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Modern Supercomputers

@ Heterogeneity
@ Processor kinds

@ Relative
performance

@ Distributed Memory
@ Non-uniform

@ Distinct from
processors

@ Growing disparities
@ FLOPS >>
bandwidth

@ bandwidth >>
latency 2




Programming System Goals

High Performance
We must be fast

Performance Portability

Across many kinds of machines and over many
generations

Programmability
Sequential semantics, parallel execution



Can We Fulfill These Goals Today?

Yes ... at great cost:

Do you want to schedule that graph?
(High Performance)

Do you want to re-schedule
that graph for every new
machine?
(Performance Portability)

Do you want to be responsible
for generating that graph?
(Programmability)

responsibility
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Task graph for one time step on one node...
... of a mini-app



The Crux

@ How do we describe the data?
@ Most programming systems focus on control
@ Minimal facilities for organization/structure of data

o Why?

@ Answer: Solve the aliasing problem
@ Can two references refer to the same data?

@ Answer: Decouple naming data from layout/location



Legion Approach

@ Capture the structure of program data
@ Decouple specification from mapping

@ Asynchronous tasking

@ Automate
@ data movement
@ parallelism discovery
@ synchronization
@ hiding long latency



Legion Programming Model



Example: Circuit Simulation




Example: Circuit Simulation

simulate _circuit Region[Node] N, Region[Wires] W)

Tasks are the unit of
parallel execution.

Logical regions are (typed) collections

} Logical:
no implied layout
no implied location



Partitioning




Partitioning

task simulate_circuit(Region[Node] N, Region[Wires] W)

{

[ P, S ] = partition(ps_map, N)

1"



Partitioning

task simulate_circuit(Region[Node] N, Region[Wires] W)

{
Array[Region[Node]] private, shared, ghost;

[ P, S ] = partition(ps_map, N)
private = partition(private_map, P)
shared = partition(shared_map, S)
ghost = partition(ghost_map, S)




Region Trees
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Region Trees

disjoint

Locality
Independence
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Region Trees

disjoint

Locality
Independence
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Region Trees

Locality
Independence

Aliasing
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Region Trees

possibly overlap

|

Locality
Independence

Aliasing
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Legion Tasks

task simulate_circuit(Region[Node] N, Region[Wires] W) :

{

calc_currents(piece[0]);
calc_currents(piece[1]);
distribute_charge(piece[0]);
distribute_charge(piece[1]);

- subtasks

task calc_currents(Piece p) :

task distribute_charge(Piece p) :
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Legion Tasks

task simulate_circuit(Region[Node] N, Region[Wires] W) :
N, W

{ A task must declare the
calc_currents(piece[0], [ ro =), regions it will use.

calc_currents(piece[1],] », |, );
distribute_charge(piece[0], );
distribute_charge(piece[1], g, |);
} Subtask containment:
A subtask can only use
task calc_currents(Piece p) : (sub)regions accessible
p.private, p.shared, p.ghost, to its parent task.
p.wires
task distribute_charge(Piece p) : Tasks appear to execute
p.private, p.shared, p.ghost, in program order.

p.wires
19



Interference

Informal definition: Two
tasks T, and T, are non-

interfering T.#T, if there is no
dependence between them
on their region arguments.

If T.#T,then T,and T, can
execute in parallel.
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Execution Model

task simulate_circuit(Region[Node] N, Region[Wires] W) :
{

w) calc_currents(piece[0], | po

m) calc_currents(piece[1], I
mm) distribute_charge(piece[0],
distribute_charge(piece[1],

Interferes?
Interferes?

Tasks are issued in program

order.
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Privileges

task simulate_circuit(Region[Node] N, Region[Wires] W) :
NeddWrite(N,W)

{

}
task calc_currents(Piece p) :

Reaiddlaie(sivred), pead(p.private, p.shared, p.ghost)
p.wires

task distribute_charge(Piece p) :

Reaideelytpsiviras), Rethast(p.private, p.shared, p.ghost)
p.wires
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Non-Interference Dimensions

@ Several dimensions of
# operator
@ Entries (rows)
@ Privileges
@ Fields (columns)

@ Logical regions are a
relational data model
@ Partitioning is selection

(o)

@ Field-slicing is
projection (1)

@ Don’t support all
relational operators

Node
Node
Node
Node
Node
Node
Node
Node
Node
Node

Voltage Capac.

Induct.

Charge
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Legion Summary

@ Logical regions: a relational data model
@ Support partitioning and slicing
@ Convey locality, independence, aliasing

@ Implicit task parallelism
@ Task may have arbitrary sub-tasks
@ Tasks declare region usage including privileges and fields

@ Tasks appear to execute in program order
@ Execute in parallel when non-interference established

@ Machine independent specification of application
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Legion Runtime System



Legion Runtime System

T
T T T Parallel
N Legion Runtime —— Distributed
T T T T Execution
4 _ I
ty.: rs, Iy
t.:rg, ] ] _
Parent o T2 Tasks : Regions :: Instructions : Registers
Task tory 1y
t3: Iy, Tg y,

Dep. Distribute | Execute Resolve Complete | Commit
Analysis Spec.

