
Chuck Yount, Intel Corporation
Josh Tobin, Univ. of CA, San Diego
Alexander Breuer, Univ. of CA, San Diego
Alex Duran, Intel Corporation Iberia, Spain

SC16 6th International Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing (WOLFHPC16), Nov. 13, 2016

Outline

Background

 Example 3D stencil

 Performance considerations

 Optimization techniques and challenges

YASK

 Goal

 Stencil and loop compilers

 Automatic tuner

Summary

2Nov 13, 2016

Stencil Computation

 Iterative kernels that update elements in a 1D, 2D, or 3D grid using a fixed pattern of
neighboring elements

 Fundamental algorithm in many HPC algorithms and scientific simulations, e.g., finite-
difference methods

3

Weather Simulation

Seismic Modeling

Image Processing

Images from https://commons.wikimedia.org

Nov 13, 2016

https://commons.wikimedia.org/

𝑢 𝑡 → 𝑢(𝑡 + 1)

Example 1: 25-point 3D stencil

25 points
from 3D
grid u(t)

…to compute 1
point in u(t+1)

𝑐0𝑢 𝑡, 𝑖, 𝑗, 𝑘

+

𝑟=1

4

𝑐𝑟 𝑢 𝑡, 𝑖 − 𝑟, 𝑗, 𝑘 + 𝑢 𝑡, 𝑖 + 𝑟, 𝑗, 𝑘 + 𝑢 𝑡, 𝑖, 𝑗 − 𝑟, 𝑘

…are input
to this

formula

Nov 13, 2016 4

𝑢 𝑡 → 𝑢(𝑡 + 1)

Example 3D stencil

Inner 3D
loop

iterates in x
direction

Nov 13, 2016 5

𝑢 𝑡 → 𝑢(𝑡 + 1)

Example 3D stencil

Nov 13, 2016 6

𝑢 𝑡 → 𝑢(𝑡 + 1)

Example 3D stencil

Nov 13, 2016 7

𝑢 𝑡 → 𝑢(𝑡 + 1)

Example 3D stencil

Middle 3D

loop iterates

in y dimension

Nov 13, 2016 8

𝑢 𝑡 → 𝑢(𝑡 + 1)

Example 3D stencil

Nov 13, 2016 9

𝑢 𝑡 → 𝑢(𝑡 + 1)

Example 3D stencil

Outer 3D loop

iterates in z

dimension

Nov 13, 2016 10

𝑢 𝑡 → 𝑢(𝑡 + 1)

Example 3D stencil

Repeat for u(t+2)…

“Halo” data

regions

Entire

problem

domain

Nov 13, 2016 11

Performance considerations

Performance issues
 Stencils are often memory-bound

 Naïve implementation may read same input values multiple times for each time-step
with poor cache locality

Common optimization techniques
 Reuse memory of older time steps

 Evaluate multiple neighboring results in parallel using SIMD

 Increase SIMD reuse in 2D or 3D via vector folding

 Evaluate results in blocks sized and shaped to maximize cache reuse (“cache-blocking”)

 Evaluate multiple blocks in parallel using hyper-threading and multi-core

 Extend spatial blocking concept to temporal blocking

 Divide problem across multiple nodes in a cluster

12Nov 13, 2016

Stencil Implementation

Challenges

 Implementing the optimizations can be complex and error-prone

 Optimal tuning requires trading off multiple (sometimes conflicting) optimizations,
each with multiple parameters

 Domain experts may reject code that obfuscates the underlying math

13Nov 13, 2016

Y.A.S.K.  Yet Another Stencil Kernel

Original impetus

 Tool to evaluate the benefits of vector-folding on multiple stencil kernels

 Expanded to include other optimizations listed earlier

Goals

 Create high-performing code from a straightforward specification of stencil equations

 Provide a simple kernel to test stencil performance

– Expose [most] optimization trade-off choices without requiring code changes

– Automate searching through the optimization design space

 Provide ability to integrate code into larger applications

14Nov 13, 2016

High-Level Flow

15

Optimized stencil
calculation and prefetch

code
Stencil-

specification code
Stencil compiler

Loop compiler

Nested loops with
OpenMP, prefetch code,

etc.

