
GridPACK™: A Framework for
Developing Power Grid Simulations
on High Performance Computing
Platforms
Bruce Palmer, William Perkins, Yousu Chen,
Shuangshuang Jin, David Callahan, Kevin Glass, Ruisheng
Diao, Mark Rice, Stephen Elbert, Mallikarjuna Vallem,
Zhenyu (Henry) Huang

1

The	 Power	 Grid	

2

Motivation

! Power grid is enormously complex but is still mostly
modeled using serial code

! To fit models onto a single core, numerous
approximations and aggregations have been used

! Using parallel code would allow engineers to relax some
of the current restrictions in their models but the barrier to
creating parallel code is high

3

Considerations

! The power grid is represented as a graph
! Graph nodes (buses) and edges (branches) are highly

heterogeneous. Different buses and branches can have
very different qualities

! Most models describing the power grid are expressed in
terms of non-linear algebraic equations involving complex
variables

! Need to capture a diverse range of models and numerical
approaches to cover power grid applications

4

GridPACK™ Framework

! Object-oriented design implemented in C++
! Use software templates and inheritance to create

application-specific versions of most framework modules
! Hide all communication and minimize the number of

parallel concepts that application developers must deal
with

! Focus on “local” calculations in application
! Wrap math libraries to separate libraries from the rest of

the framework and allow seamless substitution of other
libraries in the future

5

6

Core	 Data	 Objects	

Power Grid
Network

Matrices and
Vectors

Application
Driver

Base Network
Components
•  Neighbor Lists
•  Matrix Elements

Network Module
•  Exchanges
•  Partitioning

Export Module
•  Serial IO
•  PTI Formats

GridPACK™	 Framework	

GridPACK™	 Applica;ons	

Utilities
•  Errors
•  Profiling

Base Factory
•  Network-wide

Operations

Application
Factory

Application
Components

Y-matrix

Dynamic
Simulation

Powerflow

Configure Module
•  XML

Mapper
Math and Solver
Module
•  PETSc

Import Module
•  PTI Formats
•  Dictionary

Task Manager

Software Hierarchy

7

Matrix-Vector Interface

Base Component

Base Bus Component Base Branch Component

Application Bus Application Branch

Base Network<AppBus , AppBranch>

Serial IO<AppNetwork> Base Factory<AppNetwork>

Mapper<AppNetwork>

App Factory<AppNetwork>

Network Parser<AppNetwork>

Network Module

! Templated class that takes application-specific bus and
branch objects as template arguments

! Manages partitioning of network and exchange of data
between processors

! Assigns internal indices that are used by other framework
modules

8

Schematic Diagram of Network Object

Framework-
defined
interface User-

defined
model

Network Partition

10

GridPACK™ Mappers

! Construct matrices from contributions from buses and
branches

! Manage index transformations between grid location and
matrix

! Construct matrices with sensible row partitions based on
network partition

11

GridPACK™ Mappers: Initial Network

12

1 2 3

4

5

6

7
8

12

11

10 9

GridPACK™ Mappers: Matrix Contributions

13

1 2 3

4

5

6

7
8

12

11

10 9

No matrix
contribution

No matrix
contribution

No matrix
contribution

GridPACK™ Mappers: Matrix Generation

14

Final Matrix
Initial Placement

Matrix Contributions

! Calculations are “local”
! Only involve sums over

neighboring branches or
sums over the two buses
at the ends of a branch

 Yii=-ΣjYij
! Each bus/branch

evaluates its local block,
the mapper builds the
matrix in a consistent
manner

15

Math Module

! Wraps a parallel solver library (currently PETSc) and
provides high level interface for manipulating matrices
and vectors

! Provides interface for setting up distributed matrices and
vectors

! Supports basic matrix/operations such as matrix-vector
multiply, vector norms, matrix transpose, dot products,
etc.

! Supports linear and non-linear solvers and
preconditioners

16

Powerflow Application

17

 1 typedef BaseNetwork<PFBus,PFBranch> PFNetwork;
 2 typedef PFFactory<PFNetwork> PFfactory;
 3 Communicator world;
 4 shared_ptr<PFNetwork> network(new PFNetwork(world));
 5
 6 PTI23_parser<PFNetwork> parser(network);
 7 parser.parse(“network.raw”);
 8 network->partition();
 9
10 PFfactory factory(network);
11 factory.load();
12 factory.setComponents();
13 factory.setExchange();
14
15 network->initBusUpdate();
16 factory.setYBus();
17 factory.setSBus();
18 factory.setMode(RHS);
19 BusVectorMap<PFNetwork> vMap(network);
20 shared_ptr<Vector> PQ = vMap.mapToVector();
21
22 factory.setMode(Jacobian);
23 FullMatrixMap<PFNetwork> jMap(network);
24 shared_ptr<Matrix> J = jMap.mapToMatrix();
25 shared_ptr<Vector> X(PQ->clone());

Read in network from external
file and partition network

Initialize network
components

Evaluate matrix
components and create
right hand side vector

Create Jacobian
matrix

Powerflow Application

18

26 double tolerance = 1.0e-6;
27 int max_iteration = 20;
28 ComplexType tol;
29 LinearSolver solver(*J);
30
31 int iter = 0;
32
33 solver.solve(*PQ, *X);
34 tol = PQ->normInfinity();
35
36 while (real(tol) > tolerance && iter < max_iteration) {
37 factory.setMode(RHS);
38 vMap.mapToBus(X);
39 network->updateBuses();
40 vMap.mapToVector(PQ);
41 factory.setMode(Jacobian);
42 jMap.mapToMatrix(J);
43 solver.solve(*PQ,*X);
44 tol = PQ->normInfinity();
45 iter++;
46 }

Create solver and perform
initial solve

Execute Newton-
Raphson iterative
loop

Component Hierarchy

19

Matrix-Vector Interface

Base Component

Base Bus Component Base Branch Component

Y-matrix Bus Y-matrix Branch

Powerflow Bus Powerflow Branch

Powerflow Scaling for Artificial 777646 Bus
Network

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

0 10 20 30 40 50 60 70

Parsing
Partitioning
Solver
Total

Ti
m

e
(s

ec
on

ds
)

Number of Processors

Dynamic Simulation

0.0

50.0

100.0

150.0

200.0

0 10 20 30 40 50 60 70

Partition
Solver
Multiply
Total

Ti
m

e
(s

ec
on

ds
)

Number of Processors

Simulation of
16351 bus
WECC
network

Current Activities

! Development of object-oriented Fortran 2003 interface
! Development of more generalized matrix-vector interface

to support applications where dependent and independent
variables are associated with both buses and branches
(not just buses)

! Investigating new methods for distributing data to the
network (distributed hashing algorithms)

22

Conclusions

! A software framework for developing parallel power grid
applications has been developed

! Several different types of power grid applications have
been developed using the framework. These applications
demonstrate parallel speedup

! GridPACK™ is available for download at
https://gridpack.org

! Contact bruce.palmer@pnnl.gov

23

Acknowledgments

! This work is supported by the U.S. Department of Energy
(DOE) through its Advanced Grid Modeling Program.

! Computing resources were provided by Pacific Northwest
National Laboratory through its PNNL Institutional
Computing program

! GridPACK™ is available for download at
https://gridpack.org

