The OPS Domain Specific
Abstraction for Multi-Block
Structured Grid Computations

Istvan Z. Requly, Gihan R. Mudalige, Mike Giles
Oxtord e-Research Centre, University of Oxford
Dan Curran, Simon Mclntosh-Smith
Department of Computer Science, University of Bristol

WOLFHPC 2014 Workshop at SC 14

New Orleans, November 17, 2014 =X
NewOrleons.Iw:v4 OXford

e-Research 9).4200):3)

Centre

lNtroauction

* Importance of Domain Specific approaches in HPC
* Performance, Maintenance, Future Proofing
* But then again, you already know this...

e Originally from CFD: the OP2 domain specific active library for
unstructured meshes

* Active Library
* Rolls-Royce Hydra, VOLNA tsunami simulation

e C, Fortran + a reluctance for maintaining compilers

Multi-Block Structured Grids

e Structured grids are popular due to
their implicit connectivity

 Commonly used in CFD with finite

difference and finite volume algorithms

* Realistic codes tend to use many blocks,

different resolutions

e Cloverleaf: Nuclear/Defence
« ROTORSIM @ Bristol: helicopter rotors - sliding planes

e SBLI @ Southampton: compressible Navier-Stokes

Designing an abstraction

Challenge: design an abstraction that:

* Covers a wide range of applications

* |ntuitive to use

* Abstracts away parallelisation and data movement

o Still specific enough so that we can make
aggressive platform-specific optimisations

The OPS Abstraction

- Blocks
« A dimensionality, no size
e Serves to group datasets together

ops_block = ops_decl_block(dim, name);

- Datasets on blocks

e With a given arity, type, size, optionally stride

ops_dat = ops_decl_dat(block, arity, size, halo, ..., name);
- Stencils

 Number of points, with relative coordinate offsets, optionally

strides
ops_stencil = ops_decl_stencil(dim, npoints, points, name);

Computations

* [he description of computations follows the
Access-Execute abstraction

* Loop over a given block, accessing a number of

datasets with given stencils and type of access,

executing a kernel function on each one .

* Principal assumption: order of iteration

through the grid doesn'’t affect the results
void calc(double *a, const double *b) {

a[OPS_ACCO0(0,0)] = b[OPS_ACC1(0,0)] + b[OPS_ACC1(0,1)] +
User kernel b[OPS ACCI(1,0)];

)

lteration rangel} int range[4] = {12,50,12,50};
ops par loop(calc, block, 2, range,
ops arg dat(a,S2D _0,”’double”,OPS WRITE),

Arguments I ops arg dat(b,S2D 1,”’double’’,OPS READ));

Computations

* This definition decouples the specification of
computations from their parallel implementation

 No assumption about data layout or movement
* Parallelism is implicit
 Easy to understand, maintain

* Enough information to organise execution &
apply optimisations

The OPS Abstraction

« Multi-Block AP

- Dataset 1
User specified halo e

* Exchange manually

triggered

e |n development

« Multigrid API

o Sliding planes

e Future =
e AMR, Multi-material

bﬁolc k Dataset 2
i 4 on block 2
y
X
halo area

of dataset 1

What the abstraction lets us do

* The library "owns” all the data
 Access to it only through API calls

e Description of computations implicitly contain parallelism

 \We can organise execution: parallelism & data
movement

e Code generation

e Back-end

Code generation

 We parse the OPS APl calls
e Contain all the information

* (Generate parallel
implementations for

e Seqguential, OpenMP,
OpenACC

e CUDA, OpenCL
e Callbacks to backend

#define OPS_ACCO(j,i) j*xdim0+i
#define OPS_ACCI(j,i) j*xdim1+i

void calc(double *a, const double *b) {...}

void ops par loop calc(int ndim, int range,
ops arg arg0, ops arg argl){

double *p a0 = (double*)ops base ptr(range, arg0);
double *p al = (double*)ops base ptr(range, argl);
xim0 = arg(0.dat->s1ze[0]; xim1 = argl.dat->size[0];

for(int y = 0; j <range[3]-range[2]; j++) {
for(int 1 =0; 1 <range[1]-range[0]; 1++) {
calc(&p al0[j*xdim0+1],&p al[j*xdim1+1]);
h
h

10

Code generation

CUDA &
OpenMP CoencL OpenACC

Explicit assignment of a . . Nested loop with OpenACC
block of rows to each thread LopepalnLpeLead pragmas (kernels/loop)

Use of non-coherent cache Currently links to CUDA

Runtime compilation backend, and uses
deviceptr ()

NUMA issues!