A Distributed Hierarchical Out-of-Order Task Processor
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Dependence Analysis

disjoint
task simulate_circuit(Region[Node] N, Regio [Wires] W) :
ReadWrite(N,W)

{ read only

wemd calc_currents(piece[0], I 0));
wem) calc_currents(piece[1] OO 0));
distribute_charge(piece[0] () () )
distribute_charge(piece[1] DD ™

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :
ReadOnly(p.wires), Reduce(p.private, p.shared, p.ghost)
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Dependence Analysis

task simulate_circuit(Region[Node] N, Region[Wires] W) :
ReadWrite(N,W)

{

;:.;alc_currents(piece[o],D 00
calc_currents(piece[1], 1 0))
— distribute_charge(piece[O],D 00 );

distribute_charge(piece[l],o 00 );

.
B T E

ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

Py R |- I S | Iy /[

= c~‘Piece p) :
ReadOnly(p.wires), Reluce(p.private, p.shared, p.ghost)

read-after-write of wires w/CCJ0]
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Mapping Interface

@ Programmer selects:
@ Where tasks run
@ Where regions are placed

I'c

F'w I'n
@ Mapping computed dynamically

w1 w2 | I 2
@ Decouple correctness from

performance \
<) e) )7 v)
\
U1 13 O )7 : D
( + l
2 X :c; - " j\j]
Dep. L —Resolve ,
Analysis Map Distribute c) B —Commit




task simulate_circuit(Region[Node] N, Region[Wires] W) :
ReadWrite(N,W)
{

;:.;alc_currents(piece[o],D 00

calc_currents(piece[l],D D D );
—_— distribute_charge(piece[0], () () 0));

distribute_charge(piece[l],D 00 );

}

task calc_currents(Piece p) :
ReadWrite(p.wires), Read(p.private, p.shared, p.ghost)

task distribute_charge(Piece p) :
ReadOnly(p.wires), Reduce(p.private, p.shared, p.ghost)




Distribution

After tasks are mapped
they are distributed to
target node

t, b
Task execution can Node 0 Node 1
generate sub-tasks

Subtask containment:
A subtask can only use
(sub)regions accessible
to its parent task.

Dep.. Map Distribute | Execute Resolve Complete | Commit
Analysis Spec.
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Do we need inter-node
dependence checks?




Independence Theorem

Let t, be a subtask of T, and
t, be a subtask of T,. Then

THT, => t #t,
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Independence Theorem

Let t, be a subtask of T, and
t, be a subtask of T,. Then

THT, => t #t,

Proof: Use subtask containment.
Observation: It is sufficient to test
interference only of sibling tasks.

Note: Similar property holds in functional
languages, but it holds in Legion even though
we may imperatively mutate regions.
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Runtime Summary

@ A distributed hierarchical out-of-order task processor
@ Analogous to hardware processors

@ Can exploit parallelism implicitly:
@ Task-, data-, and nested-parallelism

@ Runtime builds task graph ahead of execution to hide
latency and costs of dynamic analysis

@ Decouples mapping decisions from correctness
@ Enables efficient porting and (auto) tuning
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A Real Application: S3D



S3D

@ Production combustion simulation

@ Written in ~200K lines of Fortran

@ Direct numerical simulation using explicit methods

‘“ ,?o% /." ,},

«9"
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S3D Versions

W

Supports many chemical
mechanism

@ DME (30 species)
@ Heptane (52 species)

Fortran + MPI

@ Vectorizes well
@ MPI used for multi-core

“Hybrid” OpenACC

@ Recent work by Cray/Nvidia/
DoE

Legion interoperates with MPI

Recent 3D DNS of auto-ignition with 30-species 37
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Parallelism in S3D

@ Data is large 3D cartesian grid of cells

@ Typical per-node subgrid is 483 or 643 cells
@ Nearly all kernels are per-cell
@ Embarrassingly data parallel

@ Hundreds of tasks
@ Significant task-level parallelism

@ Except...
@ Computational intensity is low
@ Large working sets per cell (1000s of temporaries)
@ Performance limiter is data, not compute
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S3D Task Parallelism

@ One call to Right-Hand-Side-Function (RHSF) as
seen by the Legion runtime
@ Called 6 times per time step by Runge-Kutta solver
@ Width == task parallelism
@ H2 mechanism (only 9 species)
@ Heptane (52 species) is significantly wider
@ Manual task scheduling would be difficult!
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Mapping for Heptane 483

Dynamic Analysis for (rhsf+2) Clean-up/meta tasks
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Heptane Mapping for 963

@ Handle larger problem sizes per node
@ Higher computation-to-communication ratios
@ More power efficient

@ Not enough room in 6 GB GPU framebuffer

@ OpenACC requires code changes

@ Legion analysis is independent of problem size
@ Larger tasks -> fewer runtime cores
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Performance Results
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Legion S3D DME Performance

@ 1.71X - 2.33X faster between 1024 and 8192 nodes
@ Larger problem sizes have higher efficiency
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Legion Heptane Performance

@ 1.73X - 2.85X faster between 1024 and 8192 nodes
@ Higher throughput on Keeneland (balanced CPU+GPUs)
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Legion PRF Performance

@ 116 species mechanism, >2X as large as heptane
@ Legion uses different mapping approach
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Current Work



Liszt Legion

local liszt

var delta = e'head.pos edges.head . LEGION_READ
- e'ta'i]_.pos edges.ta-i-l. . LEGION_READ
e.rest_len = L.len(delta) edges.rest_len : LEGION_READ_WRITE
end
Phase Analysis Legion Permissions
dragon.edges:map(InitLength) |L. (:
| CF |— AF |~ CF —~ AF
for i = 1,300 do 1 1
dragon.vertices:foreach(ComputeForces) ME ME

dragon.vertices:foreach(ApplyForces)
dragon.vertices:foreach(MeasureEnergy)
end

Legion Task Graph
Seq. Bulk Data-Parallel
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Legion
@ Legion website: http://legion.stanford.edu

@ Github repo: http://github.com/stanfordlegion

@ Questions?
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