
The OPS Domain Specific
Abstraction for Multi-Block

Structured Grid Computations
István Z. Reguly, Gihan R. Mudalige, Mike Giles
Oxford e-Research Centre, University of Oxford

Dan Curran, Simon McIntosh-Smith
Department of Computer Science, University of Bristol

WOLFHPC 2014 Workshop at SC 14
New Orleans, November 17, 2014

Introduction
• Importance of Domain Specific approaches in HPC

• Performance, Maintenance, Future Proofing

• But then again, you already know this…

• Originally from CFD: the OP2 domain specific active library for
unstructured meshes

• Active Library

• Rolls-Royce Hydra, VOLNA tsunami simulation

• C, Fortran + a reluctance for maintaining compilers

2

(a) structured mesh (b) unstructured mesh (c) multi-block structured mesh

Figure 1: Structured and unstructured meshes

hardware through such high-level frameworks. Research published as a result of this work include a
number of performance analysis studies on standard CFD benchmark applications [4] as well as a full
industrial-scale application from the production work-load at Rolls-Royce plc. [5].

OP2 uses an “active library” approach where a single application code written using the OP2 API can
be transformed in to di↵erent parallel implementations which can then be linked against the appropriate
parallel library enabling execution on di↵erent back-end hardware platforms. At the same time the
generated code from OP2 and the platform specific back-end libraries are highly optimized utilizing
the best low-level features of a target architecture to make an OP2 application achieve near-optimal
performance including high computational e�ciency and minimized memory tra�c.

With the success of OP2, our aim is to apply the same strategy in developing high-level frameworks
for another key class of applications, multi-block structured mesh applications, that require significant
developer e↵ort to parallelize on modern hardware systems. The resulting research and development
is being carried out under the EPSRC [6] funded OPS project (Oxford Parallel library for Structured-
mesh solvers). Multi-block structured mesh applications can be viewed as an unstructured collection
of structured mesh blocks. Thus the starting point of our work was to adopt the high-level framework
and code generation strategy from OP2 and apply it for the development and solution of single block
structured mesh applications.

OPS is designed to appear as a classical software library with an API. It is currently domain specific to
the single block-structured mesh problems and will later be extended to multi-block structured problems.
Much of the API and library follows the design of the OP2 high-level library for unstructured mesh
applications [3]. However the structured mesh domain is distinct from the unstructured mesh applications
domain due to the implicit connectivity between neighboring mesh elements (such as vertices, cells) in
structured meshes/grids. The key idea is that operations involve looping over a “rectangular” multi-
dimensional set of grid points using one or more “stencils” to access data. The next section illustrates
the OPS API using examples from CloverLeaf.

2.1 The OPS API

The CloverLeaf mini-app involves the solution of the compressible Euler equations, which form a system
of three partial di↵erential equations. The equations are statements of the conservation of energy, density
and momentum and are solved using a finite volume method on a structured staggered grid. The cell
centers hold internal energy and density while nodes hold velocities. The solution involves an explicit
Lagrangian step using a predictor/corrector method to update the hydrodynamics, followed by an ad-
vective remap that uses a second order Van Leer up-winding scheme. The advective remap step returns
the grid to its original position. The original application [2] is written in Fortran and operates on a 2D
structured mesh. It is of fixed size in both x and y dimensions.

OPS separates the specification of such a problem into four distinct parts: (1) structured blocks, (2)
data defined on blocks, (3) stencils defining how data is accessed and (4) operations over blocks. Thus
the first aspect of declaring such a single-block structured mesh application with OPS is to define the size
of the regular mesh over which the computations will be carried out. In OPS vernacular this is called an
ops block. OPS declares a block with the ops decl block API call by indicating the dimension of the
block (2D in this case), sizes in each dimension and assigning it a name for identification and runtime
checks (see Figure 2).