Other C++ code

Intel C++
compiler

Executable
stencil kernel

binary

Performance
results

Loop-specification
code

Nov 13, 2016

Stencil Compiler

Goal: automate the process of creating high-performance stencil computation code

Input: C++ scalar code following certain rules
 Inherit from a C++ abstract ‘StencilBase’ class to create a new stencil type
 Define the grid(s) to be used and the names of their dimensions, e.g., “t”, “x”, “y”, “z”
 Create a mathematical expression to define how grid values are related

Process
 Compile stencil specification with existing code to create a new stencil-compiler executable
 Run executable, specifying any stencil parameters (e.g., radius), target architecture, etc.
 Code generator executes the stencil expression to create an abstract syntax tree (AST)
 AST is traversed, optimizations are applied to it, and optimized code is output

Output
 Efficient C++ function to calculate stencil with SIMD, vector-folding, sub-expression reuse, etc.
 Functions for prefetching to L1 and L2
 Declarations of required grids and calculated halo sizes

16Nov 13, 2016

Example 2: Iso3DFD Stencil

Similar to earlier example, but a bit more complicated
 51-point stencil
 Radius = 8
 Inputs from t-1 and constant v grid
 61 FP ops

17Nov 13, 2016

Iso3DFD Stencil Specification for YASK
#include "StencilBase.hpp"

class Iso3dfdStencil : public StencilRadiusBase {

protected:

Grid pressure; // time-varying 3D pressure grid.

Grid vel; // constant 3D vel grid.

Param coeff; // stencil coefficients.

public:

Iso3dfdStencil(StencilList& stencils, int radius=8) :

StencilRadiusBase("iso3dfd", stencils, radius) {

INIT_GRID_4D(pressure, t, x, y, z);

INIT_GRID_3D(vel, x, y, z);

INIT_PARAM_1D(coeff, r, radius + 1); }

virtual void define(const IntTuple& offsets) {

GET_OFFSET(t); GET_OFFSET(x); GET_OFFSET(y); GET_OFFSET(z);

GridValue v = pressure(t, x, y, z) * coeff(0);

for (int r = 1; r <= _radius; r++) {

v += coeff(r) *

(pressure(t, x-r, y, z) + pressure(t, x+r, y, z) +

pressure(t, x, y-r, z) + pressure(t, x, y+r, z) +

pressure(t, x, y, z-r) + pressure(t, x, y, z+r)); }

v = (2.0 * pressure(t, x, y, z))

- pressure(t-1, x, y, z) // subtract pressure from t-1.

+ (v * vel(x, y, z)); // add v * velocity.

pressure(t+1, x, y, z) == v;

}

};

18

Declare grids and
parameters

Define equation for
pressure at t+1

Nov 13, 2016

Example Stencil-Compiler Feature:
Automatic Vector Folding

Background: Traditional 1D vectorization

19

5,1 5,2 5,3 5,4 5,5 … 5,16 5,17 …

4,1 4,2 4,3 4,4 4,5 … 4,16 4,17 …

3,1 3,2 3,3 3,4 3,5 … 3,16 3,17 …

2,1 2,2 2,3 2,4 2,5 … 2,16 2,17 …

1,1 1,2 1,3 1,4 1,5 … 1,16 1,17 …

Logical indices in 2D

1,1 1,2 1,3 … 1,16 1,17 … 2,1 2,2 2,3 … 2,16 …

Layout in memory (1D)

• Traditional 1D vectorization layout (16×1)
• First aligned vector (1,1 … 1,16) is shaded
• Read with simple and efficient aligned vector load

y

x

Nov 13, 2016

Automatic Vector Folding

Background: Traditional 1D vectorization

20

5,1 5,2 5,3 5,4 5,5 … 5,16 5,17 …

4,1 4,2 4,3 4,4 4,5 … 4,16 4,17 …

3,1 3,2 3,3 3,4 3,5 … 3,16 3,17 …

2,1 2,2 2,3 2,4 2,5 … 2,16 2,17 …

1,1 1,2 1,3 1,4 1,5 … 1,16 1,17 …

Logical indices in 2D

1,1 1,2 1,3 … 1,16 1,17 … 2,1 2,2 2,3 … 2,16 …

Layout in memory (1D)

