
Efficient Parallelization of MATLAB Stencil
Applications for Multi-Core Clusters

Johannes Spazier, Steffen Christgau, Bettina Schnor

University of Potsdam, Germany

WOLFHPC 2016, Salt Lake City, USA

November 13, 2016

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 1/29



Outline

1 Introduction

2 Message Passing Interface

3 Hybrid Programming

4 Conclusion

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 2/29



Outline

1 Introduction

2 Message Passing Interface

3 Hybrid Programming

4 Conclusion

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 3/29



Introduction

MATLAB

approved as high-level language for scientific computing

significantly reduced implementation effort

enables fast prototyping of mathematical models

well-suited for stencil applications

drawback: slow execution through interpreter

no out-of-the-box parallelization

⇒ insufficient performance for large data sets

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 4/29



Introduction

StencilPaC Overview

MATLAB to parallel C compiler

C Compiler
(gcc)

MATLAB
source

StencilPaC
Compiler

generated
C code

final
executable

MPI
headers

MPI
libraries

command
line options CMD

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 5/29



Introduction

StencilPaC Overview

automatic parallelization for matrix operations

B(X ,Y ) = M1 (X1,Y1) ◦ . . . ◦Mn (Xn,Yn)

support different architectures
I shared and distributed memory systems, accelerators

build on common programming APIs
I OpenMP, MPI and OpenACC

Y

X

B

= Y1

X1

M1

⊗ ...⊗ Yn

Xn

Mn

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 6/29



Introduction

Applications

two grid-based stencil applications

domain update over multiple iterations

manual reference implementations in C/C++

EasyWave

tsunami simulation developed at the
German Research Center for Geosciences

access pattern: 5-point-stencil

Cellular Automaton

idealized model for biological systems

9-point-stencil (moore neighborhood)

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 7/29



Introduction

StencilPaC Overview

generated C code is much faster than MATLAB
for both applications

improvements of more than

I 7 times with sequential code

I 21 times on an 8 core shared memory system

I 187 times with an NVIDIA Tesla K40m

for the memory-bound tsunami simulation EasyWave

even better results for the Cellular Automaton

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 8/29



Introduction

StencilPaC Overview

distributed systems are most challenging

I automatic partitioning of matrices

I generic handling of communication between processes

I partial computation

small runtime overhead is essential

focus on MPI one-sided API in previous work

today: concepts of and comparison with

I two-sided communication

I hybrid programming

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 9/29



Outline

1 Introduction

2 Message Passing Interface

3 Hybrid Programming

4 Conclusion

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 10/29



Message Passing Interface

Principles

degree of parallelization is given by the
number of processes

distribute matrices evenly among the
processes

one-dimensional domain decomposition
(block of columns)

compute local parts in parallel

set up communication at runtime

provide appropriate ghost zones

X

Y

P
ro
ce
ss

0

P
ro
ce
ss

1

P
ro
ce
ss

2

Lghost Rghost

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 11/29



Message Passing Interface

Distributed Computation

choose base matrix B

B(X ,Y ) = M1 (X1,Y1) ◦ . . . ◦Mn (Xn,Yn)

compute local part of B

for (j = 0; j < length(X); j++) {
if (is_local( B, X(j) )) {

for (k = 0; k < length(Y); k++) {
B( X(j), Y(k) ) = M1( X1(j), Y1(k) )

◦ ...
◦ Mn( Xn(j), Yn(k) );

}
}

}

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 12/29



Message Passing Interface

1. One-sided Communication

direct access on remote memory with MPI Get

ghost zones can be fetched without involving other
processes

ranks calculated based on equally sized partitioning

coarse-grained synchronization with
MPI Win fence

⇒ simple API for generic data exchange

⇒ less administration at runtime

⇒ expensive synchronization

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 13/29



One-sided Communication

Generic Data Exchange

B(X ,Y ) = M1 (X1,Y1) ◦ . . . ◦Mn (Xn,Yn)

MPI_Win_fence( 0, Mi.win );

for (j = 0; j < length(X); j++) {
if (is_local( B, X(j))) {

if (!is_local(M1, X1(j)))
MPI_Get(M1.win, X1(j) ...);

...
if (!is_local(Mn, Xn(j)))

MPI_Get(Mn.win, Xn(j) ...);
}

}

MPI_Win_fence( 0, Mi.win );

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 14/29



Message Passing Interface

2. Two-sided Communication

exchange ghost zones via messages

both sender and receiver are involved

send operations must also be provided

use non-blocking operations to avoid deadlocks
(MPI ISend and MPI IRecv)

synchronize with MPI Waitall

⇒ pair-wise synchronization

⇒ additional administration required

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 15/29



Two-sided Communication

Generic Data Exchange

B(X ,Y ) = M1 (X1,Y1) ◦ . . . ◦Mn (Xn,Yn)

for (j = 0; j < length(X); j++) {
if (is_local( B, X(j)))

if (!is_local(M1, X1(j)))
MPI_Irecv(M1.vdata, X1(j), ...);

if (is_local(M1, X1(j)))
if (!is_local(B, X(j)))

MPI_Isend(M1.vdata, X1(j), ...);

/* Repeat for other matrices. */
}

MPI_Waitall( Mi.reqnr, Mi.requests, ...);
Mi.reqnr = 0;