* Checking consistency with declared stencils
« Adding const, restrict, and other keywords

* Deploying optimisations

11

Bulld process

Structured Mesh Application ﬂ _> OPS Application (C/C++ API) }
<
OPS Source-to-Source translator (Python)]
~~ > OPS Platform Specific
Modified Platform Specific Platform Specific Optimized Optimized Backend
OPS Application Application Files libraries
. Ingle Node DA
S S Link Single Node CU
Conventional Compiler + compiler flags :
(e.g. [cc, nvee, pgec) k Single Node OpenMP \
k | N
Platform Specn‘m Binary Cluster MPI
Mesh > | Executable e N e e A
(hdf5) | : PRI

Hardware

Backend logic

Additional dependencies

e \We know:

* |teration range

e what data Is
accessed, how

-:r'-‘::r'.‘-:r'-‘-'r'-‘::r‘.‘- ""..::r'.‘-'r'-‘::r'.‘-:r'-‘::r'.‘- :'. .'. 'r - '. .'. 'rJ .'. :r. .'. .'. .r " :'.
".-' '.-"':'.n" e -.-" '.-":-.-"".-' b ".-' '.-"':.'.-"': J

_;.-"-"'-';.-"'- ;.-'E,‘

e stencils

0,1

0,0 1,0 :
Stencil [teration range

Distributed Memory

Additional dependencies

How much halo

for each dataset % |
* What exactly is =
modified 2 ‘
:g —
On-demand
messaging with %
aggregation 0.1
* Dirtybits to keep HelE
00 1.0 dirtybits[O]

track of changes Sancil Iteration range

Checkpointing

On the granularity of parallel loops

 We know exactly what data is accessed and how
We know when data leaves the realm of OPS
 Need to save anything that leaves

No need to save data that is going to be overwritten

Fast-forward: re-start and just not do any of the
computations

kS

Checkpointing

Only a few datasets

L il QN ™ <
touched in any loop AR A i TS
00 1 (e A L
ey e
Checkpointing regions
Loop 1 E ? ?
Decide what needs to be T R
save over a number of
loops Loop 3 R

Save to local &
neighbouring SSD

16

| azy execution

OPS API expresses everything involved with computations
We know when data leaves OPS (e.g. reduction)
Loop chaining abstraction

 \We can carry out operations, optimisations that span
several loops

 Queue up a number of kernels, trigger execution when
e.g. a reduction is encountered

Implemented, works well - so what can we do with it?

17

MP| messaging

Default messaging strategy:
 On-demand
* Given loops v,and v,

e Satisfy all dependencies
before executing v,

18

MP| messaging |.

Strategy 1

* (Given dependencies i x
between v,->v,and v -> v,

 Combine messages to
hide latency

19

MP|l messaging Il.

vo @
e Strategy 2

Vi
* Given dependency v,-> v,but
none 10 \,
Vs :/

 Hide latency of message

20

MPI messaging Ill.

e Strategy 3 Lk ¢
* Given dependencies 4
between v,-> v,and v,-> v;but
NOt v, -> \,
V2@

21

MPI messaging Ill.

e Strategy 3

between v,-> v,and v,-> v;but

* Exchange loops v,and v,, and
hide latency of messages V3¥

* Given dependencies V1¥V2‘:>\<

22

MP| Communication
avoldance

Given a sequence of loops

e [terate backwards

through a loop chain and
determine dependencies

 Exchange wider halo at
the beginning of the
chain

Loop N

MPI| boundary

A

‘ ‘ Read with ‘ ‘

3-point stencill

23

MP| Communication
avoldance

Given a sequence of loops

* |terate backwards
through a loop chain and
determine dependencies

 Exchange wider halo at
the beginning of the
chain

Loop N

B
Loop N-1 \

Read (3-point)

Write

24

MP| Communication
avoldance

Given a sequence of loops

* |terate backwards
through a loop chain and
determine dependencies

 Exchange wider halo at
the beginning of the
chain

Loop N-1

Loop N

Read (3-point)

