
ABSTRACT
Exploiting processor groups is becoming increasingly
important for programming next-generation high-end
systems composed of tens or hundreds of thousands of
processors. This paper discusses the requirements,
functionality and development of multilevel-parallelism
based on processor groups in the context of the Global Array
(GA) shared memory programming model. The main effort
involves management of shared data, rather than
interprocessor communication. Experimental results for the
NAS NPB Conjugate Gradient benchmark and a molecular
dynamics (MD) application are presented for a Linux cluster
with Myrinet and illustrate the value of the proposed
approach for improving scalability. While the original GA
version of the CG benchmark lagged MPI, the processor-
group version outperforms MPI in all cases, except for a few
points on the smallest problem size. Similarly, processor
groups were very effective in improving scalability of a
Molecular Dynamics application.

Categories and Subject Descriptors
D1.3 [Concurrent Programming]: Parallel programming

General Terms: Performance, algorithms.
Keywords: Multi-level parallelism, processor groups,
Global Arrays, extreme scalability

1. INTRODUCTION
Exploiting processor groups is becoming increasingly
important for programming next-generation high-end
systems. Such systems, containing tens or hundreds of
thousands of processors, present a challenge to many
important scientific applications that are composed of
algorithms with variable computation/communication
granularity. One strategy to limit the negative effect of
Amdahl’s law on the overall efficiency and scalability of the
application is to execute the finer granularity algorithms on
smaller subsets of processors, where their efficiency and
speedup are high. Several classes of algorithms fit this

model, e.g. ensemble averages. Ensemble averages are
important in many areas of physics, particularly for systems
representing a very large number of degrees of freedom or
where there is a large uncertainty in the values of the input
parameters. Examples include Monte Carlo calculations in
condensed matter simulations, Monte Carlo calculations of
sensitivity and uncertainty, and statistical averages of
hydrodynamics and meteorological simulations. Very often,
meaningful conclusions can be drawn only after running a
large number of similar calculations. However, individual
calculations may scale well only up to a small number of
processors. However, it is often not possible to run single
calculations on only one processor due to memory
requirements. Another strategy for improving scalability
through the processor groups involves replicating
communication-sensitive data structures across the subset of
processors and distributing them within each subset. This
technique can improve the communication efficiency and
thus scalability by reducing the overall number of messages
while increasing their size. It also uses less memory than a
standard replicated data algorithm but requires more memory
than a completely distributed approach.
In the context of message-passing scientific applications (e.g.
computational fluid dynamics, environmental modeling,
ordinary differential equation solvers), decomposing a set of
processors into groups has been used to reduce
communication overhead and improve scalability [1-3]. ORT
[4], a library based on group-SPMD programming model
with orthogonal processor groups built on top of MPI, targets
primarily grid-based applications. In [5] processor subgroups
have been used to improve scalability by reducing
synchronization overheads of block iterative solvers that
employ a correction equation through an inner iterative
method. Multilevel parallelization models [6] use processor
groups to enable scientific applications to scale to a large
number of processors more efficiently because a greatly
reduced number of processes are involved in the
communications at each level.
Despite their excellent support for task-parallelism, the
shared memory models (UPC[7], OpenMP, Global Arrays)
currently have little or no explicit support for data-
parallelism based on process groups. For example, the
Global Arrays (GA) data parallel operations require
participation of all tasks in the program even if some of them
would not be involved in computations in that operation. The
inability of the OpenMP standard to specify nested
parallelism within a parallel region has been pointed out in

Exploiting Processor Groups to Extend Scalability
of the GA Shared Memory Programming Model

 Jarek Nieplocha, Manoj Krishnan, Bruce Palmer, Vinod Tipparaju, Yeliang Zhang

 Pacific Northwest National Laboratory University of Arizona
 {jarek.nieplocha, manoj, bruce.palmer, vinod}.pnl.gov zhang@ece.arizona.edu

Copyright 2005 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
CF’05, May 4–6, 2005, Ischia, Italy.
Copyright 2005 ACM 1-59593-018-3/05/0005...$5.00.

