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Motivation 

! Power grid is enormously complex but is still mostly 
modeled using serial code 

! To fit models onto a single core, numerous 
approximations and aggregations have been used 

! Using parallel code would allow engineers to relax some 
of the current restrictions in their models but the barrier to 
creating parallel code is high 
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Considerations 

! The power grid is represented as a graph 
! Graph nodes (buses) and edges (branches) are highly 

heterogeneous. Different buses and branches can have 
very different qualities 

! Most models describing the power grid are expressed in 
terms of non-linear algebraic equations involving complex 
variables 

! Need to capture a diverse range of models and numerical 
approaches to cover power grid applications 
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GridPACK™ Framework 

! Object-oriented design implemented in C++ 
! Use software templates and inheritance to create 

application-specific versions of most framework modules 
! Hide all communication and minimize the number of 

parallel concepts that application developers must deal 
with 

! Focus on “local” calculations in application 
! Wrap math libraries to separate libraries from the rest of 

the framework and allow seamless substitution of other 
libraries in the future 
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Software Hierarchy 
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Network Module 

! Templated class that takes application-specific bus and 
branch objects as template arguments 

! Manages partitioning of network and exchange of data 
between processors 

! Assigns internal indices that are used by other framework 
modules 
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Schematic Diagram of Network Object 
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Network Partition 
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GridPACK™ Mappers 

! Construct matrices from contributions from buses and 
branches 

! Manage index transformations between grid location and 
matrix 

! Construct matrices with sensible row partitions based on 
network partition 
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GridPACK™ Mappers: Initial Network 
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GridPACK™ Mappers: Matrix Contributions 

13 

1 2 3 

4 

5 

6 

7 
8 

12 

11 

10 9 

No matrix 
contribution 

No matrix 
contribution 

No matrix 
contribution 



GridPACK™ Mappers: Matrix Generation 
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Matrix Contributions 

! Calculations are “local” 
! Only involve sums over 

neighboring branches or 
sums over the two buses 
at the ends of a branch 

           Yii=-ΣjYij 
! Each bus/branch 

evaluates its local block, 
the mapper builds the 
matrix in a consistent 
manner 
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Math Module 

! Wraps a parallel solver library (currently PETSc) and 
provides high level interface for manipulating matrices 
and vectors 

! Provides interface for setting up distributed matrices and 
vectors 

! Supports basic matrix/operations such as matrix-vector 
multiply, vector norms, matrix transpose, dot products, 
etc. 

! Supports linear and non-linear solvers and 
preconditioners 
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Powerflow Application 
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 1  typedef BaseNetwork<PFBus,PFBranch> PFNetwork; 
 2  typedef PFFactory<PFNetwork> PFfactory; 
 3  Communicator world; 
 4  shared_ptr<PFNetwork> network(new PFNetwork(world)); 
 5 
 6  PTI23_parser<PFNetwork> parser(network); 
 7  parser.parse(“network.raw”); 
 8  network->partition(); 
 9 
10  PFfactory factory(network); 
11  factory.load(); 
12  factory.setComponents(); 
13  factory.setExchange(); 
14 
15  network->initBusUpdate(); 
16  factory.setYBus(); 
17  factory.setSBus(); 
18  factory.setMode(RHS); 
19  BusVectorMap<PFNetwork> vMap(network); 
20  shared_ptr<Vector> PQ = vMap.mapToVector(); 
21 
22  factory.setMode(Jacobian); 
23  FullMatrixMap<PFNetwork> jMap(network); 
24  shared_ptr<Matrix> J = jMap.mapToMatrix(); 
25  shared_ptr<Vector> X(PQ->clone()); 

Read in network from external 
file and partition network 

Initialize network 
components 

Evaluate matrix 
components and create 
right hand side vector 

Create Jacobian 
matrix 



Powerflow Application 
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26  double tolerance = 1.0e-6; 
27  int max_iteration = 20; 
28  ComplexType tol; 
29  LinearSolver solver(*J); 
30 
31  int iter = 0; 
32    
33  solver.solve(*PQ, *X); 
34  tol = PQ->normInfinity(); 
35   
36  while (real(tol) > tolerance && iter < max_iteration) { 
37    factory.setMode(RHS); 
38    vMap.mapToBus(X); 
39    network->updateBuses(); 
40    vMap.mapToVector(PQ); 
41    factory.setMode(Jacobian); 
42    jMap.mapToMatrix(J); 
43    solver.solve(*PQ,*X); 
44    tol = PQ->normInfinity(); 
45    iter++; 
46  } 

Create solver and perform 
initial solve 

Execute Newton-
Raphson iterative 
loop 



Component Hierarchy 
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Powerflow Scaling for Artificial 777646 Bus 
Network 
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Dynamic Simulation 
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Current Activities 

! Development of object-oriented Fortran 2003 interface 
! Development of more generalized matrix-vector interface 

to support applications where dependent and independent 
variables are associated with both buses and branches 
(not just buses) 

! Investigating new methods for distributing data to the 
network (distributed hashing algorithms) 
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Conclusions 

! A software framework for developing parallel power grid 
applications has been developed 

! Several different types of power grid applications have 
been developed using the framework. These applications 
demonstrate parallel speedup 

! GridPACK™ is available for download at 
https://gridpack.org  

! Contact bruce.palmer@pnnl.gov  
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