• Unaligned vector (1,2 … 1,17) is shaded
• Can use simple unaligned load or two aligned loads

plus a simple shift instruction to create vector

y

x

Nov 13, 2016

Example: 2D “4x4” vector folding

21

y

x

5,1 5,2 5,3 5,4 5,5 … 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 … 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 … 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 … 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 … 1,8 1,9 …

1,1 1,2 1,3 1,4 2,1 2,2 2,3 … 4,4 1,5 … 4,8 …

• 2D vector-folding layout (4×4)
• First aligned vector (1,1 … 4,4) is shaded
• Read with simple and efficient aligned vector load

Logical indices in 2D

Layout in memory (1D)

Nov 13, 2016

Automatic Vector Folding

Example: 2D “4x4” vector folding

22

y

x

Logical indices in 2D

Layout in memory (1D)

5,1 5,2 5,3 5,4 5,5 … 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 … 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 … 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 … 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 … 1,8 1,9 …

1,1 1,2 1,3 1,4 2,1 2,2 2,3 … 4,4 1,5 … 4.8 …

• Unaligned 4×4 vector (1,2 … 4,5) is shaded
• To read, two aligned vectors (1,1 … 4,4 and 1,5 … 4,8) are loaded, then 12

elements from the first and 4 from the second are assembled into a SIMD
register using a permute instruction

Nov 13, 2016

Automatic Vector Folding

Example Stencil-Compiler Feature:
Automatic Prefetch Generation

23

Full prefetch function loads
all 7 cache lines

This example
stencil reads from
7 cache lines (after
vectorization):

The stencil compiler
generates the
following prefetch
functions:

X-direction prefetch
function loads only these 3
leading cache lines

Y-direction prefetch
function loads only these 5
leading cache lines

y

x

Nov 13, 2016

High-Level Flow

24

Optimized stencil
calculation and prefetch

code
Stencil-

specification code
Stencil compiler

Loop compiler

Nested loops with
OpenMP, prefetch code,

etc.

Other C++ code

Intel C++
compiler

Executable
stencil kernel

binary

Performance
results

Loop-specification
code

Nov 13, 2016

Loop Compiler

Goal: Generate code to visit each point of an n-dim space

 Input: Very simple DSL

– Example: “omp loop(y,x) { prefetch(L1) loop(z) { calc(stencil); } }”

– Can easily change loop paths, index ordering, other features

 Output: C++ code

– Loops annotated with OMP as requested

– Inner loop might generate several loops, e.g.,
– Prefetch L2
– Prefetch L1
– Compute stencil and prefetch L2 and L1
– Compute and prefetch L1 only to avoid over-prefetching L2

– This example would use the correct automatically-generated compute and prefetch
functions generated by the stencil compiler, depending on the inner-loop iteration
direction

25Nov 13, 2016

Platform: Intel® Xeon Phi™ Processor

26

• Up to 8 channels of on-package
Multi-Channel Dynamic Random-
Access Memory (MCDRAM)

• Tested part has 16GiB of
MCDRAM

• Up to 72 cores
• Tested part is the 7250

model with 68 cores
• AVX-512 ISA: 8 DP or 16

SP FP SIMD

Nov 13, 2016

Example Optimizations Applied Manually to Iso3DFD

27

0
.7

1
.5 5
5

.3 2
7

8
.7

5
5

4
.9

5
7

2
.2

6
3

9
.7

6
6

9
.7

8
9

0
.5

9
4

8
.8

1
,0

0
8

.3

1
,0

7
5

.4

0

200

400

600

800

1,000

1,200

Th
ro

u
gh

p
u

t
(G

FL
O

P
S)