262

Copyright 2005 ACM 1-59593-019-1/05/0005...$5.00.

several papers e.g., [6, 8]; however, despite research
compiler efforts, no commercial compiler addresses this
shortcoming. Clearly, for shared memory models to be
effective for real world scientific applications on systems
with very large processor counts, more flexibility is needed
in terms of expressing available parallelism and distributing
the workload among available processors. In the current
paper we describe an ongoing effort to develop support for
multi-level parallelism based on processor groups in the
context of a shared memory programming model, as
implemented in GA. The Global Arrays toolkit [9,10]
presents to the application developer a distributed data
structure as a single object and allows operations on it as if it
resided in shared memory, even on distributed memory
systems. By providing a rich, high-level set of library calls,
the implementation of highly scalable data- and task-parallel
algorithms has been greatly simplified even for non-expert
users [11]. In addition to other applications, GA is the de
facto standard parallel programming model in electronic
structure computational chemistry, with some applications
packages in this area, such as NWChem [12], exceeding a
million of lines of code.
We demonstrate the effectiveness of the proposed processor
group extension in two contexts: a NAS CG benchmark and
a molecular dynamics (MD) application. The NAS CG
benchmark is characterized by a large amount of
communication, memory reference, and computation
patterns which are very common in real-world scientific

applications. In this context, processor groups were used to
replicate some of the data structures to reduce the amount of
communication in the manner consistent with the standard
MPI [13] implementation of this benchmark. This helped the
group version to improve scalability and outperform MPI on
a Linux cluster. For example, for Class C, a performance
improvement of 25.6% is achieved on 32 processors of a
Linux cluster over the standard MPI implementation.
Another example used in the paper is the molecular
dynamics (MD) application. By exploiting multi-level
parallelism based on processor groups, scalability of that
application was substantially improved.
The paper is organized as follows. Section 2 outlines features
of GA toolkit. Section 3 describes our technical approach.
Section 4 includes experimental evaluation. The paper is
concluded in Section 5.

2. GA SHARED MEMORY PROGRAMMING
ENVIRONMENT
In the traditional shared-memory programming model, data
is located either in “private” memory (accessible only by a
specific process) or in “global” memory (accessible to all
processes). In shared-memory systems, global memory is
accessed in the same manner as local memory, i.e., by
load/store operations. The shared-memory paradigm
eliminates the synchronization that is required when message
passing is used to access non-private data. A disadvantage of
many shared-memory models is that they hide the Non-

Physically distributed data

Single, shared data structure

1

2 4 6 8

3 5 7

e.g., A(4,3) rather than buf(7) on task 2

Figure 1: Left: GA manages a distributed array as a single shared data object. As shown, any process can
access the distributed data using global indexing (e.g., using global index A(4,3)). Right: Any part of the array
can be accessed noncollectively as if it is located in shared memory (e.g., Process X gets a block of the global

array with global indices starting at (100,17) and block size=100x3).

Process Y
ga_get (a,180, 210, 23, 40, buf, 30)

Process Z
ga_get (a,175, 185, 19, 70, buf, 10)

Process X
ga_get (a,100, 200, 17, 20, buf, 100)

263

Uniform-Memory-Access (NUMA) memory hierarchy of
the underlying distributed-memory hardware. The Global
Arrays toolkit strives to combine the better features of the
shared and distributed-memory programming models [9, 10].
It implements a shared-memory programming approach in
which the programmer manages data locality. Data transfer
between a global address space (a distributed array) and local
storage can be done through explicit calls to functions. In
this respect, the GA model has similarities to distributed
shared-memory (DSM) models that provide an explicit
acquire/release protocol e.g. [14]. However, the GA model
acknowledges that remote data is slower to access than is
local data and therefore allows data locality to be explicitly
specified and hence managed. The distribution and locality
information is available through library operations that 1)
specify the array section held by a given process, 2) specify
which process owns a particular array element, and 3)
returns a list of processes and the blocks of data owned by
each process corresponding to a given section of an array.
Figure 1 shows a dual view of the global array data structure.
Another advantage is that GA, by optimizing and moving
only the data requested by the user, avoids issues such as
false sharing or redundant data transfers present in some
DSM solutions [15-17]. The GA programming model
includes as a subset message passing; in particular, the
programmer can use the full MPI functionality in
conjunction with GA, including the data stored in global
arrays. The library can be used in C, C++, Fortran 77,
Fortran 90 and Python programs.
The GA programming model can be characterized as
follows. Processes can communicate with each other by
creating and accessing GA distributed matrices, as well as by
using conventional message-passing (MPI). Global arrays
are physically distributed blockwise, either regularly or as
the Cartesian product of irregular distributions on each axis.
Each process can independently and asynchronously access
any N-dimensional patch of a GA distributed matrix, without
requiring cooperation by the application code in any other
process. Each process is assumed to have fast access to some
portion of each distributed matrix, and slower access to the
remainder. These speed differences define the data as being
‘local’ or ‘remote’, respectively. If the data is ‘local’, the
process can directly access the memory block to retrieve data
instead of using a ‘get’ access. Each process can determine
which portion of each distributed matrix is stored ‘locally’
and can access it directly (by a local pointer). Every element
of a distributed matrix is guaranteed to be ‘local’ to exactly
one process.
The GA toolkit offers support for both task and data
parallelism. Task parallel algorithms can be developed using
the one-sided (noncollective) copy operations that transfer
data between global memory (distributed/shared array) and
local memory. In addition, each process is able to directly
access data held in a section of a global array that is logically
assigned to that process. The one-sided communications