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 16/29



Evaluation: One- vs. two-sided

EasyWave

●

●

●

●

●

●

●

●

●

●

●

197.50

103.67

63.31

36.62

21.90

13.71

8.98

207.21

106.21

64.76

37.45

21.89

13.57

8.37

6.23

7.16

10

25

50

100

200

1 2 4 8 16 32 64 96
Number of Processes

R
un

tim
e 

in
 S

ec
on

ds

●  EasyWave Manual MPI
 EasyWave Auto MPI One−Sided
 EasyWave Auto MPI Two−Sided

Platform

12 dual-socket nodes

4-core Intel Xeon CPUs

InfiniBand Network

Open MPI 1.8.2 and
GCC 4.9.1

Results

generated codes can keep
up with hand-written one

similar scaling of all
versions

two-sided is 13% faster
than one-sided

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 17/29



Evaluation: One- vs. two-sided

Cellular Automaton

●

●

●

●

●

●

●

●

●

●

●

362.79

183.01

93.13

45.81

23.08

11.78

6.31

4.27

363.65

183.14

92.91

45.85

22.98

11.61

5.97

4.00

10

25

50

100

200

400

1 2 4 8 16 32 64 96
Number of Processes

R
un

tim
e 

in
 S

ec
on

ds

● CA Auto Char MPI One−Sided
CA Auto Char MPI Two−Sided

Results

overall adequate scaling

speedup of at least 85 on
96 cores

6% improvement with
two-sided version

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 18/29



Evaluation: One- vs. two-sided

Summary

similar findings for both applications

satisfying scaling even for larger core counts

runtime of hand-written codes almost reached

two-sided MPI implementation performs better
than one-sided

I despite higher runtime overhead

I benefiting from fine-grained synchronization

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 19/29



Outline

1 Introduction

2 Message Passing Interface

3 Hybrid Programming

4 Conclusion

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 20/29



Hybrid Programming

Two-sided MPI + OpenMP

each MPI process spawns multiple threads

work is divided statically among these
threads

simple combination leads to serious load
imbalances

process distribution and thread partitioning
interfere

amount of computational work varies

#pragma omp parallel for private(k)
for (j = 0; j < length(X); j++)
if (is_local( B, X(j) ))

for (k = 0; k < length(Y); k++)
B( X(j), Y(k) ) = ...

0 1y

x

1 n n+1 2n

10
00

11
01

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 21/29



Hybrid Programming

1. Dynamic Scheduling

use dynamic scheduling of threads

chunks are assigned at runtime

better sharing of computational work
expected

easy implementation with

#pragma omp parallel schedule(dynamic)

additional runtime overhead

0 1y

x

1 n n+1 2n

10
00

10
00

10
00

10
00

11
01

11
01

11
01

11
01

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 22/29



Hybrid Programming

2. Intersection Approach

optimization for special matrix access

based on MATLAB’s range index

start:step:end = [start, start+step, ..., end]

local portion can be determined in advance

no locality check at runtime anymore

enables static thread scheduling again

Local matrix portion Global index range Local index range

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 23/29



Evaluation: Hybrid Programming

Cellular Automaton

●

●

●

●

●

●

●

●

●

●

●

182.59

91.54

46.32

23.99

11.86

7.79

5.96

4.06

182.90

92.33

46.68

24.50

12.37

8.26
6.58

4.57

363.65

4.00

10

25

50

100

200

400

1 2 4 8 16 32 64 96
Number of Processes

R
un

tim
e 

in
 S

ec
on

ds

● CA Auto Char MPI Two−Sided
CA Auto Char Hybrid Two−Sided Dynamic
CA Auto Char Hybrid Two−Sided Intersect

Results

pure MPI version
performs best

similar results with hybrid
intersection

overhead of 14% with
dynamic scheduling

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 24/29



Evaluation: Hybrid Programming

EasyWave

●

●

●

●

●

●

●

●

●

●

●

106.79

65.96

41.97

24.25

14.82

10.29
8.80

6.54

107.30

56.22

34.43

19.52

11.25

8.82

6.42

4.76

207.21

6.23

10

25

50

100

200

1 2 4 8 16 32 64 96
Number of Processes

R
un

tim
e 

in
 S

ec
on

ds

● EasyWave Auto MPI Two−Sided
EasyWave Auto Hybrid Two−Sided Dynamic
EasyWave Auto Hybrid Two−Sided Intersect

Results

pure MPI better than
hybrid intersection

dynamic approach
outperforms other
versions

improvement of 24%

better load balancing for
memory-bound
applications

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 25/29



Outline

1 Introduction

2 Message Passing Interface

3 Hybrid Programming

4 Conclusion

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 26/29



Conclusion

Successful extension of StencilPaC for multi-core clusters.

Message Passing Interface

well suited for automatic parallelization

slightly better results with two-sided communication

speedups of up to 91 on 96 cores

Hybrid Programming

benefit of hybrid versions depends on application demands

dynamic scheduling can reduce load imbalances
I improvement of 24% on a memory-bound simulation

intersection approach does not show any benefit

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 27/29



Conclusion

Future Work

examine a wider range of applications

consider additional platforms

I use other MPI implementations (e.g. Open MPI 2.0)

I compare different architectures and network types

deeper analysis of observed effects in hybrid programming

evaluate possible use of generated C code on FPGAs

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 28/29



Questions?

Thanks for
your attention.

Johannes Spazier (University Potsdam) Parallelization of MATLAB codes for Multi-Core Clusters WOLFHPC 16, Nov 13 29/29


	Introduction
	Message Passing Interface
	Hybrid Programming
	Conclusion

