, DIMENSION(:,:,:,:), POINTER :: my_variable
my_variable(j , k , i, l) = 2

9 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Array initialization

Configuration:

SHAPE_4D {1,2,0,3} initialize

Usage of the keyword:

my_variable = SHAPE_4D(a, b, c, d)

Generated Fortran code:

my_variable = (/ b , c , a, d /)

10 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Optimizers

Configuration:

INLINE inline optimize

Usage of the keyword:

INLINE SUBROUTINE example_subroutine(...)

INLINE CALL example_subroutine(...)

11 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Design of the translation infrastructure

12 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

First approach: ANTLR Parser Generator

ANTLR has capabilities for designing of parsers for grammars,
specially for DSLs. However, we encountered several burden that
made development harder.

The symbol table must be built and managed by the
programmer itself

AST usage is cumbersome

Recovery of ignored tokens might be difficult

The implementation of the inlining mechanism required the
support of an external text replacement tool

We recommend ANTLR for:

Design of simple grammars and translators

Implementation of parsers

Construction of translators between different languages

13 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Rose Compiler (http://rosecompiler.org/)

Source-to-source translation infrastructure developed at
Lawrence Livermore National Laboratory

Open source project

Targets expert and non-expert audience

Works as a library and is written in C++ mostly

Supports C, C++, Fortran and UPC

Front-end that converts a given language to an AST
Back-end that generates Fortran code

The AST preserves all the information of the code

Comes with some generic analyses, transformations and
optimizations at the AST level

Loop optimization
Inlining
Outlining
Auto-parallelization

14 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Rose overview

Taken from: Semantic-Aware Automatic Parallelization of Modern
Applications Using High-Level Abstractions. Liao et al.

15 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Issues with Rose

Rose Compiler provides no interface to design a language
extension

A few correctly parsed Fortran statements have no
corresponding action to build nodes on the AST

Pragma annotations of the kind of Open MP are given nodes in
C or C++ codes, but not in Fortran codes

Same for Inlining mechanism

Rose creates a sort of header files for Fortran modules, but they
do not store the semantics of the our extension

16 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Translation infrastructure

The translation of extended Fortran code into native Fortran works
as follows:

1 A machine-dependent configuration file is parsed, where the
particular details of the platform are specified.

2 The DSL enriched Fortran code is parsed, the symbol table and
the intermediate representation, called Abstract Syntax Tree
(AST), are constructed, without losing any information about
the source code.

3 Before unparsing, the tree is modified to transform the provided
abstractions according to those particularities of the platform.

4 As a final step, native Fortran code is generated by traversing
the modified tree.

17 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Figure: Translation infrastructure

18 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Evaluation

19 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Considerations

Original code was optimized initially for a vector machine (NEC)

A memory bandwidth bottleneck on current cache-based
machines was detected

We utilized an optimized memory layout for IBM Power6 and
Intel Westmere architectures

It was determined manually to make a better use of the
available cache levels

The DSL abstractions were applied on the ICON testbed code

A synthetic test data was used with a configuration of 20480
cells x 78 levels

The DSL keyword for inlining was not used

Generated Fortran code was compiled and executed on the
mentioned architectures

20 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Power6 architecture

IBM Power6

With the appropriate machine-specific configuration the efficiency
of central data structures of ICON could be improved, obtaining up
to 17% of speedup

Cores 32 64 128 192

NO_DSL iterations/sec 635479 1426037 2798150 3601217

DSL iterations/sec 719527 1664402 3096318 3993947

Speedup 13% 17% 11% 11%

Table: Achieved iterations per cells per sec for different number of cores on
an IBM Power6 architecture

21 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Power6 architecture

Figure: Performance comparison between code with and without DSL
keywords for IBM Power 6 architecture

22 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Intel Westmere architecture

Intel Westmere

For the case of Westmere, up to 16% of speedup was obtained

Cores 2 4 8 12

NO_DSL iterations/sec 41914 65937 61292 55209

DSL iterations/sec 48574 75521 68908 60927

Speedup 16% 14% 12% 10%

Table: Achieved iterations per cells per sec for different number of cores on
an Intel Westmere architecture

23 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Intel Westmere architecture

Figure: Performance comparison between code with and without DSL
keywords on a Intel Westmere architecture

24 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Intel Westmere architecture

Performance Counter NO DSL DSL Improvement

Retired instructions 1.68322e+12 1.5579e+12 7% reduction

Cycles per instruction 0.546809 0.514415 6% reduction

L1 cache misses rate 0.0170913 0.00532005 68% reduction

L2 cache misses rate 0.00518718 0.00410406 20% reduction

Memory bandwidth (MB/sec) 1221.44 1422.61 14% increase

Table: Performance counters on a Intel Westmere architecture

25 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Intel Westmere architecture

On going and Future work

26 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

On going work: Loop abstraction

type(t_int_state), intent(in) :: ptr_int
real(wp), EDGES_3D, intent(in) :: vec_e
intent(wp), CELLS_3D, intent(inout) :: div_vec_c
SUBSET, CELLS_3D, intent(in) :: cells_subset
ELEMENT, CELLS_3D :: cell
ELEMENT, EDGES_OF_CELL :: edge

FOR cell in cells_subset DO
div_vec_c(cell) = 0.0_wp
FOR edge in cell%edges DO
div_vec_c(cell) = div_vec_c(cell) + &
& vec_e(edge) * ptr_int%geofac_div(edge)

END FOR
END FOR

27 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

type(t_int_state), type(in) :: ptr_int
real(wp), intent(in) :: vec_e(:,:,:)
real(wp), intent(inout) :: div_vec_c(:,:,:)
type(t_subset_range_3D) :: cells_subset
type(t_grid_cells), pointer :: cell_cells
integer :: cell_idx_start, cell_idx_end, ...
integer :: edge_cell_idx, edge_idx, ...

cell_cells => cells_subset%cells

DO cell_block = cells_subset%start_block, &
& cells_subset%end_block
...
DO cell_idx = cell_idx_start, cell_idx_end
...
DO cell_level = cells_subset%start_level, &
& cells_subset%end_level
...
div_vec_c(cell_level, cell_idx, cell_block) = 0.0_wp
...
DO edge_cell_idx = 1, cell_cells%num_edges(cell_idx, &
& cell_block)
...
div_vec_c(cell_level, cell_idx, cell_block) = ...
...

ENDDO
ENDDO

ENDDO
ENDDO 28 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Future work

Opportunities for automatic parallelization

Emerging architectures based on accelerators or
heterogeneous hardware can be targeted

Different levels of parallelism (blocks, thread groups, threads,
vectors, etc.) can be exploited

Usage of different memory layouts on a single architecture

Outlining can be used to build kernels

29 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Conclusion

30 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

ICON DSL as a Fortran extension:

It eases the modeling process for the climate expert

It allows code portability and facilitates performance
improvement

There is no need to learn a new language

Array declarations and initializers can take advantage of
memory layout abstractions

Subroutine calls can be easily optimized by being inlined

Automatically generated code exhibited a significant improvement
on IBM Power6 and Intel Westmere architectures when the
appropriate set of index interchanges were expressed in the
configuration file of the DSL

31 / 32

Introduction ICON Domain-Specific Language Design of the translation infrastructure Evaluation On going and Future work Conclusion

Thanks!
Danke!
Gracias!

32 / 32

	Introduction
	ICON Domain-Specific Language
	Design of the translation infrastructure
	Evaluation
	Power6 architecture
	Intel Westmere architecture

	On going and Future work
	Conclusion