used by Global Arrays eliminate the need for the
programmer to account for responses by remote processors.
Only the processor issuing the data request is involved,
which considerably reduces algorithmic complexity
compared to the programming effort required to move data
around in a two-sided communication model. To copy data
from a local buffer to a distributed array requires only a
single call to nga_put. Based on the data distribution, the GA
library handles the decomposition of the put into separate
point-to-point data transfers to each of the different
processors to which the data must be copied and implements
each transfer.
The data parallel computing model is supported through a
set of collective functions that operate on either entire arrays
or sections of global arrays. The set includes BLAS-like
operations (copy, additions, transpose, dot products, matrix
multiplication). These are collective data-parallel operations
that are called by all processes in the parallel job. For
example, movement of data between different arrays can be
accomplished using a single function call. The
nga_copy_patch function can be used to move a patch,
identified by a set of lower and upper indices in the global
index space, from one global array to a patch located within
another global array. The only constraints on the two patches
are that they contain equal numbers of elements. In
particular, the array distributions do not have to be identical
and the implementation can perform as needed the necessary
data reorganization.
GA has been used intensively in scientific applications and
shown high performance and scalability [9].

3. TECHNICAL APPROACH
Due to the required (by applications) compatibility of GA
with MPI, our design goal was to follow the MPI approach
to the processor group management as closely as possible.
However, in shared memory programming, management of
shared data rather than the explicit interprocessor
communication is the central topic. More specifically, we
need to determine how to create, access, share, and destroy
shared data in the framework of the processor group
management of MPI. For example, Figure 2 illustrates the
concept of using shared arrays by processor groups. The
three processor groups (Group1, Group2, and Group3 in
Figure 2) execute tasks that operate on three arrays: A, B,
and C. Array A is in the scope of all three processor groups.
Array B is distributed on processor Group 1. Array C is
distributed on processor group 3. All arrays can be accessed
using collective (individual and multiple arrays) and one-
sided (non-collective) operations.
The other explicit design goals were:
• preserving the ease of use GA model offers
• achieving high performance i.e., implementation

efficiency of existing operations on global arrays should
not be degraded by introducing group-awareness

264

• providing mechanisms that simplify conversion of
existing non-group codes to the group-aware
environment.

This effort involves two areas: defining and implementing
functionality extensions to the GA itself and developing
efficient run-time support for the new capabilities.

3.1 Functionality Extensions
The minimum set of group-aware operations in the context
of GA involves the ability to create shared arrays on subsets
of processors. The interfaces to define processor groups as
defined by MPI are adequate. In addition, the ability to
access data stored in global arrays by processors that created
the arrays is required for any application. Furthermore, full
compatibility of existing GA operations (~150 calls) with
processor groups, providing that the operations do not
involve arrays defined on different groups, is important for
supporting existing applications.
As the next step, we developed support for the data-parallel
copy operation that works on arrays (or subsections) defined
on different processor groups as long as one group is a subset
of the other. Data distributed in a processor group
(containing M processors) can be redistributed to another
processor group (containing N processors) regardless of the
number of processors in each group and the data layout. This
can be done as a collective call across processors in both the
groups or as a non-collective one-sided operation. This
enables development of applications with nontrivial
relationships between processor groups.
Default Processor Groups
The concept of the default processor group is a new,
powerful capability that enables rapid development of new
group-based codes and simplifies conversion of existing,
non-group aware codes. Under normal circumstances, the
default group for a parallel calculation is the MPI world
group (contains the complete set of processors), but a call is

available that can be used to change the default group to a
processor subgroup. This call must be executed by all
processors in the subgroup. Furthermore, although it is not
required, it is probably a very good idea to make sure that the
default groups for all processors in the system (i.e. all
processors contained in the original world group) represent a
complete non-overlapping covering of the original world
group. Once the default group has been set, all operations
are implicitly assumed to occur on the default processor
group unless explicitly stated otherwise. Shared arrays are
created on the default processor group and global operations
by default are restricted to the default group. Inquiry
functions, such as the number of tasks and the task rank,
return values relative to the default processor group.
Exploiting Locality and Efficient Direct Access
For performance reasons shared memory is used for storing
global arrays within SMP nodes. Therefore, any
process/task can directly access the memory allocated for a
global array on any other process in the same SMP node.
Although every process is guaranteed to have fast access to
the portion of array it owns, all the other processes in the
same SMP node are able to access this memory directly,
thereby avoiding unnecessary copies. In the case of a shared
memory system, such as the SGI Altix, a process can access
data in the entire global array directly. An appropriate
interface for task mapping to individual SMP nodes of a
cluster in the parallel job was introduced to enable exploiting
the performance advantages of shared memory.
3.2 Runtime Support
An important component of the current work is providing
group-awareness in the runtime layer. The ARMCI library
[19, 20] has been used for communication and memory
management by Global Arrays and other systems such as the
Rice Co-Array Fortran compiler. Most of the required effort
falls into the area of memory management, and our solution
is based on a layered approach, see Figure 3. Efficient

