
www.bsc.es

New Orleans, Louisiana, USA
November 17th, 2014

Alejandro Fernández, Vicenç Beltran* and Eduard Ayguadé
{afernand, vbeltran, eduard.ayguade}@bsc.es

DFL
A Data Flow Language to Develop High

Performance Computing DSLs

2

Motivation

  Domain-Specific Languages (DSLs)
–  Hide the complexity of HPC systems
–  Boost programmer’s productivity

  DSL drawbacks
–  High development cost due to implementation complexity
–  Efficiency and high scalability are a must

  Our proposal
–  Provide a common DSL development infrastructure
–  Amortize its cost by implementing many HPC DSLs with it

WOLFHPC, New Orleans, LA, November 17th, 2014

3

Underlying Technologies
  HPC Execution Framework

–  OmpSs programming model
•  High-level, task-based, parallel

programming model supporting SMPs,
heterogeneous systems and clusters

•  Coupled with its Nanos++ runtime system,
is ideal as target language for the DSL
framework

  Compilation Framework

–  Scala
•  Statically typed, multi–paradigm language

with type inference
•  Supports both functional and object-

oriented styles
–  Lightweight Modular Staging (LMS)

•  A technique for embedding DSLs as Scala
libraries

•  Enables domain-specific optimizations and
code generation

WOLFHPC, New Orleans, LA, November 17th, 2014

4

DFL

  Data-Flow Language (DFL)
–  A DSL meant to be used as target language for HPC DSLs

implemented with Scala and LMS
–  Wraps up OmpSs features

Main Features
–  Tasks and Kernels
–  Buffers & Distributed buffers
–  High-level parallel, distributed operations

•  Map
•  Reduce
•  Divide & Conquer

WOLFHPC, New Orleans, LA, November 17th, 2014

5

DFL – Data flow design features
  Buffers

–  Generic data containers
// Allocate space for 4096 floating point values
val buf1 = Buffer.fill[Float](4096)
// Buffer of 4 integer values
val buf2 = Buffer(5, 8, 21, -3)

  Distributed Buffers
–  Generic data containers for distributed environments
–  Provide high level operations

// 4096 Floats distributed among all nodes
val world = MPI_COMM()
val dbuf = DistBuffer.fill[Float](world, 4096)
dbuf map { f => sqrt(f) }
dbuf.rotateLeft
val result = dbuf allReduce +

WOLFHPC, New Orleans, LA, November 17th, 2014

6

DFL – Data flow design features

  Buffers
–  Generic data containers

// Allocate space for 4096 floating point values
val buf1 = Buffer.fill[Float](4096)
// Buffer of 4 integer values
val buf2 = Buffer(5, 8, 21, -3)

  Distributed Buffers
–  Generic data containers for distributed environments

// 4096 Floats distributed among all nodes
val world = MPI_COMM()
val dbuf = DistBuffer.fill[Float](world, 4096)

WOLFHPC, New Orleans, LA, November 17th, 2014

7

DFL – Tasks and Kernels
  Tasks

–  Computational function with annotated parameters
–  Parameters can be of any type

Task(A, B)(In, InOut) {
 B += A;
 }

  Kernels
–  Tasks (written in OpenCL C) for accelerators (GPUs, Intel’s Xeon Phi, etc)
–  Parameters can be primitive types or Buffers

 val kc = KernelContainer(“/path/to/kernels.cl”)
 // This retrieves the 3-parameter "add" kernel
 // from kc, namely myAdd
 val myAddKernel = Kernel(kc, "add")(In, In, Out)
 myAddKernel(A, B, C)

WOLFHPC, New Orleans, LA, November 17th, 2014

8

DFL – High Level Operations

  Map
–  Applied locally or at a distributed level, depending on buffer type

val b = Buffer.fill(4096*4096)
B map { _ => rand }

val db = DistBuffer.fill(world, 4096*4096) // Collective operation
db map { x => sqrt(x) } // Collective operation

  Reduce
–  Fold a buffer with a binary operator and accumulate the result

 val result = db.allReduce{ (x,y) => max(x/2, y+5) }

  Divide & Conquer pattern
–  Split a problem into smaller subproblems, solve them and combine the

solutions in a potentially distributed environment (see next slides)