CloverLeaf works on a number of data arrays (or fields) which are defined on the 2D structured
mesh (e.g. density, energy, x and y velocity of the fluid). OPS allows users to declare these using the

4

Multi-Block Structured Grids
• Structured grids are popular due to  

their implicit connectivity

• Commonly used in CFD with finite  
difference and finite volume algorithms

• Realistic codes tend to use many blocks,  
different resolutions

• Cloverleaf: Nuclear/Defence

• ROTORSIM @ Bristol: helicopter rotors - sliding planes

• SBLI @ Southampton: compressible Navier-Stokes

3

Designing an abstraction
Challenge: design an abstraction that:

• Covers a wide range of applications

• Intuitive to use

• Abstracts away parallelisation and data movement

• Still specific enough so that we can make
aggressive platform-specific optimisations

4

The OPS Abstraction
• Blocks

• A dimensionality, no size
• Serves to group datasets together

• Datasets on blocks
• With a given arity, type, size, optionally stride

• Stencils
• Number of points, with relative coordinate offsets, optionally

strides

5

ops_block = ops_decl_block(dim, name);

ops_dat = ops_decl_dat(block, arity, size, halo, …, name);

ops_stencil = ops_decl_stencil(dim, npoints, points, name);

Computations
• The description of computations follows the

Access-Execute abstraction

• Loop over a given block, accessing a number of
datasets with given stencils and type of access,
executing a kernel function on each one

• Principal assumption: order of iteration
through the grid doesn’t affect the results

6

void calc(double *a, const double *b) {
 a[OPS_ACC0(0,0)] = b[OPS_ACC1(0,0)] + b[OPS_ACC1(0,1)] +
 b[OPS_ACC1(1,0)];
} 
... 
int range[4] = {12,50,12,50};
ops_par_loop(calc, block, 2, range,
 ops_arg_dat(a,S2D_0,”double”,OPS_WRITE),
 ops_arg_dat(b,S2D_1,”double”,OPS_READ));

User kernel

Iteration range

Arguments

PMBS 2014 Nov 16, 2014

STRUCTURED MESH APPLICATIONS AND OPS

� Structured grids
� Logical (i , j) indexing in 2D, (i, j, k) in 3D, with implicit connectivity
� Easy to parallelize, including on GPUs with L1/L2 caches

� Operations involve looping over
� a “rectangular” multi-dimensional set of grid-points
� using one or more “stencils” to access data

Computations
• This definition decouples the specification of

computations from their parallel implementation

• No assumption about data layout or movement

• Parallelism is implicit

• Easy to understand, maintain

• Enough information to organise execution &
apply optimisations

7

The OPS Abstraction
• Multi-Block API

• User specified halo
• Exchange manually

triggered
• In development

• Multigrid API
• Sliding planes

• Future
• AMR, Multi-material

8

Dataset 1
on block 1 Dataset 2

on block 2

x
y

x
y

block
halo

halo area
of dataset 1

What the abstraction lets us do
• The library “owns” all the data

• Access to it only through API calls

• Description of computations implicitly contain parallelism

• We can organise execution: parallelism & data
movement

• Code generation

• Back-end

9

Code generation
• We parse the OPS API calls

• Contain all the information

• Generate parallel
implementations for

• Sequential, OpenMP,
OpenACC

• CUDA, OpenCL

• Callbacks to backend

10

#define OPS_ACC0(j,i) j*xdim0+i
#define OPS_ACC1(j,i) j*xdim1+i

//user kernel
void calc(double *a, const double *b) {...}

void ops_par_loop_calc(int ndim, int range,
 ops_arg arg0, ops_arg arg1){
//set up pointers and strides
double *p_a0 = (double*)ops_base_ptr(range, arg0);
double *p_a1 = (double*)ops_base_ptr(range, arg1);
xim0 = arg0.dat->size[0]; xim1 = arg1.dat->size[0];
//do the computation
for(int j = 0; j < range[3]-range[2]; j++) {
 for(int i = 0; i < range[1]-range[0]; i++) {
 calc(&p_a0[j*xdim0+i],&p_a1[j*xdim1+i]);
 }
}

Code generation

• Checking consistency with declared stencils
• Adding const, restrict, and other keywords
• Deploying optimisations

11

OpenMP

Explicit assignment of a
block of rows to each thread

NUMA issues!