Group1 Group2

Group3

Array B

Array A

Array C

Figure 2: An example of multilevel parallelism in Global Arrays.

265

interprocessor communication for groups relies on the “fast”
(registered shared) memory, and exploits task mapping and
system locality information. Since “fast” memory is
provided by our memory management layer, supporting
process groups does not require modification to the low-level
point-to-point communication protocols.
On clustered systems with multiprocessor nodes based on
commodity Symmetric-Multi-Processor (SMP) clusters, it is
important to handle process groups, which might include
arbitrary subsets of processes and cross the SMP node
boundaries, while still managing memory efficiently. Instead
of node-local and group-specific memory management
schemes, we use a single shared memory heap on each SMP
node, and integrate its instances across all the nodes.
Experimental results showed [21] that this approach not only
reduces memory fragmentation and resource consumption,
but also simplifies implementation of the memory protection
and registration required by the network communication
protocols on modern interconnects such as the Myrinet or
Infiniband.

The components of the memory management layers shown
in Figure 3 are as follows.

Shared Memory Allocation
This layer supports a variety of operating systems (e.g.,
Microsoft Windows, Linux, Cygwin, AIX, Tru64, Mac OS-
X, and other Unix-like systems), networks, and interfaces for
shared memory allocation. Depending on the platform,
shared memory is allocated using one of the following
interfaces: System V shmget/shmat calls, mmap, Posix
shm_open, Hitachi’s combuf_object_get, NEC’s dp_malloc,
Microsoft’s CreateFileMapping, and others. The shared
memory allocation is a cooperative procedure between

processes involved in the memory allocation: it involves
allocation of a shared memory segment from the OS by one
selected “master” process, followed by a broadcast of the
associated handle/identifier to the other processes within the
node and, finally, mapping of the allocated memory in the
address space of each process on the node.

Registration and Access Protection
On networks that support RDMA and require registration of
communication buffer memory, we attempt to register
memory with the network driver after allocating shared
memory. With each shared memory segment allocated from
the OS, we maintain a record of information including size,
address, and information about whether or not the
registration was successful and the memory access keys (if
applicable). The memory access keys and registration status
information are exchanged with processes on other cluster
nodes and are stored in a table describing registered memory
segments on every cluster node. If the specified address falls
within the address range for the registered segments on both
ends of the data transfer, the most efficient zero-copy
communication protocols are used.

Intra-node Dynamic Memory Manager
The purpose of this layer is to minimize the overhead of
system calls involved in allocating shared memory and to
ensure that the allocated memory segments are managed
efficiently (i.e., minimize fragmentation). It is also critical
for addressing the OS resource limitations. Examples of such
limitations in the System V shared memory interfaces [22]
are the number of segments that a single process can attach
to (SHMSEG), minimum shared memory segment size
(SHMMIN), system wide maximum number of segments
(SHMALL), or limits for the per process maximum number
of shared memory segments (SHMSEG). Since the
registration process described in the previous subsection
involves pinning of the associated pages in physical
memory, it is imperative for the intra-node memory manager
to guarantee that allocated memory is used efficiently. The
memory manager code can be executed by any process on
behalf of the processes in the group that are running on the
same node. To satisfy the request for global memory, the
requested memory sizes are added for all such processes.
When the suitably sized free segment is located on the free
list or allocated from the OS, the offset and shared memory
handle/identifier are broadcast to others within the node. The
offset is then used to calculate the pointer to the allocated
memory, after assuring that the memory is mapped in the
corresponding process address space. The list of free and
used blocks is updated in the shared data structure
accordingly.

