Legion: Programming Heterogeneous,
Distributed Parallel Machines

Alex Aiken
Stanford

Joint work involving LANL, NVIDIA & Stanford

Modern Supercomputers

@ Heterogeneity
@ Processor kinds

@ Relative
performance

@ Distributed Memory
@ Non-uniform

@ Distinct from
processors

@ Growing disparities
@ FLOPS >>
bandwidth

@ bandwidth >>
latency 2

Programming System Goals

High Performance
We must be fast

Performance Portability

Across many kinds of machines and over many
generations

Programmability
Sequential semantics, parallel execution

Can We Fulfill These Goals Today?

Yes ... at great cost:

Do you want to schedule that graph?
(High Performance)

Do you want to re-schedule
that graph for every new
machine?
(Performance Portability)

Do you want to be responsible
for generating that graph?
(Programmability)

responsibility

e —
== ===l &

Task graph for one time step on one node...
... of a mini-app

The Crux

@ How do we describe the data?
@ Most programming systems focus on control
@ Minimal facilities for organization/structure of data

o Why?

@ Answer: Solve the aliasing problem
@ Can two references refer to the same data?

@ Answer: Decouple naming data from layout/location

Legion Approach

@ Capture the structure of program data
@ Decouple specification from mapping

@ Asynchronous tasking

@ Automate
@ data movement
@ parallelism discovery
@ synchronization
@ hiding long latency

Legion Programming Model

Example: Circuit Simulation

Example: Circuit Simulation

simulate _circuit Region[Node] N, Region[Wires] W)

Tasks are the unit of
parallel execution.

Logical regions are (typed) collections

} Logical:
no implied layout
no implied location

Partitioning

Partitioning

task simulate_circuit(Region[Node] N, Region[Wires] W)

{

[P, S] = partition(ps_map, N)

1"

Partitioning

task simulate_circuit(Region[Node] N, Region[Wires] W)

{
Array[Region[Node]] private, shared, ghost;

[P, S] = partition(ps_map, N)
private = partition(private_map, P)
shared = partition(shared_map, S)
ghost = partition(ghost_map, S)

Region Trees

13

Region Trees

disjoint

Locality
Independence

14

Region Trees

disjoint

Locality
Independence

15

Region Trees

Locality
Independence

Aliasing

16

Region Trees

possibly overlap

|

Locality
Independence

Aliasing

17

Legion Tasks

task simulate_circuit(Region[Node] N, Region[Wires] W) :

{

calc_currents(piece[0]);
calc_currents(piece[1]);
distribute_charge(piece[0]);
distribute_charge(piece[1]);

- subtasks

task calc_currents(Piece p) :

task distribute_charge(Piece p) :

18

Legion Tasks

task simulate_circuit(Region[Node] N, Region[Wires] W) :
N, W

{ A task must declare the
calc_currents(piece[0], [ro =), regions it will use.

calc_currents(piece[1],] », |,);
distribute_charge(piece[0],);
distribute_charge(piece[1], g, |);
} Subtask containment:
A subtask can only use
task calc_currents(Piece p) : (sub)regions accessible
p.private, p.shared, p.ghost, to its parent task.
p.wires
task distribute_charge(Piece p) : Tasks appear to execute
p.private, p.shared, p.ghost, in program order.

p.wires
19

Interference

Informal definition: Two
tasks T, and T, are non-

interfering T.#T, if there is no
dependence between them
on their region arguments.

If T.#T,then T,and T, can
execute in parallel.

20

Execution Model

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

w) calc_currents(piece[0], | po

m) calc_currents(piece[1], I
mm) distribute_charge(piece[0],
distribute_charge(piece[1],

Interferes?
Interferes?

Tasks are issued in program

order.

21

Privileges

task simulate_circuit(Region[Node] N, Region[Wires] W) :
NeddWrite(N,W)

{

}
task calc_currents(Piece p) :

Reaiddlaie(sivred), pead(p.private, p.shared, p.ghost)
p.wires

task distribute_charge(Piece p) :

Reaideelytpsiviras), Rethast(p.private, p.shared, p.ghost)
p.wires

22

Non-Interference Dimensions

@ Several dimensions of
operator
@ Entries (rows)
@ Privileges
@ Fields (columns)

@ Logical regions are a
relational data model
@ Partitioning is selection

(o)

@ Field-slicing is
projection (1)

@ Don’t support all
relational operators

Node
Node
Node
Node
Node
Node
Node
Node
Node
Node

Voltage Capac.

