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Disk Resident Arrays: An Array-Oriented I/O Library for
Out-of-Core Computations

Abstract
In out-of-core computations, disk storage is treated as an-
other level in the memory hierarchy, below cache, local
memory, and (in a parallel computer) remote memories.
However, the tools used to manage this storage are typically
quite different from those used to manage access to local and
remote memory. This disparity complicates implementation
of out-of-core algorithms and hinders portability. We de-
scribe a programming model that addresses this problem.
This model allows parallel programs to use essentially the
same mechanisms to manage the movement of data between
any two adjacent levels in a hierarchical memory system. We
take as our starting point the Global Arrays shared-memory
model and library, which support a variety of operations on
distributed arrays, including transfer between local and re-
mote memories. We show how this model can be extended to
support explicit transfer between global memory and sec-
ondary storage, and we define a Disk Resident Arrays li-
brary that supports such transfers. We illustrate the utility of
the resulting model with two applications, an out-of-core
matrix multiplication and a large computational chemistry
program. We also describe implementation techniques on
several parallel computers and present experimental results
that demonstrate that the Disk Resident Arrays model can be
implemented very efficiently on parallel computers.

1 Introduction
We address the problem of managing the movement of large
arrays between different levels in the storage hierarchy of a
parallel computer. As is well known, parallel programming
can be simplified by libraries or languages that support dis-
tributed array abstractions and that manage automatically the
often onerous conversions between local and global indices
[1,2]. In this paper, we examine how such abstractions can
be extended to allow programmer management of data trans-
fer between memory and secondary storage. In particular, we
describe the design, implementation, and evaluation of a sys-
tem called Disk Resident Arrays that extends the distributed
array library called Global Arrays (GA) to support I/O.

The GA library [2, 3] implements a shared-memory
programming model in which data locality is managed ex-
plicitly by the programmer. This management is achieved by

explicit calls to functions transferring data between a global
address space (a distributed array) and local storage. In this
respect, the GA model has similarities to distributed shared-
memory models that provide an explicit acquire/release pro-
tocol [4,5]. However, the GA model acknowledges that re-
mote data is slower to access than local data and allows data
locality to be explicitly specified and used. It is also distin-
guished by its focus on array data types and blocked access
patterns and by its support for collective operations. The GA
library allows each process in a MIMD parallel program to
access, asynchronously, logical blocks of physically distrib-
uted matrices, without the need for explicit cooperation by
other processes. This functionality has proved useful in nu-
merous computational chemistry applications, and today
many programs, totally nearly one million lines of code,
make use of GA (R.J. Harrison, personal communication),
with NWChem [6] alone exceeding 250,000 lines.

The GA model is useful because it exposes to the pro-
grammer the Non-Uniform Memory Access (NUMA) char-
acteristics of modern high-performance computer systems,
and by recognizing the communication overhead for remote
data transfer, it promotes data reuse and locality of reference.
As illustrated in Figure 1, the Disk Resident Arrays (DRA)
model extends the GA model to another level in the storage
hierarchy, namely, secondary storage. It introduces the con-
cept of a disk resident array—a disk-based representation of
an array–and provides functions for transferring blocks of
data between global arrays and disk resident arrays. Hence, it
allows programmers to access data located on disk via a sim-
ple interface expressed in terms of arrays rather than files.
The benefits of global arrays (in particular, the absence of
complex index calculations and the use of optimized,
blocked communication) can be extended to programs that
operate on arrays that are too large to fit into memory.

Disk Resident Arrays have a number of uses. They can
be used to checkpoint global arrays. Implementations of out-
of-core computations can use disk resident arrays to imple-
ment user-controlled virtual memory, locating arrays that are
too big to fit in aggregate main memory in disk resident ar-
rays, and then transferring sections of these disk resident ar-
rays into main memory for use in the computation. DRA
functions are used to stage the disk resident array into a glo-
bal array, and individual processors then use GA functions to
transfer global array components into local storage for
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computation. If the global array is updated, a DRA write op-
eration may be used to write the global array back to the ap-
propriate component of the disk resident array. The matrix
multiplication algorithm described below has a similar struc-
ture.