Figure 3: Memory management layers

Operating System

Shared Memory Allocation

Memory Registration/Protection

Inter-node exchange of
address/registration/protection

Application

Intra-node Memory Manager

266

Address and Access Protection Exchange
On clusters, after memory is allocated on each SMP node
independently, we need to exchange addresses and other
types of information required by the network communication
protocols to transfer data to/from that memory. This
operation is executed as a part of the collective global
memory allocation interface. For processor groups, the
operation is performed for the given processor group. On
some platforms that offer a limited set of RMA operations,
the missing capabilities can be implemented using an extra
“helper” thread [23]. In those cases, additional steps are
involved in the memory management system. For example,
on Infiniband if a new shared memory segment allocated
from the OS is registered, the thread is awoken to set the
memory access protection keys for that segment.

4. EXPERIMENTAL EVALUATION
We demonstrate the effectiveness of the proposed processor
group extension in two contexts: a NAS CG benchmark and
a molecular dynamics (MD) application. The NAS CG
benchmark exhibits the communication volume, memory
reference, and computation patterns which are very common
in real-world scientific applications. This benchmark has
been parallelized and studied in the context of multiple
programming models [24-32], including shared memory. In
all of these studies, MPI was hard to outperform: none of the
other models showed a consistent performance advantage
over the standard MPI implementation of the CG
benchmark.
The experiments were performed on a cluster of 24 dual
1GHz Itanium-2 nodes. The compute nodes run Red Hat
Linux with kernel 2.4-20. The compute nodes have 6 GB of
memory per node and are interconnected with the dual port
Myrinet E cards. We used the GNU C compiler version 3.3
and the Intel Fortran compiler version 7.0.
4.1 NAS CG Benchmark
NAS CG uses the inverse power method to find an estimate
of the largest eigenvalue of a symmetric positive definite
sparse matrix with a random pattern of nonzero entries [26].
The inverse power approach involves solving an
unstructured sparse linear system of equations Az = x using
the conjugate gradient method. Figure 4 illustrates the
algorithm and shows values for the size of the system n,
number of outer iterations, and the shift λ for different
problem sizes in the benchmark (see Table1). In every
iteration, the calculated eigenvalue estimate ζ must agree
with the reference value ζREF within a tolerance of 1.0 × 10-

10, i.e., |ζ - ζREF| ≤ 1.0 × 10-10.
Our first implementation of CG using GA involved
distributing the array A in rows among processes and
distributing the vectors p and q. This is the simplest and most
natural parallelization strategy for the CG benchmark using
GA, and it was derived by closely following the serial

version of the benchmark (rather than the MPI version). That
version, although simple to implement, did not scale as well
as the standard MPI version distributed by NASA, see Figure
5. The reason for better scalability of the MPI
implementation was the use of replication to reduce
communication cost. The standard MPI version of CG uses
multiple replicas of vectors p, q, r, z to reduce the volume of
communication. In the MPI fully distributed CG
implementation, every process is assigned a strip of rows of
matrix A. Accordingly, every vector is distributed among the
processes. Every process first retrieves the whole vector p
then performs the matrix-vector multiplication. The
MPI_Allgather operation is then used to store the partial

matrix-vector multiplication result into vector q. In this
implementation, there are two major data-communication
phases. The first occurs in the matrix multiplication; every
process needs to obtain the portion of vector p it does not
own. The second is the MPI_Allgather operation to assure
that every process has the current value of q.
4.1.1. Group-Based Version
We discovered that without groups, it was virtually
impossible to implement a similar replication algorithm as
used in the MPI version while preserving the GA data-
parallel calls. Not having these calls would make the
implementation difficult and increase the code complexity.

Table 1: Parameters for the NAS CG benchmark
Size n iteration

s
non-zeros
per row

λ

Class A 14000 15 11 20
Class B 75000 75 13 60

Class C 150000 75 15 110

z=0
r = x
ρρρρ = rTr
p = r
do i = 1, 25
 q = Ap
 αααα = ρρρρ / (pTq)
 z = z + ααααp
 ρρρρ0 = ρρρρ
 r = r - ααααq
 ρρρρ = rTr
 ββββ = ρρρρ / ρρρρ0
 p = r + ββββp
enddo
compute residual norm explicitly: ||r|| = ||x – Az||

Figure 4: Conjugate Gradient Method: algorithm

267

With the group capabilities, the vectors are replicated
between the processor groups and distributed within the
group. Because of similar distributions, MPI and our
implementation will have similar calculation and
communication patterns. Collective linear algebra operations
in the GA implementation can be made to operate within the
scope of any group. A processor group, based on how many
processes it is created with, could encompass more than one
SMP node.
We start off by determining the number of rows of the
matrix A that should be assigned to each processor group.
Within every processor group, the vectors are distributed;
across the group, they are replicated. When possible, matrix-
vector multiplication exploits shared memory, but the
computation load remains the same as in the MPI version.