CUDA &
OpenCL

1 grid point per thread

Use of non-coherent cache
Runtime compilation

OpenACC

Nested loop with OpenACC
pragmas (kernels/loop)
Currently links to CUDA

backend, and uses
deviceptr()

Build process

12

Backend logic

• We know:
• iteration range
• what data is

accessed, how
• stencils

13

0,0 1,0

0,1

Stencil Iteration range

Additional dependencies

Distributed Memory

• How much halo
for each dataset

• What exactly is
modified

• On-demand
messaging with
aggregation

• Dirtybits to keep
track of changes

14

di
rty

bi
ts

[1
]

1

1

 0

1

1 1 1 1
dirtybits[0] 0,0 1,0

0,1

Stencil Iteration range

Additional dependencies

Checkpointing
• On the granularity of parallel loops

• We know exactly what data is accessed and how

• We know when data leaves the realm of OPS

• Need to save anything that leaves

• No need to save data that is going to be overwritten

• Fast-forward: re-start and just not do any of the
computations

15

Checkpointing
• Only a few datasets

touched in any loop

• Checkpointing regions

• Decide what needs to be
save over a number of
loops

• Save to local &
neighbouring SSD

16
D

at
as

et
 1

D
at

as
et

 2

D
at

as
et

 3

D
at

as
et

 4

Loop 1

Loop 2

Loop 3

R

R

W

W

R W

? ?

Lazy execution
• OPS API expresses everything involved with computations

• We know when data leaves OPS (e.g. reduction)

• Loop chaining abstraction

• We can carry out operations, optimisations that span
several loops

• Queue up a number of kernels, trigger execution when
e.g. a reduction is encountered

• Implemented, works well - so what can we do with it?

17

MPI messaging

Default messaging strategy:

• On-demand

• Given loops v and v

• Satisfy all dependencies
before executing v

18

0 1

v0

v1

1

MPI messaging I.

Strategy 1:

• Given dependencies
between v ->v and v -> v

• Combine messages to
hide latency

19

v0

v1

v2

v3

0 01 2

MPI messaging II.

• Strategy 2

• Given dependency v -> v but
none to v

• Hide latency of message

20

v0

v1

v2

v3

1 3
2

MPI messaging III.

• Strategy 3

• Given dependencies
between v -> v and v -> v but
not v -> v

21

0 1 2 3
1 2

v0

v1

v2

v3

MPI messaging III.

• Strategy 3

• Given dependencies
between v -> v and v -> v but
not v -> v

• Exchange loops v and v , and
hide latency of messages

22

v0

v1

v2

v3

v1

v2

0 1 2 3
1 2

1 2

MPI Communication
avoidance

Given a sequence of loops

• Iterate backwards
through a loop chain and
determine dependencies

• Exchange wider halo at
the beginning of the
chain

23

Loop N
Read with

3-point stencil

MPI boundary

MPI Communication
avoidance

Given a sequence of loops

• Iterate backwards
through a loop chain and
determine dependencies

• Exchange wider halo at
the beginning of the
chain

24

Loop N
Write

Loop N-1 Read (3-point)

MPI Communication
avoidance

Given a sequence of loops

• Iterate backwards
through a loop chain and
determine dependencies

• Exchange wider halo at
the beginning of the
chain

25

Loop N
Write

Loop N-1 Read (3-point)

MPI Communication
avoidance

Given a sequence of loops

• Iterate backwards
through a loop chain and
determine dependencies

• Exchange wider halo at
the beginning of the
chain

26

Loop N
Write

Loop N-1 Read (3-point)