While the DRA library forms a stand-alone I/O pack-
age, it also forms part of a larger system called ChemIO. The
ChemIO project is developing high-performance I/O tech-
niques specialized for scalable computational chemistry al-
gorithms designed to exploit future Teraflop systems. These
techniques are encapsulated in a standard I/O API designed
to meet the requirements of chemistry applications. This API
supports three distinct I/O patterns: disk resident arrays, ex-
clusive access files (independent I/O on scratch files allocat-
ed on a per-processor basis), and shared files (independent
I/O on scratch files shared by multiple processors). Applica-
tion experiments, performance optimization, and the devel-
opment of an integrated ChemIO system are ongoing
activities.

The principal contributions of this paper are as fol-
lows:

1. The definition of a high-level I/O model, Disk Resident
Arrays, that provides a particularly simple interface to
parallel I/O functionality for scientific applications re-
quiring out-of-core or checkpointing mechanisms.

2. The integration of disk resident arrays and global arrays,
to provide a programming model in which programmers
can control locality at multiple NUMA levels, by man-
aging the movement of data between local memory, re-
mote memory, and secondary storage.

3. Performance studies using synthetic and matrix multipli-
cation benchmarks on the IBM SP and Intel Paragon,
which demonstrate that the DRA library achieves very
good I/O performance and efficiency on both machines.

In addition, we provide an initial report on the suitabil-
ity of the DRA library for a large-scale computational chem-
istry program. This experiment suggests that its functionality
is useful for a variety of applications.
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Figure 1: Access to NUMA memory with Global Array and
Disk Resident Array libraries

In the rest of this paper, we describe the design, imple-
mentation, application, and performance of Disk Resident
Arrays. In Section 2, we review Global Arrays. In Section 3,
we introduce Disk Resident Arrays, in Section 4 we discuss
implementation issues, and in Section 5 we describe DRA
applications and performance on the Intel Paragon and IBM
SP.

2 Global Arrays
The GA library provides collective functions for creating
and destroying distributed arrays and for performing linear
algebra operations such as matrix-matrix product or eigen-
solving on global arrays or sections of these arrays. Howev-
er, its distinguishing and most important features are its
emphasis on locality of reference, and its noncollective func-
tions that allow any processor to transfer data between a lo-
cal array and a rectangular patch of a global array in a shared
memory style. Noncollective fetch, store, accumulate, gath-
er, scatter, and atomic read-and-increment operations are
supported. Global Arrays were designed to complement
rather than replace the message-passing programming mod-
el. The programmer is free to use both the shared-memory
and message-passing paradigms in the same program and to
take advantage of existing message-passing software librar-
ies.

We use a simple example to illustrate the GA model.
The following code fragment (written using the Fortran 77
language binding) uses the Fortran interface to create a dis-
tributed double-precision array of sizen×m, blocked in
chunks of size at least 10×5. This array is then zeroed and
patch filled from a local array. The arguments to the
ga_create  call are the datatype, dimensions, a name, dis-
tribution directives, and the new array handle (output). The
arguments to thega_put  call are a global array handle, the
bounds of the patch within the global array into which data is
to be put, the local array containing the data to be put, and
the lower dimension of the local array.

integer g_a, n, m, ilo, ihi, jlo, jhi, ldim

double precision local(1:ldim,*)

call ga_create(MT_DBL, n, m,‘A’, 10, 5, g_a)

call ga_zero(g_a)

call ga_put(g_a,ilo,ihi,jlo,jhi,local,ldim)

We note that this code is similar in functionality to the fol-
lowing High Performance Fortran (HPF) [1] statements:

integer n, m, ilo, ihi, jlo, jhi, ldim

double precision a(n,m),local(1:ldim,*)

!HPF$ distribute a(block(10),block(5))

a = 0.0

a(ilo:ihi,jlo:jhi) = local(1:ihi-ilo+1,

1:jhi-jlo+1)

The difference is that this single HPF assignment would be
executed in data-parallel fashion, while the GA put operation
is executed in a MIMD mode that permits each processor to
reference different array patches.
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3 Disk Resident Arrays

The Disk Resident Arrays (DRA) library extends the GA
NUMA programming model to disk (Figure 1). The DRA li-
brary encapsulates the details of data layout, addressing and
I/O transfer on a new class of objects called disk resident ar-
rays. Disk resident arrays resemble global arrays except that
they reside on disk instead of in main memory. Operations
similar to the GA data transfer functions support the move-
ment of data between global arrays and disk resident arrays.
DRA read and write operations can be applied both to entire
arrays and to sections of arrays (disk and/or global arrays);
in either case, they are collective and asynchronous.