We changed the access to matrix A so that the two processes
that are on the same SMP node could share access and
compute a partial q. As in the MPI implementation, after the
matrix-vector multiplication, there are two stages of
communication: 1) Summation of q within the processor
group, and 2) Exchange of vector q among the groups. The
summation operation involves adding parts of the computed
q within a group. This is done in a pairwise manner using a
pairwise all-reduce algorithm. In addition, an exchange with
the transpose process needs to be done. This is accomplished
with a non-blocking put to the transpose processor. From
Figure 6 it can be seen that GA has one additional transpose
compared to MPI; however, when running on SMP nodes
with more than one process per node, this extra transpose is
done within the SMP node.

MPI version GA version

Figure 6: Transpose processes exchange on 2-way SMP node

q0

q1

q2

q3

Send

q0

q1

qw0

qw1 q2

q3 qw2

qw3

update

copy

copy

update

0

50

100

150

200

250

300

350

1 2 4 8 16 32

Processors

Ti
m

e
[s

]

MPI

GA

Figure 5: CG Class B performance of the standard MPI implementations compared to the original non-

group version of GA on the Linux cluster with Myrinet

268

Performance results presented in Figure 7 demonstrate that
the GA version runs faster than the standard MPI
implementation, with exception for a few data points for the
smallest problem size (Class A). This is in part due to the
computation overlapped with data exchange that replaces the
all-gather operation in MPI. Direct use shared memory
access contributes to the efficient execution of matrix-vector
multiplication and data exchange is done within the local
node. On the other hand, the MPI counterpart code uses a
less efficient communication scheme and thus requires more
time to complete these two operations.

4.2 Molecular Dynamics Application
A parallel molecular dynamics (MD) code that was
developed based on Global Arrays was modified to exploit
processors groups. That original MD code is based on a
spatial decomposition algorithm that partitions particles
between different processors. The processors are mapped
onto a rectangular grid and the number of processors on each
grid axis is used to decompose the simulation volume into a

similar grid. The particles in each spatial grid block are
assigned to the corresponding processor in the processor
grid. As the simulation proceeds in time, the particles move
from one region of space to another and it is necessary to
periodically update the distribution of particles on
processors, see Figure 8.
 The evaluation of the force on a particle also involves
knowing the location of all particles within a given distance
of a particular particle, which means that each processor
must know the coordinates of all particles on neighboring
processors that are within a certain cutoff distance of the
spatial boundaries corresponding to the volume assigned to a
processor. These coordinates must be updated at every step
in the time integration of the system. The particle
redistribution, the coordinate updates, and the scattering of
forces back to particles after the force calculation require
nearest neighbor communication between all processors in
the processor grid. This particular code is designed to look at
cluster nucleation in liquids, so the molecular dynamics
algorithm has been supplemented with a rigid, hard-sphere

P0 P1 P3

P4 P5 P6 P7

spatial decomposition

P2

redistribution

Figure 8: Spatial decomposition (left) and redistribution during simulation (right)

0

1

10

100

1000

1 2 4 8 16 32

Number of Processes

T
im

e
(s

ec
on

ds
)

MPI - Class A
GA - Class A
MPI - Class B

GA - Class B

MPI - Class C
GA - Class C

Figure 7: Performance of group-based GA and standard MPI implementations illustrated on log-linear scale

269

confining potential that keeps particles in the nucleating
cluster confined to the center of the system. This confining
potential introduces numerous additional synchronization
operations and small global summations. The overall code
represents a complicated combination of nearest-neighbor
communication and synchronization. The nearest-neighbor
communication is managed by creating a set of global arrays
that are used as communication buffers. Communication of
particle indices and coordinates is managed by copying the
information into the communication arrays using put
operations, synchronizing, and then copying data out of the
arrays using get operations.
The type of MD calculations described here is composed of
several independent tasks, and is also relevant to Monte
Carlo averaging over an ensemble of problem realization as
well as being useful for calculations of the potential of mean
force and other determinations of thermodynamic quantities.
These MD tasks can be executed on processor groups or run
one by one by the all available processors as in the original
version of the MD application.
To convert this code to run on groups, some additional work
was done to make the code more self-contained. Portions of
the setup that had originally been done by separate programs,
such as generation of the initial configuration, were
incorporated into the main simulation code. More options for
controlling the initial equilibration and data accumulations
stages, which originally were controlled by running
successive simulations, were also added so that useful data
could be extracted in a single simulation. Once these
modifications had been made to the original parallel code, a
small, top-level code was written that subdivides the world
group into smaller groups and then executes a list of
simulations by assigning them successively to available

