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Motivation 

  Domain-Specific Languages (DSLs)  
–  Hide the complexity of HPC systems 
–  Boost programmer’s productivity 

  DSL drawbacks 
–  High development cost due to implementation complexity 
–  Efficiency and high scalability are a must 

  Our proposal 
–  Provide a common DSL development infrastructure 
–  Amortize its cost by implementing many HPC DSLs with it 
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Underlying Technologies 
  HPC Execution Framework 

–  OmpSs programming model 
•  High-level, task-based, parallel 

programming model supporting SMPs, 
heterogeneous systems and clusters 

•  Coupled with its Nanos++ runtime system, 
is ideal as target language for the DSL 
framework 

 
  Compilation Framework  

–  Scala 
•  Statically typed, multi–paradigm language 

with type inference 
•  Supports both functional and object-

oriented styles 
–  Lightweight Modular Staging (LMS) 

•  A technique for embedding DSLs as Scala 
libraries 

•  Enables domain-specific optimizations and 
code generation 
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DFL 

  Data-Flow Language (DFL)  
–  A DSL meant to be used as target language for HPC DSLs 

implemented with Scala and LMS 
–  Wraps up OmpSs features 
 

Main Features 
–  Tasks and Kernels 
–  Buffers & Distributed buffers 
–  High-level parallel, distributed operations 

•  Map 
•  Reduce 
•  Divide & Conquer 
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DFL – Data flow design features 
  Buffers  

–  Generic data containers 
// Allocate space for 4096 floating point values 
val buf1 = Buffer.fill[Float](4096) 
// Buffer of 4 integer values 
val buf2 = Buffer(5, 8, 21, -3) 

  Distributed Buffers 
–  Generic data containers for distributed environments 
–  Provide high level operations 

// 4096 Floats distributed among all nodes 
val  world = MPI_COMM() 
val dbuf = DistBuffer.fill[Float](world, 4096) 
dbuf map { f => sqrt(f) } 
dbuf.rotateLeft 
val result = dbuf allReduce + 
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DFL – Tasks and Kernels 
  Tasks 

–  Computational function with annotated parameters 
–  Parameters can be of any type 

 
Task(A, B)(In, InOut) { 
     B += A; 
 } 
 

  Kernels 
–  Tasks (written in OpenCL C) for accelerators (GPUs, Intel’s Xeon Phi, etc) 
–  Parameters can be primitive types or Buffers 

  val kc = KernelContainer(“/path/to/kernels.cl”) 
  // This retrieves the 3-parameter "add" kernel 
  // from kc, namely myAdd 
  val myAddKernel = Kernel(kc, "add")(In, In, Out) 
  myAddKernel(A, B, C) 
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DFL – High Level Operations 

  Map 
–  Applied locally or at a distributed level, depending on buffer type 

val b = Buffer.fill(4096*4096) 
B map { _ => rand } 
 
val db = DistBuffer.fill(world, 4096*4096) // Collective operation 
db map { x => sqrt(x) }   // Collective operation 

  Reduce 
–  Fold a buffer with a binary operator and accumulate the result 

  val result = db.allReduce{ (x,y) => max(x/2, y+5) } 

  Divide & Conquer pattern 
–  Split a problem into smaller subproblems, solve them and combine the 

solutions in a potentially distributed environment (see next slides) 
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DFL – Divide and Conquer 

  Divide 
–  A function that partitions the problem if its size is bigger than a certain 

threshold (base case size) 
 

 val divFun = { p =>  
  if (p.size > BASE_CASE_SIZE) { 
   val chunkSize = p.size / 2 
   // setRange is a shallow copy with just range override 
   val pleft = p.setRange(p.begin, p.begin+chunkSize) 
   val pright = p.setRange(p.begin+chunkSize, p.end) 
   List(pleft, pright) 
  } 
  else List(p) 
 } 
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DFL – Divide and Conquer 

  Solve 
–  A function that solves a problem given its size 
 

 val solveFun = { p =>  
  sort(p.data, p.begin, p.end) 
 } 
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DFL – Divide and Conquer 

  Combine 
–  A function that combines a list of solved problems into a whole solution 
 

 val combineFun= { xl =>  
  xl reduceLeft { (sorted, ls) => merge(sorted, ls) } 
 } 
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DFL – Divide and Conquer 

  Execution 
–  Initialize a distributed problem, solve it with divide a conquer on each node, 

combine the distributed solution 
 

  val world = MPI_COMM() 
  val data = new DistBuffer[Int](world, 4096) 
  val tmp = new DistBuffer[Int](world, 4096) 
  data map { _ => rand } 
  data divConquer(divFun, solveFun, combineFun) 
  (0 until world.size) foreach { _ =>  
   // Pairwise exchange and function application 
   data exchangeAndApply(tmp, merge) 
  } 
  show(data) 

WOLFHPC, New Orleans, LA, November 17th, 2014 



13 

Conclusions & Future Work 

  DFL is a DSL designed to exploit distributed and 
heterogeneous HPC systems 
–  Serves as the target language for other DSLs, enabling simple code 

generators without sacrificing HPC performance 
–  Leverages the LMS framework for the DSL compiler infrastructure and the 

hybrid MPI/OmpSs programming model the DSL runtime systems 
 

  Interoperability 
–  DFL can enable DSL interoperation via a convenient infrastructure, which will 

also enable reuse of different DSL implementations, not just the DFL 
infrastructure 
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  CASE expertise on Partial Differential Equations and HPC 
–  Alya Red 

  Domain: Convection-Diffusion-Reaction equations 
–  Well know domain (by the CASE people) 
–  Several implementations already available in C and Fortran 
–  First design decisions of the DSL 

•  Level of abstraction 
•  Types 
•  Operators 

CS / CASE collaboration 
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  Saiph: A domain specific language for solving PDEs 
–  Simple and high level syntax   