WOLFHPC, New Orleans, LA, November 17th, 2014

9

DFL – Divide and Conquer

  Divide
–  A function that partitions the problem if its size is bigger than a certain

threshold (base case size)

 val divFun = { p =>
 if (p.size > BASE_CASE_SIZE) {
 val chunkSize = p.size / 2
 // setRange is a shallow copy with just range override
 val pleft = p.setRange(p.begin, p.begin+chunkSize)
 val pright = p.setRange(p.begin+chunkSize, p.end)
 List(pleft, pright)
 }
 else List(p)
 }

WOLFHPC, New Orleans, LA, November 17th, 2014

10

DFL – Divide and Conquer

  Solve
–  A function that solves a problem given its size

 val solveFun = { p =>
 sort(p.data, p.begin, p.end)
 }

WOLFHPC, New Orleans, LA, November 17th, 2014

11

DFL – Divide and Conquer

  Combine
–  A function that combines a list of solved problems into a whole solution

 val combineFun= { xl =>
 xl reduceLeft { (sorted, ls) => merge(sorted, ls) }
 }

WOLFHPC, New Orleans, LA, November 17th, 2014

12

DFL – Divide and Conquer

  Execution
–  Initialize a distributed problem, solve it with divide a conquer on each node,

combine the distributed solution

 val world = MPI_COMM()
 val data = new DistBuffer[Int](world, 4096)
 val tmp = new DistBuffer[Int](world, 4096)
 data map { _ => rand }
 data divConquer(divFun, solveFun, combineFun)
 (0 until world.size) foreach { _ =>
 // Pairwise exchange and function application
 data exchangeAndApply(tmp, merge)
 }
 show(data)

WOLFHPC, New Orleans, LA, November 17th, 2014

13

Conclusions & Future Work

  DFL is a DSL designed to exploit distributed and
heterogeneous HPC systems
–  Serves as the target language for other DSLs, enabling simple code

generators without sacrificing HPC performance
–  Leverages the LMS framework for the DSL compiler infrastructure and the

hybrid MPI/OmpSs programming model the DSL runtime systems

  Interoperability
–  DFL can enable DSL interoperation via a convenient infrastructure, which will

also enable reuse of different DSL implementations, not just the DFL
infrastructure

WOLFHPC, New Orleans, LA, November 17th, 2014

www.bsc.es

Thank you!
For further information please contact

pm@bsc.es

14

15

  CASE expertise on Partial Differential Equations and HPC
–  Alya Red

  Domain: Convection-Diffusion-Reaction equations
–  Well know domain (by the CASE people)
–  Several implementations already available in C and Fortran
–  First design decisions of the DSL

•  Level of abstraction
•  Types
•  Operators

CS / CASE collaboration

WOLFHPC, New Orleans, LA, November 17th, 2014

16

  Saiph: A domain specific language for solving PDEs
–  Simple and high level syntax

•  High level constructs that directly associate with domain knowledge
•  Efficient development/maintenance cycle

–  High performance computing for free (for the end user)
•  Ability to solve large complex problems with 20 lines
 of clean, simple code

  This is a program that runs on a GPU: 10.000 time steps in 7 seconds
 val c = Cartesian(12.5, 25.0, 37.5)
 val temp = Unknown(c)
 val cond = Dirichlet(lowXZ of c, temp, 400)
 val hv = Vector(0.5, 0.5, 0.5)
 val pre = PreProcess(nsteps = 10000, deltaT = 0.25, h = hv)(cond)
 solve(pre) equation (0.15 * lapla(temp) - dt(temp)) to "diffusion"

The result: A DSL for solving CDR equations

WOLFHPC, New Orleans, LA, November 17th, 2014

17

def KFun(xp: Float, yp: Float, zp: Float) = {
 if (zp > 18.75) 0.02
 else 0.15

}

val c = Cartesian(12.5, 25.0, 37.5)
val temp = Unknown(c)
val plane = Dirichlet(lowXZ of c, temp, 400)

val hv = Vector(0.5, 0.5, 0.5)
val pre = PreProcess(nsteps = 100000, deltaT = 0.125, h = hv)(plane)

val K = KFun _
val diffusion = K * lapla(temp) - dt(temp)

val post = snapshoot each 100 steps

solve(pre)(post) equation diffusion to "diffusion"

CDR: Example 1 – Pure diffusion phenomena

WOLFHPC, New Orleans, LA, November 17th, 2014

18

CDR: Example 1 – Pure diffusion phenomena

WOLFHPC, New Orleans, LA, November 17th, 2014

19

CDR: Example 1 – Pure diffusion phenomena

  Saiph generates
–  Two OpenCL kernels (tasks)
–  One I/O task
–  The initialization code + body of the application + OmpSs pragmas