groups. As each group finishes its calculation, it gets the next
simulation from the list. The simulations used for the timing
studies in this paper, where all too short to have any
scientific use, but they illustrate the scaling properties of the
application.
Experimental results for a simulation consisting of 16
molecular dynamics tasks were obtained. The goal would be
to combine output from these tasks to efficiently sample the
cluster distribution functions based on short simulations of
individual clusters. Each of the individual tasks involves
about 4000 atoms. Results shown in Figure 9 indicate that
the use of processor groups benefits this application. The
graph shows the speedup of the complete set of calculations
as a function of the number of processors. The calculations
using processor groups used small groups containing only 2
processors, this corresponds to a portion of the speedup
curve for the simulation without processor groups that is still
relatively efficient. The simulation with processor groups
shows excellent scalability. The simulation without
processors groups (where the individual tasks are run
sequentially) is becoming rapidly dominated by
communication costs as the number of processors grows.

5. CONCLUSIONS AND FUTURE WORK
Supporting extreme scalability will become the key for any
parallel programming model aiming to support high-end
systems of the future because of the increasingly large
processor counts deployed in these architectures. The
current paper describes the development of processor group
extensions to the shared memory programming model of
GA. Based on our experience we believe that the use of
locality awareness, implicit rather than explicit
communication, and its high level programming interfaces,

0

100

200

300

400

500

600

700

800

900

1000

2 4 8 16 32

Number of Processors

Ti
m

e
(s

ec
on

ds
)

groups

no groups

Figure 9: Performance of the MD simulation on Linux cluster with and without processor groups.

270

makes the shared memory programming model of GA well
suited for developing application codes for the next
generation systems. The processor-group capabilities enable
expression of multi-level parallelism and thus can be
instrumental to extending scalability for existing and new
applications. This benefit was demonstrated in the context of
the NAS CG benchmark and in a molecular dynamics
simulation. However, the current development effort is far
from being complete. Shared memory style access to arrays
created on other processors, data-parallel operations
involving arrays created by disjoint processor groups, or
dynamic group management in the context of fault tolerant
environments are some of the features that will require
further consideration and development.

6. REFERENCES
[1] H. Bal and M. Haines, "Approaches for integrating task

and data parallelism," IEEE Concurrency, vol. 6, pp. 74-
84, 1998.

[2] T. Rauber and G. R¨unger, " Parallel execution of
embedded and iterated Runge-Kutta methods,"
Concurrency: Practice and Experience, vol. 11, pp. 367-
385, 1999.

[3] J. Subhlok and B. Yang, "A new model for integrating
nested task and data parallel programming," Proceedings
of 8th ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming, New York, 1997.

[4] T. Rauber and G. Rünger, "Library support for
hierarchical multi-processor tasks," Proceedings of
ACM/IEEE conference on Supercomputing, 2002.

[5] J. R. McCombs and A. Stathopoulos, "Multigrain
iterative solvers for hiding network latencies on MPPs
and networks of clusters," Parallel Computing, vol. 29,
2003.

[6] S. Dong, D. Lucor, V. Symeonidis, J. Xu, and G. E.
Karniadakis, "Multilevel parallelization models:
application to VIV," Proceedings of User Group
Conference (DoD UGC'03), 2003.

[7] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E.
Brooks, and K. Warren, "Introduction to UPC and
Language Specification," Center for Computing
Sciences CCS-TR-99-157, 1999.

[8] H. Jin, G. Jost, J. Yan, E. Ayguade, M. Gonzalez, and X.
Martorell, "Automatic Multilevel Parallelization Using
OpenMP," Proceedings of EWOMP, 2001.

[9] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H.
Trease, and E. Apra, "Advances, Applications and
Performance of the Global Arrays Shared Memory
Programming Toolkit," International Journal of High
Performance Computing Applications, accepted for
publication.

[10] J. Nieplocha, R. J. Harrison, and R. J. Littlefield,
"Global arrays: A nonuniform memory access

programming model for high-performance computers,"
Journal of Supercomputing, vol. 10, pp. 169-189, 1996.

[11] D. E. Bernholdt, J. Nieplocha, and P. Sadayappan,
"Raising the Level of Programming Abstraction in
Scalable Programming Models," Proceedings of HPCA
Workshop on Productivity and Performance in High-
End Computing (P-PHEC 2004), Madrid, Spain, 2004.

[12] D. E. Bernholdt, E. Apra, H. A. Fruchtl, M. F. Guest, R.
J. Harrison, R. A. Kendall, R. A. Kutteh, X. Long, J. B.
Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I.
Fann, R. J. Littlefield, and J. Nieplocha, "Parallel
Computational Chemistry Made Easier: The
Development of NWChem," Int. J. Quantum Chem.
Symposium, vol. 29, pp. 475-483, 1995.