MPI Communication
avoidance

27

boundary

halo

boundary

halo

• Extend halo region

• Redundant computations

• Fewer communications
points

• Larger messages

• Fewer datasets need
exchange in the end

Cache blocking
• Similar idea to communication-avoiding algorithm,

except not over MPI and not with redundant
compute

• Cache blocking, tiling; lot of work out there on
polyhedral compilers

28

-

6
i

iteration range

Tile j = 0 Tile j = 1 Tile j = 2 Tile j = 3e ee ee ee ee e

u u u uu u u u uu u u u u uu u u u u u uu u u u u u u u

u u u u u u u uu u u u u u u uu u u u u u u uu u u u u u u uu u u u u u u u
Fig. 9: An illustration of cache-blocking, or tiling, to reduce data movement. Tile 0 is executed first, then 1, 2 and 3

main memory repeatedly - an extremely expensive operation
compared to accessing data in cache. The underlying idea of
the communication avoiding algorithm naturally leads to the
algorithm commonly referred to as tiling or cache blocking;
partitioning the computational domain into smaller pieces that
can fit in the cache. Tiling is the target of intense research
[29], [17], although most publications only consider the case
where the same stencil is applied repeatedly to the same data,
which in practice is rarely the case. Furthermore, most of them
use various compilation techniques which may struggle with
a sequence of complex loops, especially if various parameters
are unknown at compile time.

By using lazy execution, OPS has a lot of run-time infor-
mation available, such as iteration ranges, datasets accessed
and stencils, which makes it much easier to reason about data
dependencies. Figure 9 illustrates the idea of tiling with a
simple 1D example and a 3-point stencil; given the execution
on a number of grid points (first row), data dependencies are
then resolved for a subset of those grid points for the next
iteration, etc. We have chosen skewed tiling for OPS as it does
not require redundant computations or the redundant storage of
data, the high-level overview of the algorithm for a sequence
of loops i = 1..N is as follows for a 1D problem:

1) Create K tiles of the full iteration range (number
and size of tiles is an optimization parameter), and
construct a data structure holding iteration range for
loops i = 1..N , as well as data dependency range for
any dataset modified during these loops

2) Initialize the data dependency range of each dataset
in each tile by first computing the intersection of the
tile’s iteration range with the full iteration range of
loops that modified the dataset, and then taking the
union of these.

3) For tile j = 1..K, iterate over loops in reverse order
i = N...1:

a) Take the union of data dependency ranges of
datasets that loop i modifies in tile (j), minus
the intersection with the iteration range of
loop i in tile (j�1), and set it as the iteration
range of loop i for tile (j)

b) For datasets that are read by loop i in tile
(j), set the new data dependency range as
the iteration range, extended by the stencil
used to access the datasets, but not beyond
the original size of the dataset.

4) Execute tiles in-order, calling loops with the iteration
range specific to the tile-loop combination, as com-
puted above.

The above algorithm is described for 1D problems, but

is trivially extendable for higher dimensions. For the simple
example in Figure 9 the algorithm will construct tiles 1 through
3, and then execute them in the order 0-1-2-3. The optimization
of the size and number of tiles depends on the number of loops
tiled over, the number of datasets accessed and the size of
the on-chip cache. The tile construction algorithm, while not
particularly expensive, can take a while to construct especially
for small tiles, therefore in OPS, we cache the tile execution
plans and re-use them when the same sequence of loops is
encountered.

4) Optimal checkpointing: As discussed in Section III-B2,
it is easy to find a locally optimal checkpoint location, however
in order to globally minimize the amount of data that needs
to be saved, it is necessary to find a regularly occurring point
during execution where entering checkpointing mode results
in the least amount of data saved. By utilizing lazy execution,
it is possible to reason about state space not only locally, but
over a sequence of parallel loops. Therefore, the decision can
be improved by calculating the amount of data that would
be saved if checkpointing started at any of the loops in the
sequence, and a database is built based on this information
that records the loop at which checkpointing mode is entered,
the subsequent list of loops and the amount of data to be saved.
Later on, when it is time to do the actual checkpoint, one of
the most frequently occurring checkpointing locations with the
smallest size is chosen by matching the sequence of loops in
the record and the lazy execution queue.

IV. SUMMARY OF THE OPS APPROACH

We have presented the OPS abstraction and API, which
covers a variety of use cases, however it does have some re-
strictions. We already have a number of preliminary abstraction
and API designs that could tackle multigrid situations where
two datasets are accessed in the same loop with a different
resolution, as well as sliding planes where the connectivity
between datasets in different blocks may change over time
(due to e.g. rotating geometries). These will naturally extend
the existing API without changes to existing functionality, and
we believe this will be possible for future extensions as well,
such as non-matching dataset interfaces (where interpolation
is necessary) or support for linear solvers.