Induct.

Charge

23

Legion Summary

@ Logical regions: a relational data model
@ Support partitioning and slicing
@ Convey locality, independence, aliasing

@ Implicit task parallelism
@ Task may have arbitrary sub-tasks
@ Tasks declare region usage including privileges and fields

@ Tasks appear to execute in program order
@ Execute in parallel when non-interference established

@ Machine independent specification of application

24

Legion Runtime System

Legion Runtime System

T
T T T Parallel
N Legion Runtime —— Distributed
T T T T Execution
4 _ I
ty.: rs, Iy
t.:rg,]] _
Parent o T2 Tasks : Regions :: Instructions : Registers
Task tory 1y
t3: Iy, Tg y,

Dep. Distribute | Execute Resolve Complete | Commit
Analysis Spec.

A Distributed Hierarchical Out-of-Order Task Processor

26

Dependence Analysis

disjoint
task simulate_circuit(Region[Node] N, Regio [Wires] W) :
ReadWrite(N,W)

{ read only

wemd calc_currents(piece[0], I 0));
wem) calc_currents(piece[1] OO 0));
distribute_charge(piece[0] () ())
distribute_charge(piece[1] DD ™

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :
ReadOnly(p.wires), Reduce(p.private, p.shared, p.ghost)

27

Dependence Analysis

task simulate_circuit(Region[Node] N, Region[Wires] W) :
ReadWrite(N,W)

{

;:.;alc_currents(piece[o],D 00
calc_currents(piece[1], 1 0))
— distribute_charge(piece[O],D 00);

distribute_charge(piece[l],o 00);

.
B T E

ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

Py R |- I S | Iy /[

= c~‘Piece p) :
ReadOnly(p.wires), Reluce(p.private, p.shared, p.ghost)

read-after-write of wires w/CCJ0]

28

Mapping Interface

@ Programmer selects:
@ Where tasks run
@ Where regions are placed

I'c

F'w I'n
@ Mapping computed dynamically

w1 w2 | I 2
@ Decouple correctness from

performance \
<) e))7 v)
\
U1 13 O)7 : D
(+ l
2 X :c; - " j\j]
Dep. L —Resolve ,
Analysis Map Distribute c) B —Commit

task simulate_circuit(Region[Node] N, Region[Wires] W) :
ReadWrite(N,W)
{

;:.;alc_currents(piece[o],D 00

calc_currents(piece[l],D D D);
—_— distribute_charge(piece[0], () () 0));

distribute_charge(piece[l],D 00);

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :
ReadOnly(p.wires), Reduce(p.private, p.shared, p.ghost)

Distribution

After tasks are mapped
they are distributed to
target node

t, b
Task execution can Node 0 Node 1
generate sub-tasks

Subtask containment:
A subtask can only use
(sub)regions accessible
to its parent task.

Dep.. Map Distribute | Execute Resolve Complete | Commit
Analysis Spec.

31

Do we need inter-node
dependence checks?

Independence Theorem

Let t, be a subtask of T, and
t, be a subtask of T,. Then

THT, => t #t,

32

Independence Theorem

Let t, be a subtask of T, and
t, be a subtask of T,. Then

THT, => t #t,

Proof: Use subtask containment.
Observation: It is sufficient to test
interference only of sibling tasks.

Note: Similar property holds in functional
languages, but it holds in Legion even though
we may imperatively mutate regions.