Feature added or setting changed

17.6 G
points/sec

Nov 13, 2016

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Intel measurements as of Oct., 2016 on
Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4. See complete configuration details on "Configuration" slide.

http://www.intel.com/benchmarks

Automatic Tuner

Challenge

 Dozens of possible optimization strategies

 Some of these can take hundreds of values (e.g., cache-block dimensions)

 Leads to combinatorial explosion in size of possible design space

Solution

 Use genetic algorithm to select optimizations and tune parameters

 Tuner repeats the following sequence until convergence

– Chooses optimization strategies and parameters based on random values (first
generation) or mutation and crossover (subsequent generations)

– Runs stencil compiler, loop compiler, C++ compiler, and kernel itself

– Inputs resulting performance as fitness

28Nov 13, 2016

High-Level Flow with Tuner

Optimized stencil
calculation and prefetch

code
Stencil-

specification code
Stencil compiler

Loop compiler

Nested loops with
OpenMP, prefetch code,

etc.

Other C++ code

Intel C++
compiler

Executable
stencil kernel

binary

Performance
results

Loop-specification
code

Automated

Tuner

Nov 13, 2016 29

18.4 G
points/sec

Example Optimizations Applied with Automatic
Tuner to Iso3dfd

30

1,125.1

0

200

400

600

800

1,000

1,200

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

T
h
ro

u
g
h
p
u
t

(G
F
L
O

P
S
)

Individuals evaluated

Nov 13, 2016

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Intel measurements as of Oct., 2016 on
Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4. See complete configuration details on "Configuration" slide.

http://www.intel.com/benchmarks

Example 3: AWP-ODC-OS

AWP-ODC: Anelastic Wave
Propagation-Olsen, Day, Cui

 Software that simulates seismic wave
propagation after a fault rupture

 Widely used by the Southern California
Earthquake Center (SCEC) community

 In recent years has primarily run on GPU
accelerated supercomputers

 First ever open source release this year
(BSD-2 license), including port to Intel
Xeon Phi processor, under development
by San Diego Supercomputer Center
(SDSC) at Univ. of CA, San Diego (UCSD)

31

• CyberShake Study 15.4 hazard map for

336 sites around Southern California

• Warm colors represent areas of high

hazard

Nov 13, 2016 Content on this slide courtesy of UCSD

AWP-ODC Numerics

Finite Difference code

 Using a staggered-grid scheme

 Fourth-order accurate in space and second-order accurate in
time

Fifteen grids updated in every time-step

 3 velocity grids

 6 stress grids

 6 grids for auxiliary memory-variables required for accurate
high-frequency simulation

Fifteen grids  fifteen stencils

 Nine 13-point stencils

 Six 9-point stencils

Additionally, free surface boundary computation every
time-step

AWP-ODC stencils, starting from top left:
velocity/stress update, memory variable stencil,
boundary stencil

Nov 13, 2016 Content on this slide courtesy of UCSD 32

AWC-ODC-OS Control Flow

Initialization

Velocity update Update boundary Stress update

Update boundarySource updateOutput

Schematic diagram of AWP-ODC-OS control flow
• Green boxes are kernel stencil updates applied to all 15 updated grids
• Grey boxes are boundary updates that are stencils applied at the z=0 boundary
• All other procedures are in blue
Currently, grid data structures and velocity and stress update functions are provided by YASK and
integrated into rest of application framework, which uses YASK APIs to access grid data

Nov 13, 2016 Content on this slide courtesy of UCSD 33

Preliminary AWC-ODC-OS performance

34

Numerics: Velocity + Frequency-dependent
viscoelasticity and free-surface boundary
conditions

Domain sizes chosen to use most of the
available memory for each platform (MCDRAM
for Intel Xeon Phi processors)

Performance measured in number of Lattice
Update Points per Second, updating 15 grids

Compared time-to-solution per grid-point for:
• Single-socket Intel® Xeon® processor

E5-2680 v3
• Intel Xeon Phi processor 7210 and 7250
• NVIDIA K20X, M40 and Titan X*

131

552

704

1,110 1,140 1,170

E5-2680 K20X M40 7210 Titan X 7250

M
L

U
P

S

Nov 13, 2016

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Measurements created by UC San Diego San
Diego Supercomputer Center (SDSC) as of Oct., 2016. See complete configuration details on "Configuration" slide. *Other names and brands may be claimed as the property of others

Preliminary

Content on this slide courtesy of UCSD

http://www.intel.com/benchmarks
https://anl.app.box.com/v/IXPUG2016-presentation-13

Summary

YASK motivation

 Plethora of techniques exist to optimize stencil code

 Difficult to code optimization and explore trade-offs

YASK enables the HPC programmer to

 Generate high-performing stencil code rapidly and accurately for Intel Xeon and Intel
Xeon Phi processors

 Explore optimization options easily and automatically

 Integrate resulting optimizations into larger applications

35Nov 13, 2016

Resources

Software available

 YASK: https://github.com/01org/yask (MIT OS license)

 AWP-ODC-OS: https://github.com/HPGeoC/awp-odc-os (BSD OS license)

Related collateral

 YASK article: https://software.intel.com/en-us/articles/recipe-building-and-running-
yask-yet-another-stencil-kernel-on-intel-processors

 High Performance GeoComputing Lab: http://hpgeoc.sdsc.edu

 Source of AWP-ODC-OS information and data provided by UCSD:
https://anl.app.box.com/v/IXPUG2016-presentation-13

36Nov 13, 2016

https://github.com/01org/yask
https://github.com/HPGeoC/awp-odc-os
https://software.intel.com/en-us/articles/recipe-building-and-running-yask-yet-another-stencil-kernel-on-intel-processors
http://hpgeoc.sdsc.edu/
https://anl.app.box.com/v/IXPUG2016-presentation-13

37

Experimental Configurations
Configuration details: YASK HPC Stencils, iso3DFD Kernel

Intel® Xeon Phi™ processor 7250: Intel® Xeon Phi™ processor 7250, 68 cores, 272 threads, 1400 MHz core freq. (Turbo

On), MCDRAM 16 GiB, DDR4 96GiB 2400 MHz, quad cluster mode, MCDRAM flat memory mode, Red Hat* Enterprise

Linux Server release 6.7

Configuration details: YASK HPC Stencils, AWP-ODC Kernel

Intel® Xeon® processor E5-2680 v3: Single Socket Intel® Xeon® processor E5-2680 v3, 2.5 GHz (Turbo Off) , 12 Cores,

12 Threads (HT off), DDR4 128GiB, CentOS* 6.7

Intel® Xeon Phi™ processor 7210: Intel® Xeon Phi™ processor 7210, 64 cores, 256 threads, 1300 MHz core freq. (Turbo

On), MCDRAM 16 GiB, DDR4 96GiB 2133 MHz, quad cluster mode, MCDRAM flat memory mode, CentOS* 7.2

Intel® Xeon Phi™ processor 7250: Intel® Xeon Phi™ processor 7250, 68 cores, 272 threads, 1400 MHz core freq. (Turbo

On), MCDRAM 16 GiB, DDR4 96GiB 2400 MHz, quad cluster mode, MCDRAM flat memory mode, CentOS* 7.2

NVIDIA Tesla* K20X (Kepler): Part number 900-22081-0030-000, 1x GK110 CPU, 2688 cores, 732 MHz core freq, 6GiB

2.6GHz GDDR5

NVIDIA M40 (Maxwell): Part number TCSM40M-PB, 3072 cores, 948 MHz base freq, 12 GiB GDDR5

NVIDIA Titan X (Pascal): 3072 cores, 1000 MHz base freq, 12 GiB GDDR5

*Other names and brands may be claimed as the property of others

Legal Disclaimers

38Nov 13, 2016

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or
retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources
of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel
representative to obtain the latest forecast, schedule, specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and
uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the annual report on Form 10-K.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are
accurate.

Intel, Xeon, Xeon Phi, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

http://www.intel.com/performance