The focus on collective operations within the DRA li-
brary is justified as follows. Disk resident arrays and global
arrays are both large, collectively created objects. Transfers
between two such objects seem to call for collective, cooper-
ative decisions. (In effect, we are paging global memory.)
We note that the same model has proved successful in the
GA library: operations that move data between two global
memory locations are collective. To date, application pro-
grammers have not expressed a strong desire for noncollec-
tive operations. If demand develops, we will certainly
consider providing some form of data transfer between local
and DRA memory. However, we note that because we would
be jumping between nonadjacent levels in the NUMA hier-
archy, performance may be disappointing, and portable im-
plementations problematic.

The DRA library distinguishes between temporary and
persistent disk resident arrays. Persistent disk resident arrays
are retained after program termination and are then available
to other programs; temporary arrays are not. Persistent disk
resident arrays must be organized so as to permit access by
programs executing on an arbitrary number of processors;
temporary disk resident arrays do not need to be organized in
this fashion, which can sometimes improve performance.
Currently, we make this distinction by specifying that disk
resident arrays remain persistent unless the user deletes them
with adra_delete  function. We create all arrays in vola-
tile temporary space and move nondeleted arrays to a more
accessible location only whendra_terminate  is called
to shut down the DRA library. This approach optimizes per-
formance for arrays that are accessed many times.

We use a simple example to illustrate the use of the
DRA library. The following code fragment creates a disk
resident array and then writes a section of a previously creat-
ed global array (g_a ) to the larger disk resident array (see
Figure 2).Thedra_init  function initializes the DRA li-
brary and allows the programmer to pass information about
how the library may be used and the system on which the
program is executing. This information may be used to opti-
mize performance.

#include ’dra.fh’

#include ’global.fh’

rc = dra_init(max_arrays, max_array_size,

total_disk_space, max_memory)

rc = dra_create(MT_DBL,1000,2000,’Big Array’,

’bigfile’,DRA_W,-1,1,d_a)

rc = dra_write_section(.false.,g_a,1,100,1,

200,d_a, 201, 300, 201, 400,

request)

rc = dra_wait(request)

rc = dra_close(d_a)

rc = dra_terminate()

Thedra_create  function creates a two-dimensional
disk resident array. It takes as arguments its type (integer or
double precision); its size, expressed in rows and columns
(1000×2000); its name; the name of the “meta-file” used to
represent it in the file system; mode information (DRA_W in-
dicating that the new disk resident array is to be opened for
writing); hints indicating the dimensions for a “typical” write
request (-1 indicates unspecified); and finally the DRA han-
dle (d_a ). The function, like all DRA functions, returns a
status value indicating whether the call succeeded.

Thedra_write_section  function writes a section
of a two-dimensional global array to a section of a two-di-
mensional disk resident array. In brief, it performs the as-
signment:

d_big[201:300, 201:400] = g_a[1:100, 1:200]

whered_big  andg_a  are a disk resident array and global
array handle, respectively. The first argument is a transpose
flag, indicating whether the global array section should be
transposed before writing (here,.false. ). The operation
is asynchronous, returning a request handle (request ); the
subsequentdra_wait  call blocks until termination.

4 Implementation
The GA and DRA libraries have been implemented on a
number of systems, including distributed-memory comput-
ers (Intel Paragon, IBM SP, Cray T3D), shared-memory
computers (KSR-2, SGI PowerChallenge), and networks of
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Figure 2: Writing a section of global array to disk resident array
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workstations. Disk Resident Arrays are implemented in dif-
ferent ways on different systems. In some cases, a single
disk resident array is stored as a single file in an explicitly
parallel I/O system (PIOFS on the IBM SP, PFS on the Intel
Paragon) or in a sequential filesystem striped implicitly
across multiple disks (for example, Cray T3D, SGI); in other
cases, a single disk resident array is stored as multiple disk
files (for example, local disks available on every node of the
IBM SP), each containing part of the disk resident array. To
simplify file access in the latter case, we are developing a set
of UNIX commands to copy, rename, move, delete, and
change access attributes of DRA files stored as multiple
files.