33

Runtime Summary

@ A distributed hierarchical out-of-order task processor
@ Analogous to hardware processors

@ Can exploit parallelism implicitly:
@ Task-, data-, and nested-parallelism

@ Runtime builds task graph ahead of execution to hide
latency and costs of dynamic analysis

@ Decouples mapping decisions from correctness
@ Enables efficient porting and (auto) tuning

34

A Real Application: S3D

S3D

@ Production combustion simulation

@ Written in ~200K lines of Fortran

@ Direct numerical simulation using explicit methods

‘“ ,?o% /." ,},

«9"

36

S3D Versions

W

Supports many chemical
mechanism

@ DME (30 species)
@ Heptane (52 species)

Fortran + MPI

@ Vectorizes well
@ MPI used for multi-core

“Hybrid” OpenACC

@ Recent work by Cray/Nvidia/
DoE

Legion interoperates with MPI

Recent 3D DNS of auto-ignition with 30-species 37

Number of reactions, |

1=5K
s
10 F CI8 (LN o
12 (LLNL) . (
(LLNL) .- '@ C14 (LLNL)
(LN 7@ ey
tane () s n-heptane)
CH4 (Konnov,)
103 L) (Lu & Law)
r UsC C1-C4 (Lu & Law)
. '@n-
USCC2He | @, g adene (LD
(Qin et al)) E (Curran)
GRI3O @, -"" neo-pentane (LLNL)
2 g C2H4 (San Diego) @ before 2000
, 7 CH4 (Leeds) 2000 to 2005
10 FEo m after 2005
. 1 |
10" 102 10°

Number of species, K
From Lu and Law, PECS, 2009

DME chemistry (Bansal et al. 2011)

Parallelism in S3D

@ Data is large 3D cartesian grid of cells

@ Typical per-node subgrid is 483 or 643 cells
@ Nearly all kernels are per-cell
@ Embarrassingly data parallel

@ Hundreds of tasks
@ Significant task-level parallelism

@ Except...
@ Computational intensity is low
@ Large working sets per cell (1000s of temporaries)
@ Performance limiter is data, not compute

38

5
S3D Tasks in Legion Ej

pv, pE, p, pYi, ...

i —501173 orT emp £, ,0,...)
Rint - ‘ ™~ Rstate
~~
— I77’— C alcl"raa’zent(IT) I .
aas e
Te—
vol, P, VT, . \ ITJ1'=A’eclctz'0nRa s(Vii, I T,A,v,Ds;, ...

oriin] j..nspec]: ‘
K ot p¥ia=/f(rrii ...

R 0 .0 0 0
T'hs atpvlatp 'atp;atp ir == 39

_

S3D Task Parallelism

@ One call to Right-Hand-Side-Function (RHSF) as
seen by the Legion runtime
@ Called 6 times per time step by Runge-Kutta solver
@ Width == task parallelism
@ H2 mechanism (only 9 species)
@ Heptane (52 species) is significantly wider
@ Manual task scheduling would be difficult!

ol meson
\ = =
".’
= e ——
T | T | T | B |
—- = |

e B

40

Mapping for Heptane 483

Dynamic Analysis for (rhsf+2) Clean-up/meta tasks

\ \
| | \

e IRTTRERTTRANTYRIR TR R NIRRT

4 AMD
Interlagos HIIIII NI 0N | O |] |-‘||| o a3
Integer cores)
for Legion Hm O o e o . o
Runtime hics e ’
mmene) wem m o oo B

| [—]

T = I] 0
8AMD (N T TT1 N 1) I I
Interlagos FP _
M= O T N 1 0 Y I |
cores for
. . . Tl A 0 M |
application
IITE 0 111 1 I O O 1 |
[[N Y Y I | I I
| 11 N 5 Y |

NVIDIA Kepler K20 { 1@ NEEEEEIENii § EENEED (@0 [0 EENEEEEE

41

Heptane Mapping for 963

@ Handle larger problem sizes per node
@ Higher computation-to-communication ratios
@ More power efficient

@ Not enough room in 6 GB GPU framebuffer

@ OpenACC requires code changes

@ Legion analysis is independent of problem size
@ Larger tasks -> fewer runtime cores
LA A8, AR U4 B B l—m—uml-.lm—._ud.n---m ._.M

I N | — I 4 . I Ll
5 B B i e 1 I [I] (B
I CITTTrTd SN I I
I I - I I | N 1 1 I - 1 |
I e | — | N I N e 1] 1
L} I I I I e L [A I I R B 1 I . - 1
IS e 0 o1 e I I | R | | I O I e | 1 I I
LI | E— 1 . e | |] | 1 1 =1
| —— - i rrrrrrn L& & NS | I
BRI | | B . B I I e | | [P 1 I I

b L 1l . 01y 1 I mns B |1 | N N -

42

Performance Results

43

Legion S3D DME Performance

@ 1.71X - 2.33X faster between 1024 and 8192 nodes
@ Larger problem sizes have higher efficiency