[13] MPI-Forum, "MPI: a message-passing interface
standard," International Journal of Supercomputer
Applications and High Performance Computing, vol. 8,
pp. 159-416, 1994.

[14] Y. Zhou, L. Iftode, and K. Li, "Performance Evaluation
of Two Home-Based Lazy Release Consistency
Protocols for Shared Virtual Memory Systems,"
Proceedings of Operating Systems Design and
Implementation Symposium, 1996.

[15] A. L. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel,
"Evaluating the performance of software distributed
shared memory as a target for parallelizing compilers,"
Proceedings of 1997 11th International Parallel
Processing Symposium, IPPS 97, Apr 1-5 1997, Geneva,
Switz, 1997.

[16] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon,
"Midway distributed shared memory system,"
Proceedings of 38th Annual IEEE Computer Society
International Computer Conference - COMPCON
SPRING '93, Feb 22-26 1993, San Francisco, CA, USA,
1993.

[17]V. W. Freeh and G. R. Andrews, "Dynamically
controlling false sharing in distributed shared memory,"
Proceedings of 1996 5th IEEE International Symposium
on High Performance Distributed Computing, Aug 6-9
1996, Syracuse, NY, USA, 1996.

[18] J. Nieplocha, V. Tipparaju, M. Krishnakumar, G.
Santhmaraman, DK Panda, Optimizing Mechanisms for
Latency Tolerance in Remote Memory Access
Operations on Clusters, Proc. IEEE Cluster’03. HK.
2003.

[19] J. Nieplocha and B. Carpenter, "ARMCI: A Portable
Remote Memory Copy Library for Distributed Array
Libraries and Compiler Run-time Systems," Proceedings
of RTSPP of IPPS/SDP'99, 1999.

[20] ARMCI: A Portable Aggregate Remote Memory Copy
Interface, http://www.emsl.pnl.gov/docs/

 parsoft/armci/armci1-1.pdf, 2000

271

[21] M. Krishnan, V. Tipparaju, B. Palmer, and J. Nieplocha,
"Processor-Group Aware Runtime Support for Shared-
and Global-Address Space Models," Proceedings of 3rd
Workshop on Compile and Runtime Techniques for
Parallel Computing, International Conference on Parallel
Processing, 2004.

[22] W. R. Stevens, Advanced Programming in the UNIX
Environment: Addison Wesley, 1992.

[23] V. Tipparaju, G. Santhmaraman, J. Nieplocha, and D.
K. Panda, "Host-assised zero-copy remote memory
access communication on Infiniband," Proceedings of
International Parallel and Distributed Computing
Symposium (IPDPS), Santa Fe, NM, USA, 2004.

[24] L. S. Lin, R. Anderson, B. Chamberlain, S. Choi, G.
Forman, E. Lewis, and W. D. Weathersby., "ZPL vs.
HPF: A comparison of performance and programming
style," Department of Computer Science and
Engineering, University of Washington 95--11--05,
1995.

[25] C. Coarfa, Y. Dotsenko, J. Eckhardt, and J. M. Mellor-
Crummey, "Co-array Fortran Performance and Potential:
An NPB Experimental Study," Proceedings of LCPC,
2003.

[26] D. Bailey, T. Harris, W. Saphir, R. Van der Vijingaart,
A. Woo, and M. Yarrow, "The NAS Parallel
Benchmarks 2.0," NASA Ames Research Center,
Moffett Field, CA NAS-95-020, 1995.

[27] G. Krawezik and F. Cappello., "Performance
Comparison of MPI and three OpenMP Programming
Styles on Shared Memory Multiprocessors,"
Proceedings of 15th ACM Symp on Parallel algorithms
and architectures, 2003.

 [28] H. Jin, M. Frumkin, and J. Yan., "The OpenMP
Implementation of NAS Parallel Benchmarks and Its
Performance," NASA Ames Research Center NAS99 -
011, 1999.

[29] M. Frumkin, H. Jin, and J. Yan, "Implementation of
NAS Parallel Benchmarks in High Performance
Fortran," Proceedings of International Parallel and
Distributed Processing Symposium, 2000.

[30] T. A. El-Ghazawi and F. Cantonnet, "UPC Performance
and Potential: A NPB Experimental Study," Proceedings
of Supercomputing, 2002.

[31] S. White, A. Alund, and V. S. Sunderam, " Performance
of the NAS parallel benchmarks on PVM-Based
networks," Parallel and Distributed Computing, vol. 26,
pp. 61-71, 1995.

[32] C. Clemencon, K. M. Decker, V. R. Deshpande, A.
Endo, J. Fritscher, P. A. R. