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1  Introduction

Recent advances in low-latency, high-speed network technology coupled with inexpensive commodity
processors have greatly improved cost-effectiveness of parallel computing. Disk technology has also been advancing
rapidly especially with respect to the storage density, capacity and bandwidth. I/O, on the other hand, remains a
major bottleneck in many parallel applications, such as climate modeling, computational chemistry, and
computational fluid dynamics. There are several contributing factors to this problem, for example: non-optimal I/O
behavior of the applications, insufficient I/O resources, or filesystem configuration not matching the application
needs. Whereas application I/O behavior have been studied extensively in the literature, see for example [1,2], the
resource planning and configuration issues have received less attention. A challenging question that many computing
centers face, first in the procurement and then in the operational phase, is how much secondary storage resources are
needed and how to configure them to meet increasing needs of the variety of applications running on their systems.

Parallel I/O systems such as IBM PIOFS, Intel PFS, and PIOUS [3] use the traditional client-server model in
which some processors with attached disks act as I/O servers, while other processors are used as compute nodes and
I/O clients. This model can work well in dedicated (single-application) environments if the I/O subsystem
characteristics match the needs of the particular application. In the multi-application environment, the parallel I/O
system is a shared resource which usually impacts the I/O performance delivered to the simultaneously running
applications. In many cases, it is not economically viable to configure a parallel filesystem to support more than one
I/O-intensive parallel application running simultaneously. The most expensive cost component is not the disk
storage. It is the cost of server nodes (including their infrastructure) which in the client-server systems are separated
from the compute pool. However, in scientific applications, the client-server model is frequently not the only
possible implementation of parallel I/O. In particular, the client-server dichotomy is not required to implement
collective I/O [4]. For example, systems such as Panda [5] and DRA [6] can effectively exploit all local disks on the
compute nodes during a collective I/O operation thus not requiring dedicated I/O servers. Nevertheless, although
collective I/O is effective for some applications, it is not appropriate for others that require more dynamic and
independent (noncollective) access to secondary storage. Certain computational chemistry applications have such
access characteristics, for example [7]. This paper demonstrates that more flexible communication protocols in the
style of Active Messages [8] or VIA [9] when employed in context of I/O on clustered systems with inexpensive
local storage help to achieve very high performance rivaling that of dedicated parallel filesystems for noncollective
I/O, and allow very efficient exploitation of the available system resources by effectively providing only the
necessary subset of functionality of a parallel filesystem but with performance characteristics matching the
application needs.

To support noncollective parallel I/O in a clustered environment without dedicated server nodes, we introduced
a new parallel I/O model called Distant I/O (DIO). We implemented a parallel shared file I/O model using DIO and
demonstrate its advantages in a very I/O-intensive computational chemistry application on the IBM SP. At present
time, the SP represents the largest commercial cluster architecture. DIO targets clustered computer systems in which
disks are attached to compute nodes. This hardware configuration is currently supported by networks of workstations
(NOWs) and by multicomputers (e.g., the IBM SP) and is likely to remain popular in the future because of the
economic and physical attributes of such architectures. DIO supports one-sided access to storage on remote nodes
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that execute the same user application; hence, all processors can participate in a computation and operate as both I/O
clients and (if they have attached disks) servers. A DIO implementation relies for performance on the existence of a
single-sided communication protocol able to initiate an I/O operation on a processor that may be performing other
computation. Lightweight communication protocols such as Active Messages and Fast Messages [10] are well suited
for this purpose. Such facilities allow a DIO implementation to avoid the complexities and overheads associated with
the server processes and daemons required to support a client-server–based approach. The Remote DMA provided by
VIA combined with memory mapped files could be also used to implement the DIO model. However, as VIA
requires locking of memory pages in physical memory, this implementation would not be appropriate for large scale
out-of- core applications.

A primitive Distant I/O mechanism can be used as a building block for higher-level parallel I/O libraries and
systems. We demonstrate how this can be accomplished by describing a DIO-based implementation of the Shared
Files (SF) library on a collection of local disks attached to compute nodes of the IBM SP cluster. This parallel
noncollective I/O library was originally developed by the ChemIO project [7,11]. It allows a user to define “shared
files” that can be accessed and updated independently by any processor in a parallel computation. On the IBM SP,
our DIO-based SF implementation outperforms a comparable implementation based on the IBM PIOFS parallel file
system by a wide margin, when used by a large computational chemistry application, namely COLUMBUS, a
multireference configuration interaction code [12]. An out-of-core version of this code [13] using the Shared Files
library was able to solve a problem [14] six time larger than previously reported which involved moving 1.5 terabyte
of data between disk and main memory per iteration. Furthermore, with the DIO implementation described in this
paper, the execution time for this calculation on 128 processors of the IBM SP was reduced from 305.5 to 79.6 wall
clock hours when compared to the execution on top of the well equipped PIOFS system.

The rest of this paper is organized as follows. In Section 2, the DIO model and implementation on the IBM SP
are described. In Section 3, a parallel shared file implementation using DIO is presented. Section 4 contains
microbenchmark performance results for DIO. Section 5 compares the performance of a large application running on
top of DIO with the performance of PIOFS on the IBM SP. Finally, Section 6 presents our conclusions.

1  Distant I/O Model and Architecture

One-sided communication allows a process in a distributed-memory system to access data residing in the address
space of another process, without the explicit cooperation of the second process. Distant I/O combines one-sided
communication with I/O to secondary storage at remote processors. Distant I/O has several useful properties, includ-
ing:

•  Distributed view of secondary storage: Secondary storage is used as an extension of main memory in

distributed- memory systems and accessed with the convenient one-sided communication paradigm.
•  Flexibility: DIO can be used to implement parallel I/O models and libraries even on systems that lack paral-

lel/shared filesystems. Furthermore, such systems can be customized (for example, by setting striping factors and

caching policies) to match the needs of a parallel application, rather than relying on system-wide settings. This

follows findings presented in [2] that recommend filesystem customization to match the individual application I/O

patterns.
•  Capacity and bandwidth scalability: As the number of application processors with attached disks grows, the

aggregate I/O bandwidth and aggregate capacity proportionally increases.

In order to explore the practical utility of Distant I/O, we have defined a DIO application programmer interface
(API) and constructed an implementation of this API on the IBM SP. The API is based on the C run-time library, but
extends it in four areas:

1.  Instead of a separate seek operation, offset is used as an additional argument to read/write operations.

2.  The file descriptor is replaced by a handle that references a file on a local or remote processor.

3.  A “home” process/processor id is added to identify the location of the file.

4.  A request handle is added to support nonblocking versions of calls.



For example, the following are the DIO counterparts to the standard read and write operations:

dio_read(handle, offset, buffer, bytes, proc, request)

dio_write(handle, offset, buffer, bytes, proc, request)

Nonblocking DIO functions are designed to allow overlapping of remote I/O operations with other activities.
Such operations are completed by calling the dio_wait function, which takes as an argument the request handle
returned by the corresponding dio_write/read operation. The remote file handle is a local representation of the
remote file descriptor. It can be obtained by registering a file for DIO access either through a collective DIO
operation similar to the MPI-2 MPI_Win_create [15] or through a directory service.

1.1   Implementation on the IBM SP

We discuss the architecture of DIO by describing its implementation on the IBM Scalable POWERparallel (SP) sys-
tem. This massively parallel computer has a cluster architecture and employs as building blocks processor nodes sim-
ilar to the IBM RS/6000 workstation. Every node contains at least one local disk based on SSA or SCSI technology.
The nodes are connected through a high-speed network that supports 38 µsec one-directional latency and 100 MB/s
bandwidth in the point-to-point user-space communication [16]. In addition, some larger SP configurations support
an optional parallel filesystem, PIOFS. PIOFS is striped on multiple disks connected to dedicated PIOFS server
nodes. IBM recently introduced another parallel filesystem, GPFS. However, it is not yet available on large SP sys-
tems.The IBM SP supports LAPI [16], a commercial implementation of Active Messages [1,17] that provides active
message functionality, put, and get one-sided remote memory copy operations. LAPI is a multithreaded system com-
patible with Pthreads, which are supported by the IBM AIX 4.2 operating system on the IBM SP.

Our DIO implementation on the IBM SP uses LAPI Active Messages (AM) to send specifications of read/write
operation to remote nodes. Upon arrival, the AM completion handler is invoked and executed by a separate thread.
Within the handler code, LAPI remote memory copy and Unix I/O are used. For dio_write, LAPI_Get transfers data
to an internal DIO buffer. This step is followed by a blocking write. For dio_read, blocking read is followed by
LAPI_Put, which transfers data read from the disk to the internal DIO buffer and then to the user buffer at the
requesting processor. This process is illustrated in Figure 1 for dio_read.
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The IBM SP implementation of DIO nonblocking operations exploits Posix asynchronous I/O (AIO) when a
DIO operation references a file on the local disk. If the data is on a remote disk, the operation returns when an active
message is sent to the remote processor. The AM completion handler is executed by a separate thread, which is
activated by the LAPI dispatcher when a message arrives [16]. This thread executes concurrently with the main
(application) thread and makes the blocking I/O read/write call. When the I/O is completed and the completion
handler finishes, LAPI implicitly sends a low-level control message to the requesting processor, which then
increments the AM completion counter cntr, see Figures 1. This optional feature is enabled when a non-NULL
completion counter address is specified in the LAPI_Amsend interface. If the data is on a remote file, the dio_wait
operation waits until this counter is incremented, a process that occurs when the completion handler and I/O
operation it executes are completed. If the data is on a local file, the dio_write simply calls its Posix AIO counterpart.
We note that although the counter mechanism in LAPI AM interface is convenient, it is not mandatory to implement
DIO. Other active-message–style facilities, including the Berkley/Cornell AMs [8]and Illinois FM [10], could be
used in a similar fashion to implement DIO on other platforms, including networks of workstations. In particular, the
notification of I/O completion can be accomplished with an explicit message sent back to the requesting node. In
addition, the implementation described in this section is applicable both to clusters with uniprocessor and
multiprocessor nodes.

The LAPI-based implementation of DIO can be used by MPI programs. However, it cannot be used by
applications that rely on MPL, the original IBM proprietary message-passing library still available on the IBM SP.
The reason for this incompatibility is that the message delivery subsystem of MPL is based on signals. The most
recent implementation of MPI and LAPI both use threads. Unlike MPL, MPI is available in two implementations:
signal and thread-based. In our experience, the thread-based implementation of MPI is competitive with the signal-
based implementation of that library.

1.1.1   Memory management in Active Message processing

With the LAPI Active Message library, the application provides memory that the library uses to copy data
arriving from the network. This requires from DIO to do memory management and flow control to avoid
overflowing its I/O buffers or depleting local memory resources, which for example could happen when many
dio_write request targeted one particular node. A common solution used in implementation of message passing
libraries is to allocate one buffer per task on every node. However, with this solution memory consumption on every
node is proportional to the number of tasks which would limit scalability of DIO. We designed a protocol that allows
DIO to minimize the memory consumption and use only one buffer (~100KB) on each node. In dio_write, instead of
sending request specification with the data to be written (LAPI_Amsend supports very large messages) we separated
transfers of the request information and the data. The transfer of request is initiated by sender, and transfer of data is

initiated by receiver. The increased latency of this protocol (~80µS extra) is negligible comparing to the disk access
time. Since dio_write is nonblocking, it does not have to appear on the critical path of computations performed by the
sender.



Figure 2 demonstrates the flow of data and processing used in the dio_write (nonblocking) operation and dio_wait
operation that completes processing started by dio_write. On the requesting side, a dio_write operation returns very
fast to the caller, immediately after the specification of the I/O operation is sent to remote node. The operation
involves sending an LAPI active message describing parameters of the request: offset in remote file, request size, file
handle, pointer to the user buffer with the data and requesting process(or) id. The header is very short (20 bytes), and

LAPI is able to send asynchronously 32 of such messages in time less than 13 µS each. Upon the message arrival,
the LAPI dispatcher runs the user-specified callback function, header handler. The role of header handler is to copy
the request parameters to a temporary space and return address of another callback function, the completion handler.
The header handler must not block or perform any communication operations because when it is running a portion of
the LAPI dispatcher code is locked which prevents progress in the communication on this node. The completion
handler is executed by another thread which up to this time was blocked waiting for a condition variable to be
signalled by the dispatcher. Once completion handler starts, it is able to access the DIO request specification. In
dio_write, data is transferred from the requesting node to the internal DIO buffer in chunks. Each chunk is written to
the local file and then next chunk is transferred. Since there can be only one instance of completion handler running
per task, one buffer is sufficient. After I/O operation in completion handler thread are finished, the handler returns.
LAPI dispatcher blocks the thread and then sends an acknowledgment to the requesting node.
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Figure  2: Processing in dio_write and dio_wait operation by requesting process and at remote location. The
numbers specify sequence of operations.



2  Parallel Shared Files

We used the Distant I/O model to construct an implementation of Shared Files (SF), a parallel I/O library we had de-
veloped before [7]. This library supports the concept of a parallel file with every process in a parallel computation
being able to read and write independently at arbitrary locations. This disk access model is similar to the parallel files
created in the M_UNIX mode on the Intel PFS and the default parallel file mode supported by the IBM PIOFS. The
differences between SF and these other systems include the following:

•  Shared files are not guaranteed to be persistent. Persistency is a property of the filesystem on which SF is
implemented, rather than the model itself.

•  Shared Files support files larger than 2 GB in the Fortran API [7].

•  The user can specify hints for “typical request” size, and “maximum expected” file size in sf_create interface
when created a new shared file.

•  Shared Files read and write operations are nonblocking (a feature not yet available in standard Fortran-
77/90) and contain an offset argument rather than a separate seek operation:

rc = sf_write(handle, offset, bytes, request_id)

rc = sf_read(handle, offset, bytes, request_id)

Similarly to parallel filesystems, the SF library does not perform explicit control of consistency in concurrent
accesses to overlapping sections of the shared files. For example, SF semantics allows a write operation to return
before the data transfer is complete, which requires special care in programs that perform write operations in critical
sections, since unlocking access to a critical section before write completes is unsafe. An sf_wait function is provided
to enforce completion of the data transfer so that the data can be safely accessed by another process after access to
the critical section is released by the writing process.

The actual size of a shared file might grow as processes perform write operations beyond the current end-of-file
boundary. Data in shared files are implicitly initialized to zero, meaning that read operations at locations that have
not been written return zero values. However, reading beyond the current end-of-file boundary is erroneous and the
result undefined. We take advantage of this property in the optimized implementation of shared files on collection of
local disks.

In essence, the Shared Files library at run-time presents to the application a view of a file residing in a parallel
filesystem. The file is not guaranteed to persist beyond the program execution and cannot be accessed with the usual
set of operating system commands. However, because of the restricted access model and availability of hints
directing the implementation, a high performance implementation matching the application needs becomes possible.



1.1   High performance implementation of parallel shared files

The DIO implementation of shared files uses a collection of component files, each located on a disk on a
different compute node, to represent a parallel file. On IBM SP, the shared file is implemented by striping a parallel
logical file across multiple physical files located on all disks available on the computing nodes on which the parallel
application is running, see for Figure 3.

 It uses Distant I/O to perform remote read/write operations. Based on an input from the user for the “typical
request size,” SF determines a value of the striping factor when a file is created. If this (optional) information is not
available, an empirically determined value (e.g., 32 kB) is used.

The DIO implementation of Shared Files exploits the properties of this I/O model to optimize performance. In
particular, there is no central directory that stores and updates dynamically changing parameters of the component
files such as their size. When the application writes beyond the logical end-of-file boundary in the shared file, a gap
can be created. In Unix and Windows NT (NTFS, but not FAT), file gaps are interpreted implicitly as filled with
zeros. A gap in a shared file might create a situation when the size of one or more component files becomes not
consistent (too small) with the size of the shared file, see Figure 4.
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 In some circumstances, with this discrepancy a valid read request to shared file could generate a DIO read
request beyond the end of component file. To address this problem and avoid the costs of maintaining and updating a
centralized directory holding component file state, we modified the standard behavior of Distant I/O read operation
which under normal circumstances disallowed reading beyond end of file. With this modified behavior, a DIO read
operation beyond the end of file returns values read found in the component file and extends its size. This adjustment
is done only when read or write operation on that file is performed. In such a case, we extend the component file by
writing a zero value at the appropriate location beyond the end of the file.

The original Shared Files implementation used the ELIO (Elementary IO) device library [7,11] as its portability
layer. We added DIO as another device library compatible at run time with ELIO. This allows multiple filesystem
implementations (e.g., PIOFS and local JFS files in AIX) in the same application and enables one to dynamically
select, at run time, which implementation to use, see Figure 5. The library uses the path specified in the metafile
name to determine whether it points to a filesystem shared by all the processors (like PIOFS); if it does not, SF
selects a DIO-based implementation for this particular shared file.

With the DIO implementation, the I/O activity performed by the application is localized to the set of resources
on the compute nodes the application is running. With exception of sharing the switch bandwidth, it does not have
other effects on other applications in the system that, for example, might be performing I/O to the parallel filesystem.

2  Performance

We measured the performance of DIO by writing and reading 1 GB (eight times the amount of main memory on a
processor, to avoid caching effects) of data from both a local and a remote file. The request size varied from 4096 to
32,768 bytes. We tested two disk configurations on the 512-node IBM SP with 120MHz Power2 Super processors at
Pacific Northwest National Laboratory (PNNL). In one configuration, the local JFS filesystem was mounted on a
single SCSI disk; in the second configuration, it was striped on two identical SCSI disks (a bandwidth optimization).

Figures 6 and 7 show that the I/O rates for remote requests approach local rates as the request size increases.
The relatively small differences between local and remote I/O can be attributed to the efficiency of LAPI, especially
when comparing it to the disk access time. (The bandwidth in LAPI_Put (used in dio_read) grows much faster with
increased message size than in the MPI point-to-point message-passing [16] and, for example, achieves more than 70
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MB/s bandwidth for messages as short as 4096-bytes.) However, the overhead associated with Active Messages
processing (including the handler execution by a dedicated thread scheduled by AIX) contributes to the larger
difference in performance for smaller requests.



2  Application Experience

The multireference configuration interaction (MRCI) method is widely used in computational chemistry to obtain ac-
curate predictions of properties of chemical systems. The MRCI method is arguably the most generally-applicable,
high-accuracy method for determination of the electronic structure of small molecules. It can be used to predict the
energetics and other properties of molecular systems from which may be derived chemical information including
thermochemistry, spectroscopy and detailed models of chemical reactions. Since the computational expense scales as
greater than the sixth power of the molecular system size, it is only applicable to small molecules. Details of the
algorithms and methodology used in the COLUMBUS MRCI code are given elsewhere [12,13]. From the
mathematical perspective, the program solves the eigenvalue problem for a very large sparse symmetric Hamilton
matrix by using the standard Davidson method. A set of expansion vectors is used to project the original eigenvalue
problem to a subspace eigenvalue problem that has a much smaller dimension. Because of the very high accuracy of
the MRCI method, even for a very small molecule, the matrix becomes very large. To date, the state-of-the-art
calculations in this area have been for 100 to 200 million of the configuration state functions (Hamilton matrix
dimension). Despite using sparsity techniques and highly effective compression scheme to reduce the storage
requirements such large calculations cannot be performed in-core.

To address memory limitations, COLUMBUS adopted a disk-based approach using the SF library [7]. This
application is using shared memory programming model with data located in distributed system memory and in
secondary storage. The calculations are performed in an MIMD task-parallel fashion driven by data-dependent
dynamic load balancing. The program allocates all possible distributed main memory for a one-dimensional global
array [18] and then creates an SF shared file to store data that does not fit in the distributed main memory. Secondary
storage is accessed in a noncollective fashion, with individual processors reading and writing records containing
compressed data. Data is read from disk, uncompressed, updated, compressed, and written back to the disk. Since the
update can affect the compression rate, the size of the data written to the disk might be different from that of the
original data. A distributed lock mechanism supported by the Global Arrays library [18] is used by COLUMBUS to
assure atomicity when updating critical sections. The average I/O request size in this program is approximately 30
KB. Due to the algorithm properties and the amount of available in-core memory, the request size could not be
increased.

We used both PIOFS and DIO implementations of Shared Files to solve the largest MRCI problem ever
attempted, represented by a matrix of dimension 1.3 billion (1,295,937,374 configuration state functions). The
calculations were performed on 128 processors of the IBM SP at PNNL. We monitored the PIOFS activity during the
program execution to assure that there were no other I/O-intensive applications using PIOFS at the same time. The
science results obtained from this challenging calculation are presented in [14]. We report timing results for two
execution environments:

•  SF-PIOFS (44 servers with 4 SSA disks each, which appears to be the largest PIOFS configuration

available at that time anywhere) and MPL communication and

•  SF-DIO on top of local disks (not striped) and the LAPI Active Messages library.

We were not able to use GPFS, a new IBM parallel filesystem, since as the time of this writing it does not
support systems as large as 512 nodes.

Table 1: I/O read performance in COLUMBUS using Shared Files library on top of PIOFS
and DIO

Data Volume I/O time Bandwidth

per CPU

PIOFS 900.963GB 906297.07s 0.994MB/s

DIO 900.957GB 235708.32s 3.823MB/s



The I/O-related statistics are given (per iteration) in Table 1. The first column contains the amount of data read
from secondary storage, corresponding to “reading expansion vectors” phase in Figure 8.

It is slightly different for the two versions because of the dynamic nature of the load balancing and the
algorithm properties. The second column indicates the total time wall-clock time spent reading data, summed over all
processors. The 900GB constitutes the larger portion of 1.5 TB aggregate I/O volume per iteration in this calculation.
We do not report write rates because the I/O buffering layer in AIX makes them difficult to measure reliably and
non-intrusively in a context of a complex application such as COLUMBUS rather than in a synthetic benchmark. The
last column gives the average bandwidth rate per I/O request and per processor. These results show that the DIO-
based implementation of SF outperforms PIOFS by a factor of four in this particular application. The SF-DIO read
rates measured in COLUMBUS are only 25% lower than those measured by our microbenchmark for DIO alone (see
Figure 6). This small difference is due to the overhead of the SF layer (striping), some degree of contention when
accessing data, and the fact that the every node used in calculation played a part-time role of an I/O client and I/O
server.

The overall execution time of COLUMBUS is over 70% shorter (79.6 vs. 305.5 hours) for the DIO-based
implementation than for PIOFS. The improvement can be contributed to increased efficiency of I/O and faster
interprocessor communication. The original implementation of this application used the IBM MPL communication
library and PIOFS. Although LAPI is faster (and incompatible) with MPL, this I/O-bound application is spending
only 10% time on the interprocessor communication in the computational phase labelled “reading integrals” in
Figure 8. Therefore, the increase of the overall performance than can be contributed to the improvement in I/O is
estimated to be at least 65%.

2  Conclusions

We have proposed a new approach to parallel I/O, called Distant I/O, that exploits Active Message communication
on clustered systems with attached disks. This model avoids scalability problems and software overhead associated
with client-server implementations of parallel filesystems, and supports the construction of scalable secondary
storage systems based on attached disks. DIO provides one-sided and asynchronous access to disks attached to
remote processors: in effect, it extends the one-sided communication model to secondary storage. We implemented
this model using Active Messages and Posix asynchronous I/O on the IBM SP. Our implementation approach is
directly applicable to clusters of workstations on which various flavors of active-message–style communication
facilities are available. We have used DIO to implement a higher-level parallel noncollective I/O library. In
particular, we have constructed a DIO-based implementation of the Shared Files library by striping parallel-shared
files on local disks attached the IBM SP nodes. The obtained I/O performance is excellent when measured by a
microbenchmark and by a large I/O- intensive scientific application, COLUMBUS. It shows that a very high

Figure  8: Data volume moved per iteration in main computational phases of the calculation: 1.5TB between disk and
memory, the rest in interprocess communication



utilization of I/O resources by a complex application is achievable with our approach. This I/O technology enabled
COLUMBUS to solve a problem six times larger than previously reported in its particular area of science.
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