Write

e

MP| Communication
avoldance

Given a sequence of loops

* |terate backwards
through a loop chain and
determine dependencies

 Exchange wider halo at
the beginning of the
chain

@
@
@
a | | B
I_QQp N-1 Read (3-point)

Loop N

N
Write

26

MP| Communication
avoldance

* Extend halo region

 Redundant computations

boundary

e Fewer communications
points

halo

boundary

 Larger messages

e Fewer datasets need

exchange in the end

27

Cache blocking

e Similar idea to communication-avoiding algorithm,
except not over MPl and not with redundant
compute

e Cache blocking, tiling; lot of work out there on
polyhedral compilers

3-point * l
stencil

Tile j = 0 Tile j = 1 Tile j = 2 Tile j = 3
8495810000 ONDL O ATAONONON B AO BN O O E HOR O DO

28

Cache blocking

e Similar idea to communication-avoiding algorithm,

except not over MPl and not with redundant
compute

e Cache blocking, tiling; lot of work out there on
polyhedral compilers

0'/9 180 (D0 ONS O AHOHOHBN §AG OO OO O @A GO @

;| Tile j =0 Tile j = 1 Tile j = 2 Tile j = 3
0000000000000 OG©O®eeee OO0 OO0

)

Cache blocking

e Similar idea to communication-avoiding algorithm,
except not over MPl and not with redundant
compute

e Cache blocking, tiling; lot of work out there on
polyhedral compilers

File =12 Tilergy==3
L Jed oW se. sol Wy W el NIENCORCN SIS
Se o mel Sl SN S R Y NSO C

OS8O 00088 LvNe
Gaaeha@isl fal of Jedl yel B BH G OO

iteration range

30

Cloverleaf

—

Mini app In the Mantevo suite
2D/3D Structured hydrodynamics
Explicit compressible Euler

~0k LoC

Existing parallelizations (OpenMP, MPI,
OpenACC, CUDA, OpenCL)

Porting effort & performance”

 Re-engineering, readability, tools, debugging

e |s it worth the effort - maintainability, performance”

31

Porting CloverlLeat

e |nitial 2D version
* Fortran to C, 85 loops

e Took about 1-2 months to port (including development
of OPS)

* Debugging
e 3D version 5 days

* No more difficult than porting to e.g. CUDA, but you get
one codebase

32

Performance - CPU

3840*3840 mesh, 87 Iterations

~
-

@))
o

o

o

N W B U
-

o

Time (seconds)

[N
o

o

32 OMP 32 MPI 20MPx16MPI OpenCL

N OPS 45.92 45.55 45.82 63.35

M Original 57.39 44.60 44.22 61.54

Xeon E5-2680 @ 2.7 GHz
Intel 14.0, Intel MPI

Performance - GPU

3840*3840 mesh, 87 Iterations

70
60
S 50
c
S 40
a
— 30
qé 20
=
10 \
0 N N N
CUDA OpenCL OpenACC
OPS 15.01 16.27 19.82
M Original 14.14 16.19 21.67

NVIDIA K20c, CUDA 6.0, PGl 14.2

Performance - Scaling

64.0 | T
Original (MPI u
iz-g 1 —=OPS (MPI)
= 16. -~@-0riginal (MPI+CUDA) [
STRONG SCALING ‘g 8.0 \ =4—0PS (MPI+CUDA) i
15360 x 15360 MESH S 40
(87 ITERATIONS) 2 20
F 1.0
0.5
. 0.3 |
Itan, Cray XK7 128 512 2048 8192
Nodes
200 -
Original (MPI)
=><=0PS (MPI)
= 150 =@=0riginal (MPI+CUDA) |-
WEAK SCALING 2 ——0PS (MPI+CUDA)
{ { |
3840 x 3840 B 100 A
MESH PER NODE o
£
(87 ITERATIONS) = 50

—H——I—I—’ —r- —-
0 # —I—F—-I
1 8 64 512 4096
Nodes

39

Conclusions

An abstraction for multi-block structured codes
Covers a sufficiently wide range of applications
Viability of the Active Library approach

* Performance, Productivity, Maintainability

Advanced optimisations relying on the access-
execute and loop chaining abstractions

Thank you! istvan.reguly@oerc.ox.ac.uk

36

mailto:istvan.reguly@oerc.ox.ac.uk