  OmpSs runtime orchestrates the execution
–  Schedules task based on data dependencies
–  Manages data transfers between host and GPU

WOLFHPC, New Orleans, LA, November 17th, 2014

20

def hotCube(cx: Float, cy: Float, cz: Float, edgeSize: Float)
 (xp: Float, yp: Float, zp: Float) = {
 if (xp >= cx - edgeSize && xp <= cx + edgeSize &&
 yp >= cy - edgeSize && yp <= cy + edgeSize &&

 zp >= cz - edgeSize && zp <= cz + edgeSize) Some(10)
 else Some(5)

}
val c = Cartesian(25, 50, 75)
val temp = Unknown(c)
val cube = Source(hotCube(12.5, 25, 37.5, 6) _, temp)

val hv = Vector(1, 1, 1)
val pre = PreProcess(nsteps = 500, deltaT = 1, h = hv)(cube)(PeriodicHighZ)

val v = Vector(0, 0, 1)
val convection = dt(temp) + grad(temp) * v

solve(pre)(flush) equation convection to "convection"

CDR: Example 2 – Pure convection phenomena

Stabilization scheme done
internally by CDR

WOLFHPC, New Orleans, LA, November 17th, 2014

21

CDR: Example 2 – Pure convection phenomena

The numerical scheme do not introduce artificial diffusion due to the stabilization.
The cubic form is preserved

val v = Vector(0, 0, 1)
val convection = dt(temp) + grad(temp) * v

solve(pre)(flush) equation convection to "convection"

Stabilization scheme done
internally by Saiph (upwind)

WOLFHPC, New Orleans, LA, November 17th, 2014

22

  Complete code in backup slides

def CDef(x: Rep[Float], y: Rep[Float], z: Rep[Float]) = {

 if (x >= 300 && x <= 400 && y >= 300 && y <= 400) (1700*1700)
 else (2000*2000)

}
val c = Cartesian(500, 500, 9)
val pressure = Unknown(c)
val waveSource = PointSourceSource(250,250,5)(rickerWalet(20)_,pressure)

val hv = Vector(1, 1, 1)
val pre = PreProcess(nsteps = 50000, deltaT = 0.003333, h = hv)(waveSource)
val C = CDef _

val wavePropagation = C * lapla(pressure) – dt2(pressure)

val post = snapshoot each 10 steps
solve(pre)(post) equation wavePropagation to ”wave”

CDR:
Example 4 – Acoustic wave equation

WOLFHPC, New Orleans, LA, November 17th, 2014

23

CDR:
Example 4 – Acoustic wave equation

WOLFHPC, New Orleans, LA, November 17th, 2014

24

  Complete code in backup slides

val c = Cartesian(125, 250, 375)
val temp = Unknown(c)
val tori = Source(MyTori _, temp)

val hv = Vector(0.95, 0.95, 0.95)
val pre = PreProcess(nsteps = 10000, deltaT = 0.5, h = hv)()(tori)

val K = KVarFun _
val v = Vector(0.05, 0.05, 0)

val heat = K * lapla(temp) + grad(temp) * v - dt(temp)

val post = snapshoot each 200 steps

solve(pre)(post) equation heat to "toriHeat”

CDR:
Example 3 – Heat convection and diffusion using toroidal sources

WOLFHPC, New Orleans, LA, November 17th, 2014

25

CDR:
Example 3 – Heat convection and diffusion using toroidal sources

WOLFHPC, New Orleans, LA, November 17th, 2014

CDRs Embedded Compiler (LMS)

26

Scala Virtualized Compiler Diffusion.rsv

Underlying Technologies

Diffusion.class

Host-side
CodeGen

DFL Compiler
(LMS)

Diffusion.cpp

Diffusion.dfl

Front end
 - Compile the program
 with the LMS Library
 and the compiler
 implementation together

Middle end
 - 1st stage
 - Domain Specific Opt.
 - LMS IR generation

Back end
- 2nd stage
- DFL code + OpenCL
kernels

DiffusionEquation.rsveq

OmpSs

Accelerator-side
CodeGen

Equation Stencil
Compiler (LMS) DiffusionKernels.cl

WOLFHPC, New Orleans, LA, November 17th, 2014