Our choice to conform fully to the C standard (plus
templates) in the API design is motivated by the fact that as
we have shown it is not necessary to implement and maintain
a compiler. Indeed, one of the main challenges in the adoption
of Domain Specific Languages is the uncertainty about who
is going to support and maintain them in the long-term.
By only needing limited code parsing and text manipulation
capabilities it is possible to keep the code generation part
of OPS relatively simple; this is attractive to our academic

3-point
stencil

Cache blocking
• Similar idea to communication-avoiding algorithm,

except not over MPI and not with redundant
compute

• Cache blocking, tiling; lot of work out there on
polyhedral compilers

29

-

6
i

iteration range

Tile j = 0 Tile j = 1 Tile j = 2 Tile j = 3e ee ee ee ee e

u u u uu u u u uu u u u u uu u u u u u uu u u u u u u u

u u u u u u u uu u u u u u u uu u u u u u u uu u u u u u u uu u u u u u u u
Fig. 9: An illustration of cache-blocking, or tiling, to reduce data movement. Tile 0 is executed first, then 1, 2 and 3

main memory repeatedly - an extremely expensive operation
compared to accessing data in cache. The underlying idea of
the communication avoiding algorithm naturally leads to the
algorithm commonly referred to as tiling or cache blocking;
partitioning the computational domain into smaller pieces that
can fit in the cache. Tiling is the target of intense research
[29], [17], although most publications only consider the case
where the same stencil is applied repeatedly to the same data,
which in practice is rarely the case. Furthermore, most of them
use various compilation techniques which may struggle with
a sequence of complex loops, especially if various parameters
are unknown at compile time.

By using lazy execution, OPS has a lot of run-time infor-
mation available, such as iteration ranges, datasets accessed
and stencils, which makes it much easier to reason about data
dependencies. Figure 9 illustrates the idea of tiling with a
simple 1D example and a 3-point stencil; given the execution
on a number of grid points (first row), data dependencies are
then resolved for a subset of those grid points for the next
iteration, etc. We have chosen skewed tiling for OPS as it does
not require redundant computations or the redundant storage of
data, the high-level overview of the algorithm for a sequence
of loops i = 1..N is as follows for a 1D problem:

1) Create K tiles of the full iteration range (number
and size of tiles is an optimization parameter), and
construct a data structure holding iteration range for
loops i = 1..N , as well as data dependency range for
any dataset modified during these loops

2) Initialize the data dependency range of each dataset
in each tile by first computing the intersection of the
tile’s iteration range with the full iteration range of
loops that modified the dataset, and then taking the
union of these.

3) For tile j = 1..K, iterate over loops in reverse order
i = N...1:

a) Take the union of data dependency ranges of
datasets that loop i modifies in tile (j), minus
the intersection with the iteration range of
loop i in tile (j�1), and set it as the iteration
range of loop i for tile (j)

b) For datasets that are read by loop i in tile
(j), set the new data dependency range as
the iteration range, extended by the stencil
used to access the datasets, but not beyond
the original size of the dataset.

4) Execute tiles in-order, calling loops with the iteration
range specific to the tile-loop combination, as com-
puted above.

The above algorithm is described for 1D problems, but

is trivially extendable for higher dimensions. For the simple
example in Figure 9 the algorithm will construct tiles 1 through
3, and then execute them in the order 0-1-2-3. The optimization
of the size and number of tiles depends on the number of loops
tiled over, the number of datasets accessed and the size of
the on-chip cache. The tile construction algorithm, while not
particularly expensive, can take a while to construct especially
for small tiles, therefore in OPS, we cache the tile execution
plans and re-use them when the same sequence of loops is
encountered.