250000 N . bt 4

SIeRS:

=
B
]
=
=
=
=
=
B
]
|
=

90 =
[
X L)
e
e @
me ®m
‘ i
W9
H¢d
R

®
[|

Throughput Per Node (Points/s)

[] Titan Legion 48* [] [[] Keeneland Legion 48* [I Titan OpenACC 48°
O O Titan Legion 64> @ © Keeneland Legion 64> @ @ Titan OpenACC 64°
Titan Legion 96° <><> Keeneland Legion 963

‘ ‘ ‘ ‘ i i i i i
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Nodes

44

Legion Heptane Performance

@ 1.73X - 2.85X faster between 1024 and 8192 nodes
@ Higher throughput on Keeneland (balanced CPU+GPUs)

i <> <> i i i i i i i i i i
e T S e
e S
® i ‘ i i ‘ i i i i i
zglammyﬁ?,,~,~,§>,~ ”,”gyw,”,,”ii,,”,” i;”m - Lw - ”,,L,,” - ”f,m w,,ninw ”,;”,,
ﬂ . . @ @ @ O . .
5 B @)) : : ‘ ‘ : ® : ®
< : il 0 : :) 6 : © ® ;
; 3 5 = £ H 1 % | | | ®
z [| | | | = | - L = 0 | |
& 100000 | | |]] | | |
3 . B----@ @l e I o
E% @ ‘ii ®] [H © = ® o § 3
g o & £ g6 F
= ‘ ©
: : : : ; hd 0 :
‘ : [| i
50000 b4+ T T
(©)
: : : : : : : : |I|
] [Titan Legion 48° []] Keeneland Legion 48* [{f] Titan OpenACC 48% | : ;
O © Titan Legion 64° @ @ Keeneland Legion 64> @ @ Titan OpenACC 64° :
Titan Legion 96? <><> Keeneland Legion 96°
' 2 2 8 16 32 o4 28 256 512 1024 2048 2096 8192

Nodes
45

Legion PRF Performance

@ 116 species mechanism, >2X as large as heptane
@ Legion uses different mapping approach

80000 — ; ; ;

oo~ R S — S — S — — — S —
@ @ @ : : : : : : : : : : :

® ¢ ® O ‘ ‘ ‘ ‘ ‘

60000—71 ,,,,,,,,,, S L L L SR @ @ ,,,,,,,, e L S L -
§5 I ST AU e ey Lot (O N]
s 3 3 3 3 3 3 3 3 @) 3 3 °
% 4000075 7777777777 o - - - - S S - o - @
¢
§" | AT IR e s R I S NN B I . S @)
g 30000 m 0] [] [] E] E] E]) [—
" ; - H
90000 Lo S S e S S S S S S S e
R P P P P P e o P o P P

© @ Mixed CPU-GPU 48 [[AI-GPU 32¢| ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Mixed CPU-GPU 64° @ @ AI-GPU 48°| | | | | | | | |
0 1‘ é 4‘1- é 1 ‘6 3‘2 6‘4 1 éS 25‘6 5“| 2 1 0‘24 20‘48 40‘96 81 ‘92

46

Current Work

Liszt Legion

local liszt

var delta = e'head.pos edges.head . LEGION_READ
- e'ta'i]_.pos edges.ta-i-l. . LEGION_READ
e.rest_len = L.len(delta) edges.rest_len : LEGION_READ_WRITE
end
Phase Analysis Legion Permissions
dragon.edges:map(InitLength) |L. (:
| CF |— AF |~ CF —~ AF
for i = 1,300 do 1 1
dragon.vertices:foreach(ComputeForces) ME ME

dragon.vertices:foreach(ApplyForces)
dragon.vertices:foreach(MeasureEnergy)
end

Legion Task Graph
Seq. Bulk Data-Parallel

48

Legion
@ Legion website: http://legion.stanford.edu

@ Github repo: http://github.com/stanfordlegion

@ Questions?

49