Implementation efforts have focused on two related
questions. First, how should disk resident arrays be laid out
on disk to optimize expected data transfers? Second, what
hints can a programmer provide to guide the optimization
process? In general, we assume that DRA functions will be
used for large data transfers. This is certainly the case for all
applications that we have considered to date. Hence, pro-
grammer-supplied hints can focus on characteristics of the
memory system and expected I/O patterns. To support appli-
cations that explicitly manage consumption of local main
memory, we allow user control over the amount of internal
buffer space in the library. The library determines data lay-
out for each array, depending on the amount of memory the
application is willing to sacrifice for DRA buffering, the ar-
ray dimensions, the dimensions of a “typical” request sec-
tion, and characteristics of the underlying file system and I/O
system. Either row-major or column-major storage may be
selected, see Figure 3, and stripe width is chosen to maxi-
mize the size of the corresponding disk I/O transfers. The
number of concurrent I/O requests that the given filesystem
can support without a significant loss of efficiency is also
taken into account. The logical data layout in Figure 3 is
used directly in implementations that store a disk resident ar-
ray in a single file. In implementations that target collections
of independent disks and files, an additional level of striping
is applied, with the result that data is effectively stored in
two-dimensional chunks. A similar approach is adopted in
Panda [7]. Each chunk contains data stored in consecutive
disk blocks. Chunks are sized so as to fit in the DRA buffer;
hence, they can be read or written in a single I/O request.

Figure 3: Two types of data layout on the disk in DRA library

column-major layout      row-major layout This size is typically much larger than the default stripe fac-
tor used in parallel file systems such as PFS or PIOFS. We
have not adopted fixed two-dimensional chunking for disk
resident arrays that are stored in a single file, because the
scheduling of I/O operations that can be obtained with this
configuration is less flexible than in our approach, and might
lead to more I/O operations that transfer smaller amounts of
data when the requests are not perfectly aligned with the
chunk layout.

In selecting the data layout for a disk resident array, we
attempt to distribute data so that typical read and write oper-
ations are “aligned.” An operation is said to be aligned if the
corresponding section of the disk resident array can be de-
composed into subsections that can be read (or written) as a
single consecutive sequence of bytes. Otherwise, it is non-
aligned. A disk resident array section specified by the user in
a DRA read or write operation is decomposed into blocks ac-
cording to the data layout and available buffer space in the
DRA library. If the requested section is nonaligned with re-
spect to the layout, the library augments the disk resident ar-
ray section so that the low-level I/O operations always
involve aligned blocks of data on the disk. For read opera-
tions, aligned blocks of data are staged to buffer memory,
and only the requested (sub)sections are transferred to global
memory. Write operations to nonaligned array sections are
handled by first performing an aligned read to transfer an
augmented, aligned block to the buffer, and then overwriting
the relevant portion before writing the augmented block back
to disk. These techniques for handling nonaligned requests
are evocative of cache memory management mechanisms;
similar techniques have been used in PASSION [8]. For ex-
ample, in Figure 4, we show an array distributed using a col-
umn-major layout with a stripe width of 10 KB and consider
two read operations (the shaded blocks). The upper block
has size 2500 8-byte words (20 KB) in the column dimen-
sion, and so is aligned: it can be read without transferring un-
necessary data. In contrast, the lower block has size 1500
words (12 KB) in the column dimension, and so is non-
aligned. The block is internally augmented to 20 KB for
reading, and the low-level I/O operations must transfer 20/12
≈ 1.67 times more data.

aligned section

nonaligned section

augmented section

 10KB

12KB

Figure 4: Example of aligned and nonaligned sections in
column layout
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The DRA library is implemented in terms of low-level
I/O primitives that hide the specifics of different I/O sys-
tems. The low-level interface adopts some of the principles
outlined by Gibson et al. [9]. In particular, file pointers are
not supported (we support just a byte-addressable disk mem-
ory, rather than seek functions), and asynchronous forms are
provided for all I/O requests.

The low-level interface provides functions to create,
open, and delete files corresponding to a disk resident array,
and to read and write to a specified location in files. These
primitives are used to transfer data between disk resident ar-
rays and the internal buffers maintained in the memory of
the processes that can perform I/O. Data is then transferred
between the buffer and global memory by using theput  and
get operations provided by the GA library. Message-pass-
ing mechanisms are not used in the implementation at all,
because GA provides the necessary communication opera-
tions portably across all target platforms. This use of GA ar-
ray-oriented communication functions significantly
simplifies the DRA implementation. Furthermore, as the
bandwidth of the GA operations is close to that of native
message-passing libraries [2], and the bandwidth of the in-
core (local and global memory) operations is much higher
than the available I/O bandwidth, the use of GA functions
does not significantly impact performance.

To date, we have implemented asynchronous I/O using
either native asynchronous I/O (on the Paragon under PFS)
or Posix asynchronous I/O (version 1003.4a or earlier; avail-
able on KSR, SGI, RS/6000 and DEC Alpha). On systems
that provide neither of these mechanisms, only synchronous
I/O is supported. We are currently investigating the use of
lightweight threads in order to support multiple outstanding
asynchronous requests; the Nexus multithreaded library [10]
may be used for this purpose. Unfortunately, while threads
provide a convenient notation for specifying asynchronous
requests, available scheduling mechanisms do not always
provide the degree of control required for efficient I/O. One
solution to this problem is to introduce a polling mechanism
designed to yield control to schedulable DRA threads, hence
providing the DRA library with an opportunity to verify sta-
tus of outstanding requests or issue new I/O requests as buff-
er space becomes available. The polling mechanism can be
invoked explicitly by the user (via a new function
dra_flick ) or implicitly in the GA library synchroniza-
tion routine.

5 Performance and Applications
We use three examples to illustrate the capabilities and eval-
uate the performance of the DRA library: a synthetic I/O
benchmark, an out-of-core matrix multiplication program,
and a computational chemistry program.

We report results obtained on the Intel Paragon at
CalTech and the IBM SP at Argonne. The Paragon has 533
mesh-connected Intel i860/XP processors, each with 32 MB
of memory; 21 of these processors are dedicated to I/O and
are connected to 16 4.8 GB RAID-3 disk resident arrays.
The Paragon runs the OSF/1 operating system and uses

Intel’s Parallel File System (PFS) to provide parallel access
to files. PFS stripes files across the I/O nodes, the default
stripe factor being 64 KB. We note that while PFS provides
reasonable performance, it would appear that alternative file
system organizations could provide better performance in
some situations (e.g., see [11]). The Argonne IBM SP has
128 Power 1 processors connected by a multistage crossbar;
8 of these have an attached disk drive and are used for both
computation and I/O. The SP runs the AIX operating system
and uses IBM’s Parallel I/O File System (PIOFS) to provide
parallel access to files striped across the 8 I/O nodes.

5.1  Low-level Performance Studies
The first program that we consider is a synthetic benchmark
designed to characterize the read and write performance of
the DRA library. This program performs reads and write op-
erations involving a 5000×5000 double-precision global ar-
ray and a 10000×10000 disk resident array. Transfers to both
aligned and nonaligned sections of the disk resident array are
tested. The disk resident array is closed and opened between
consecutive DRA write and read operations to flush system
buffers. We timed a series of calls to obtain average times.

Figure 5 shows measured transfer rates on the Paragon.
The DRA library stores the disk resident array data in one
PFS file opened inM_ASYNCmode. We varied both the size
of the internal DRA buffer and the number of application
processes that perform I/O. Aligned write operations appear
to execute faster than the corresponding read operations
when more than one I/O processor is used. In the nonaligned
cases, the disk resident array section involved in the DRA
I/O operation was decomposed into aligned and nonaligned
subsections. When using DRA buffers of 1 MB and 2 MB,
there were 20 and 40 nonaligned subsections and 90 and 180
aligned subsections, respectively. The difference in DRA I/O
performance for both aligned and nonaligned I/O transfers is
consistent with the implementation scheme described in Sec-
tion 4. However, when using the 2 MB buffer with 24 or

Figure 5: Performance of DRA I/O operations on Paragon as a
function of the number application processors that perform I/O
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more I/O processors, nonaligned writes execute faster than
corresponding nonaligned reads. We attribute this result to
the fact that with a 2 MB buffer, we are able to generate a
sufficient number of concurrent read and write requests; in
addition, write operations are faster than reads on the Para-
gon. In general, increasing the size of the DRA internal buff-
er results in larger PFS I/O requests and in higher achieved
bandwidth.

The performance achieved by the DRA library is 42.7
MB/s, for an aligned write from 32 processors with 2 MB in-
ternal buffer. (A nonaligned write achieves 36.9 MB/s, and
aligned and nonaligned reads achieve 35.5 and 34.2 MB/s,
respectively.) Our results are consistent with I/O rates report-
ed by other researchers using tuned hand-coded applications
on the same computer. For example, Miller et al. [12] report
peak read rates of 35.2 MB/s for a 94 MB transfers and 37.8
MB/s for 377 MB read transfers [12]; we get 35.5 MB/s for a
200 MB transfer. Thakur et al. [13] report a write bandwidth
of 10.85 MB/s from 32 Paragon processors when using the
Chameleon I/O library in an astrophysics application. Cha-
meleon uses a fixed internal buffer size of 1MB.

On the IBM SP, we obtained peak performance results
of 33.4 MB/s for aligned writes, 31.4 MB/s for nonaligned
writes, 44.0 MB/s for aligned reads, and 42.1 MB/s for non-
aligned reads from 16 processors. These also appear to be
competitive with hand-coded I/O programs. Performance re-
sults for the implementation based on a collection of local
disks (such disks are available on every node of the IBM
SP), are depicted in Figure 6, and demonstrate almost linear
scaling with the number of processors/disks used (bandwidth
in AIX read/write operations to local disk on the Argonne SP
system is less than 2MB/s). When taking these measure-
ments, we made a special effort to avoid perturbations due to
caching of file data in memory, something that the IBM AIX
operating system is very good at. In particular, we used sepa-
rate programs to test read and write DRA operations, and in
between runs of these two programs ran another unrelated
program that touches all physical memory on each node.

2 4 8 16 32
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Figure 6: Performance of DRA I/O operations on the IBM SP --
local disks implementation

This strategy ensures that all previously cached data is paged
out. While we cannot guarantee that performance of write
operations was unaffected by caching, we are convinced that
the DRA reads fetched data from the disks.

We draw three conclusions from these results. First, the
DRA library is able to achieve high I/O rates on the Intel
Paragon and IBM SP. Second, internal buffer size makes a
significant difference to performance, with a size of 2 MB al-
lowing us to achieve close to peak. Third, aligned I/O opera-
tions perform better than nonaligned operations.

5.2  Out-of-Core Matrix Multiplication
Our second example is an out-of-core matrix multiplication
program written by using DRA mechanisms. This program
multiplies two arrays that reside on disk and writes the result
to the third array, also stored on disk. The three matrices are
assumed not to fit in the main memory, and so the program
pages smaller matrix sections in and out of memory by using
DRA mechanisms, operating on pairs of blocks using an in-
core parallel matrix multiplication algorithm.

The program uses a block-oriented algorithm to multi-
ply the two matrices, fetching onen× n

b
 section of matrixB

at a time to multiply with ann
b
× n section of matrixA (Fig-

ure 7). The next section of matrixB is prefetched, to overlap
the expensive I/O operations with computation. Since ann

b
×

n
b
 section of matrixC is assumed to be much smaller than a

n× n
b
 section of matrixB, and the current implementation of

DRA library can effectively perform asynchronous I/O for
only one request at a time, we prefetch only matrixB.
Prefetching increases memory requirements by around 50
percent, and hence reduces the memory available for the ma-
trix sections that are being multiplied in core while I/O is
taking place. Since performance of the in-core matrix multi-
plication increases with matrix size [14], prefetching can po-
tentially reduce the performance of the in-core
computations.

The in-core matrix multiplication is performed by us-
ing the Scalable Universal Matrix Multiplication Algorithm
(SUMMA) [14]. We chose this particular algorithm for sev-
eral reasons. Not only does it appear to be the most efficient
parallel algorithm available, but it requires little workspace.
It was also simpler to implement an out-of-core algorithm
based on SUMMA rather than on some other matrix-multi-
plication algorithms, in part because the distributed array

= .

C A

B

nb

n

n

nb

Figure 7: Blocking in the out-of core matrix multiplication
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layout that it requires can be represented by the GA library
without additional data rearrangements.

The implementation of the out-of-core program passes
the handles of the three disk resident arrays to the matrix
multiplication routine as arguments. Four global arrays are
created to store sections of these disk resident arrays: one
chunk ofA, two chunks ofB (because of the prefetching),
and one chunk ofC. The following Fortran pseudo-code pre-
sents the algorithm.

prefetch asynchronously B chunk (next)

do i = 1, chunks
i

read A chunk

do j = 1, chunks
j

swap next and current

wait until B chunk (current) is available

prefetch asynchronously B chunk (next)

call multiply(A chunk ,B chunk (current),C chunk )

write C chunk

enddo

enddo

The I/O associated with the prefetching of blocks of
matrix B can be fully overlapped with computation if suffi-
cient I/O bandwidth,B

I/O
 measured in MB/s, is available

, (1)

whereM is the processor Mflop/sec rate in the in-core matrix
multiplication,P is the number of computational processors,
and we assume 8-byte representation for double-precision
numbers. This model can be used to select the block size for
the out-of-core algorithm.

We found that the array-oriented high-level functional-
ity provided by the DRA and GA libraries greatly minimized
programming effort. The entire out-of-core algorithm was
expressed in about 140 lines of Fortran 77 code. This result
provides an interesting data point for discussions regarding
the advantages of compiler support for out-of-core arrays
[15].

We measured performance of the out-of-core matrix
multiplication program on the Intel Paragon. We first creat-
ed, initialized, and stored in disk resident arrays two double-
precision input matrices of size 10000×10000. A third disk
resident array was created to store the result. We then mea-
sured the time required to multiple the two input matrices
when using 64, 128 and 256 processors. For the 64- and 128-
processor runs, we usedn

b
 = 2000, while for the 256-proces-

sor runn
b
 = 2500. We evaluated both the in-core matrix-

multiply component of the program, and the full out-of-core
algorithm, including the time to read two arrays from disk
and write the result back to the disk. Figure 8 shows both the
achieved performance in Mflop/sec, and the relative efficien-
cy of the out-of-core algorithm compared with its in-core
component.

BI/O
4PM
nb

------------=

We see that efficiency degrades as the number of pro-
cessors increases. Because blocks ofA andC matrices are
not prefetched, the I/O transfer rate remains approximately
constant while the floating-point performance increases with
processor count. We observe good overall performance on
64 and 128 processors. For 256 processors, the matrix be-
comes too small, and I/O costs become significant. In fact,
on 256 processors the computation could be performed in
core. We include this case only to demonstrate the scaling
characteristics of the algorithm.

5.3  RI-SCF: A Chemistry Application
Our third example application is a large computational
chemistry application. Electronic structure computation is a
field of computational chemistry that is concerned with de-
termining electronic structure of molecules and other small
or crystalline chemical systems [16]. These calculations can
predict many chemical properties that are not directly acces-
sible by experiments; they consume a large proportion of the
total number of supercomputer cycles used for computation-
al chemistry.

All electronic structure methods compute approximate
solutions to the non-relativistic electronic Schroedinger
equation. The iterative Self-Consistent Field (SCF) algo-
rithm is the simplest method used for this purpose. The ker-
nel of the SCF calculation is the contraction of a large,
sparse four-index matrix (electron-repulsion integrals) with a
two-index matrix (the electronic density) to yield another
two-index matrix (the Fock matrix). The irregular sparsity
and available symmetries of the integrals drive the calcula-
tion. Both matrices are of sizeN, whereN is the size of an
underlying basis set. (Typically,N=1000–5000). The number
of integrals scales betweenO(N2) andO(N4) depending on
the nature of the system and level of accuracy required. In
conventional approaches, integrals were calculated once and
stored on the disk to be reused in every SCF calculation. On
massively parallel systems, so-called direct methods avoid
the bottleneck associated with this I/O [17] by computing in-
tegrals in-core as needed.

In order to reduce the high-cost of the SCF calculations
for larger molecules and/or large basis sets, the Resolution of
the Identity (RI) method computes an approximate SCF en-
ergy with four-index integrals being expanded in terms of
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Figure 8: Mflop/s rates and efficiency of the out-of-core algorithm
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the three-index quantities. The computational effort for the
Coulomb contribution scales asO(N3) with a moderate pref-
actor. Früchtl et al. [18] have used the GA and DRA libraries
to develop an RI-SCF implementation. They use disk resi-
dent arrays to store transformed three-index compressed in-
tegrals. The amount of available main memory limits the
number of expansion functions contributing to the approxi-
mate solution that can be computed in-core at a time. Pro-
cessing is done in batches, with integrals for the next
expansion function being read asynchronously while the
Fock matrix contributions are being calculated. The main
components of the calculations are two matrix multiplica-
tions which require 4N3 floating-point operations per expan-
sion function. The I/O access patterns exhibited by this
application are as follows. First, a disk resident array is writ-
ten once in multiples of full rows at a time. Then, multiple
full columns are read many times, based on the number of
expansion functions held in core and the number of SCF iter-
ations. We received positive feedback from the developers
concerning the DRA functionality and performance. For de-
tails we refer the reader to [18].

RI-MP2 is another large parallel computational chem-
istry application with significant I/O requirements. This code
was developed on top of Global Arrays and simple Fortran
I/O [19] before the DRA library was available, and is cur-
rently being converted to use DRA. In both RI-SCF and RI-
MP2, the DRA abstractions has been found to simplify im-
plementation of out-of-core algorithms. In addition, its asyn-
chronous interface has contributed to reducing the I/O
bottleneck by providing the ability to overlap I/O with com-
putation.

6 Related Work
Although out-of-core algorithms date to the early days of
computing [20], they have traditionally been developed
without assistance from libraries or compilers. Virtual mem-
ory can also be used to manage data structures too large to fit
in memory. However, the complexity of I/O systems on
modern parallel computers and the performance require-
ments of scientific applications have so far prevented this ap-
proach from being effective. Application-specific virtual
memory management [21] may address some of these con-
cerns, but it has not yet been proven in large-scale systems.

Parallel I/O techniques and libraries that provide col-
lective I/O operations on arrays include disk-directed I/O
[22], Panda [23], PASSION [8], MPI-IO [24], and Vesta
[25]. Most support lower-level interfaces than the DRA li-
brary, allowing, for example, non-collective operations or re-
quiring that the user define disk striping. Our work is
distinguished by the integration of the DRA and GA librar-
ies, which means that data is transferred collectively from
disk to global or shared memory, rather than to private pro-
cessor memory. One important consequence of this model is
that data transfers typically are large, and the implementa-
tion can optimize for large transfers. We prefer this approach
to more flexible models that allow for independent I/O from
different processors. I/O is expensive and should be done in

large blocks, and our API is designed for large block trans-
fers. In addition, the asynchronous interface provided to I/O
operations encourages users to design I/O algorithms using
prefetching or a two-phase approach.

The DONIO library [26] caches a copy of a file in
memory, distributed across available processors. Application
processors can then seek and perform non-collective
read/write operations on this file, as if they were accessing
disk. When the “shared file” is closed or flushed, the data is
moved to disk. This model combines some aspects of the GA
and DRA libraries, but provides less control over the move-
ment of data between different levels of the storage hierar-
chy.

Vitter and Shriver [27] and Shriver and Wisniewski
[28] describe out-of-core matrix multiplication algorithms
but do not present performance results.

Compiler-based approaches to out-of-core I/O have
been investigated in the context of the data-parallel languag-
es C* [29] and High Performance Fortran [15,30]. However,
these languages do not support the MIMD programming
model provided by the GA library and apparently required
by the computational chemistry programs for which the GA
and DRA libraries were originally designed.

7 Conclusions
We have described a high-performance parallel I/O library
that provides programmers with explicit control over the
movement of data between different levels in the memory hi-
erarchy. The Disk Resident Arrays (DRA) library described
in this paper manages the movement of data between sec-
ondary storage and distributed data structures called global
arrays; its integration with the Global Arrays (GA) library,
which manages the movement of data between global arrays
and local memories, allows programmers to stage array data
structures from disk, through global memory, to local memo-
ry.

We believe that the simple conceptual model provided
by the DRA library can significantly simplify the task of de-
veloping efficient, portable out-of-core programs. To date,
this assertion is supported by positive experiences with two
applications, an out-of-core matrix multiplication program
and a large computational chemistry program. Further appli-
cations will be evaluated in the future. We note that the inte-
gration of the DRA library with the GA library’s array-
oriented communication infrastructure not only simplifies
the development of out-of-core applications, but also signifi-
cantly reduced DRA development time. Focus on large data
transfers allowed some performance optimizations that
would not be possible in a general-purpose I/O library.

We are currently working on a variety of performance
optimizations. One important direction relates to increasing
the degree of asynchronism in DRA operations. Currently,
asynchronous I/O is achieved by using asynchronous I/O
mechanisms in the underlying file systems. Threads may
well be provide a more portable and flexible alternative, al-
though their performance characteristics are not yet well un-
derstood. The simplicity of the DRA framework means that
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it can also be extended easily in other directions. For exam-
ple, the matrices constructed by computational chemistry
codes are often quite sparse and hence may benefit from the
use of compression [7]. Compression is easily incorporated
into the DRA framework, as are other optimizations pro-
posed for collective I/O [31,8,11].
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