4) Optimal checkpointing: As discussed in Section III-B2,
it is easy to find a locally optimal checkpoint location, however
in order to globally minimize the amount of data that needs
to be saved, it is necessary to find a regularly occurring point
during execution where entering checkpointing mode results
in the least amount of data saved. By utilizing lazy execution,
it is possible to reason about state space not only locally, but
over a sequence of parallel loops. Therefore, the decision can
be improved by calculating the amount of data that would
be saved if checkpointing started at any of the loops in the
sequence, and a database is built based on this information
that records the loop at which checkpointing mode is entered,
the subsequent list of loops and the amount of data to be saved.
Later on, when it is time to do the actual checkpoint, one of
the most frequently occurring checkpointing locations with the
smallest size is chosen by matching the sequence of loops in
the record and the lazy execution queue.

IV. SUMMARY OF THE OPS APPROACH

We have presented the OPS abstraction and API, which
covers a variety of use cases, however it does have some re-
strictions. We already have a number of preliminary abstraction
and API designs that could tackle multigrid situations where
two datasets are accessed in the same loop with a different
resolution, as well as sliding planes where the connectivity
between datasets in different blocks may change over time
(due to e.g. rotating geometries). These will naturally extend
the existing API without changes to existing functionality, and
we believe this will be possible for future extensions as well,
such as non-matching dataset interfaces (where interpolation
is necessary) or support for linear solvers.

Our choice to conform fully to the C standard (plus
templates) in the API design is motivated by the fact that as
we have shown it is not necessary to implement and maintain
a compiler. Indeed, one of the main challenges in the adoption
of Domain Specific Languages is the uncertainty about who
is going to support and maintain them in the long-term.
By only needing limited code parsing and text manipulation
capabilities it is possible to keep the code generation part
of OPS relatively simple; this is attractive to our academic

-

6
i

iteration range

Tile j = 0 Tile j = 1 Tile j = 2 Tile j = 3e ee ee ee ee e

u u u uu u u u uu u u u u uu u u u u u uu u u u u u u u

u u u u u u u uu u u u u u u uu u u u u u u uu u u u u u u uu u u u u u u u
Fig. 9: An illustration of cache-blocking, or tiling, to reduce data movement. Tile 0 is executed first, then 1, 2 and 3

main memory repeatedly - an extremely expensive operation
compared to accessing data in cache. The underlying idea of
the communication avoiding algorithm naturally leads to the
algorithm commonly referred to as tiling or cache blocking;
partitioning the computational domain into smaller pieces that
can fit in the cache. Tiling is the target of intense research
[29], [17], although most publications only consider the case
where the same stencil is applied repeatedly to the same data,
which in practice is rarely the case. Furthermore, most of them
use various compilation techniques which may struggle with
a sequence of complex loops, especially if various parameters
are unknown at compile time.

By using lazy execution, OPS has a lot of run-time infor-
mation available, such as iteration ranges, datasets accessed
and stencils, which makes it much easier to reason about data
dependencies. Figure 9 illustrates the idea of tiling with a
simple 1D example and a 3-point stencil; given the execution
on a number of grid points (first row), data dependencies are
then resolved for a subset of those grid points for the next
iteration, etc. We have chosen skewed tiling for OPS as it does
not require redundant computations or the redundant storage of
data, the high-level overview of the algorithm for a sequence
of loops i = 1..N is as follows for a 1D problem:

1) Create K tiles of the full iteration range (number
and size of tiles is an optimization parameter), and
construct a data structure holding iteration range for
loops i = 1..N , as well as data dependency range for
any dataset modified during these loops

2) Initialize the data dependency range of each dataset
in each tile by first computing the intersection of the
tile’s iteration range with the full iteration range of
loops that modified the dataset, and then taking the
union of these.

3) For tile j = 1..K, iterate over loops in reverse order
i = N...1:

a) Take the union of data dependency ranges of
datasets that loop i modifies in tile (j), minus
the intersection with the iteration range of
loop i in tile (j�1), and set it as the iteration
range of loop i for tile (j)

b) For datasets that are read by loop i in tile
(j), set the new data dependency range as
the iteration range, extended by the stencil
used to access the datasets, but not beyond
the original size of the dataset.

4) Execute tiles in-order, calling loops with the iteration
range specific to the tile-loop combination, as com-
puted above.