•  High level constructs that directly associate with domain knowledge 
•  Efficient development/maintenance cycle 

–  High performance computing for free (for the end user) 
•  Ability to solve large complex problems with 20 lines  
    of clean, simple code 
 

  This is a program that runs on a GPU: 10.000 time steps in 7 seconds 
        val c = Cartesian(12.5, 25.0, 37.5) 
        val temp = Unknown(c) 
        val cond = Dirichlet(lowXZ of c, temp, 400) 
        val hv = Vector(0.5, 0.5, 0.5) 
        val pre = PreProcess(nsteps = 10000, deltaT = 0.25, h = hv)(cond) 
        solve(pre) equation (0.15 * lapla(temp) - dt(temp)) to "diffusion" 

The result: A DSL for solving CDR equations   
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def KFun(xp: Float, yp: Float, zp: Float) = {     
    if (zp > 18.75) 0.02     
    else 0.15 

} 
 
val c = Cartesian(12.5, 25.0, 37.5) 
val temp = Unknown(c) 
val plane = Dirichlet(lowXZ of c, temp, 400) 
 
val hv = Vector(0.5, 0.5, 0.5) 
val pre = PreProcess(nsteps = 100000, deltaT = 0.125, h = hv)(plane) 
 
val K = KFun _ 
val diffusion = K * lapla(temp) - dt(temp) 
 
val post = snapshoot each 100 steps 
 
solve(pre)(post) equation diffusion to "diffusion" 

CDR: Example 1 – Pure diffusion phenomena 
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CDR: Example 1 – Pure diffusion phenomena 
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CDR: Example 1 – Pure diffusion phenomena 

  Saiph generates 
–  Two OpenCL kernels (tasks) 
–  One I/O task 
–  The initialization code + body of the application + OmpSs pragmas 

  OmpSs runtime orchestrates the execution 
–  Schedules task based on data dependencies  
–  Manages data transfers between host and GPU 
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def hotCube(cx: Float, cy: Float, cz: Float, edgeSize: Float) 
    (xp: Float, yp: Float, zp: Float) = {     
 if (xp >= cx - edgeSize && xp <= cx + edgeSize && 
     yp >= cy - edgeSize && yp <= cy + edgeSize &&    

      zp >= cz - edgeSize && zp <= cz + edgeSize)      Some(10)     
 else Some(5) 

} 
val c = Cartesian(25, 50, 75) 
val temp = Unknown(c) 
val cube = Source(hotCube(12.5, 25, 37.5, 6) _, temp) 
 
val hv = Vector(1, 1, 1) 
val pre = PreProcess(nsteps = 500, deltaT = 1, h = hv)(cube)(PeriodicHighZ) 
 
val v = Vector(0, 0, 1) 
val convection = dt(temp) + grad(temp) * v 
 
solve(pre)(flush) equation convection to "convection" 

CDR: Example 2 – Pure convection phenomena 

Stabilization scheme done 
internally by CDR
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CDR: Example 2 – Pure convection phenomena 

The numerical scheme do not introduce artificial diffusion due to the stabilization.
The cubic form is preserved

 
val v = Vector(0, 0, 1) 
val convection = dt(temp) + grad(temp) * v 
 
solve(pre)(flush) equation convection to "convection" 

Stabilization scheme done 
internally by Saiph (upwind)
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  Complete code in backup slides 
 
def CDef(x: Rep[Float], y: Rep[Float], z: Rep[Float]) = {  

 if (x >= 300 && x <= 400 && y >= 300 && y <= 400) (1700*1700)  
 else (2000*2000)  

} 
val c = Cartesian(500, 500, 9) 
val pressure = Unknown(c) 
val waveSource = PointSourceSource(250,250,5)(rickerWalet(20)_,pressure) 
 
val hv = Vector(1, 1, 1) 
val pre = PreProcess(nsteps = 50000, deltaT = 0.003333, h = hv)(waveSource) 
val C = CDef _ 
 
val wavePropagation = C * lapla(pressure) – dt2(pressure) 
 
val post = snapshoot each 10 steps 
solve(pre)(post) equation wavePropagation to ”wave” 

CDR:  
Example 4 – Acoustic wave equation 
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CDR:  
Example 4 – Acoustic wave equation 
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  Complete code in backup slides 
 
val c = Cartesian(125, 250, 375) 
val temp = Unknown(c) 
val tori = Source(MyTori _, temp) 
 
val hv = Vector(0.95, 0.95, 0.95) 
val pre = PreProcess(nsteps = 10000, deltaT = 0.5, h = hv)()(tori) 
 
val K = KVarFun _ 
val v = Vector(0.05, 0.05, 0) 
 
val heat = K * lapla(temp) + grad(temp) * v - dt(temp) 
 
val post = snapshoot each 200 steps 
 
solve(pre)(post) equation heat to "toriHeat” 

CDR:  
Example 3 – Heat convection and diffusion using toroidal sources 
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CDR:  
Example 3 – Heat convection and diffusion using toroidal sources 
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Scala Virtualized Compiler  Diffusion.rsv  

Underlying Technologies 

Diffusion.class 

Host-side 
CodeGen   

DFL Compiler 
(LMS)  

Diffusion.cpp 

Diffusion.dfl 

Front end 
 - Compile the program  
 with the LMS Library 
 and the compiler 
 implementation together 

Middle end 
 - 1st stage  
 - Domain Specific Opt. 
 - LMS IR generation 
 

Back end 
- 2nd stage 
- DFL code + OpenCL 
kernels 
 

DiffusionEquation.rsveq 

OmpSs 

Accelerator-side  
CodeGen   

Equation Stencil 
Compiler (LMS) DiffusionKernels.cl 
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