The above algorithm is described for 1D problems, but

is trivially extendable for higher dimensions. For the simple
example in Figure 9 the algorithm will construct tiles 1 through
3, and then execute them in the order 0-1-2-3. The optimization
of the size and number of tiles depends on the number of loops
tiled over, the number of datasets accessed and the size of
the on-chip cache. The tile construction algorithm, while not
particularly expensive, can take a while to construct especially
for small tiles, therefore in OPS, we cache the tile execution
plans and re-use them when the same sequence of loops is
encountered.

4) Optimal checkpointing: As discussed in Section III-B2,
it is easy to find a locally optimal checkpoint location, however
in order to globally minimize the amount of data that needs
to be saved, it is necessary to find a regularly occurring point
during execution where entering checkpointing mode results
in the least amount of data saved. By utilizing lazy execution,
it is possible to reason about state space not only locally, but
over a sequence of parallel loops. Therefore, the decision can
be improved by calculating the amount of data that would
be saved if checkpointing started at any of the loops in the
sequence, and a database is built based on this information
that records the loop at which checkpointing mode is entered,
the subsequent list of loops and the amount of data to be saved.
Later on, when it is time to do the actual checkpoint, one of
the most frequently occurring checkpointing locations with the
smallest size is chosen by matching the sequence of loops in
the record and the lazy execution queue.

IV. SUMMARY OF THE OPS APPROACH

We have presented the OPS abstraction and API, which
covers a variety of use cases, however it does have some re-
strictions. We already have a number of preliminary abstraction
and API designs that could tackle multigrid situations where
two datasets are accessed in the same loop with a different
resolution, as well as sliding planes where the connectivity
between datasets in different blocks may change over time
(due to e.g. rotating geometries). These will naturally extend
the existing API without changes to existing functionality, and
we believe this will be possible for future extensions as well,
such as non-matching dataset interfaces (where interpolation
is necessary) or support for linear solvers.

Our choice to conform fully to the C standard (plus
templates) in the API design is motivated by the fact that as
we have shown it is not necessary to implement and maintain
a compiler. Indeed, one of the main challenges in the adoption
of Domain Specific Languages is the uncertainty about who
is going to support and maintain them in the long-term.
By only needing limited code parsing and text manipulation
capabilities it is possible to keep the code generation part
of OPS relatively simple; this is attractive to our academic

Cache blocking
• Similar idea to communication-avoiding algorithm,

except not over MPI and not with redundant
compute

• Cache blocking, tiling; lot of work out there on
polyhedral compilers

30

CloverLeaf
• Mini app in the Mantevo suite
• 2D/3D Structured hydrodynamics
• Explicit compressible Euler
• ~6k LoC
• Existing parallelizations (OpenMP, MPI, 

 OpenACC, CUDA, OpenCL)
• Porting effort & performance?

• Re-engineering, readability, tools, debugging
• Is it worth the effort - maintainability, performance?

31

Porting CloverLeaf
• Initial 2D version

• Fortran to C, 85 loops

• Took about 1-2 months to port (including development
of OPS)

• Debugging

• 3D version 5 days

• No more difficult than porting to e.g. CUDA, but you get
one codebase

32

Performance - CPU

33

Xeon E5-2680 @ 2.7 GHz
Intel 14.0, Intel MPI

3840*3840 mesh, 87 iterations

Performance - GPU

34

NVIDIA K20c, CUDA 6.0, PGI 14.2

3840*3840 mesh, 87 iterations

Performance - Scaling

35

STRONG'SCALING'
15360'X'15360'MESH'
(87'ITERATIONS)'

WEAK'SCALING'
3840'X'3840'
MESH'PER'NODE'
(87'ITERATIONS)'

Titan, Cray XK7

Conclusions
• An abstraction for multi-block structured codes

• Covers a sufficiently wide range of applications

• Viability of the Active Library approach

• Performance, Productivity, Maintainability

• Advanced optimisations relying on the access-
execute and loop chaining abstractions

36Thank you! istvan.reguly@oerc.ox.ac.uk

mailto:istvan.reguly@oerc.ox.ac.uk

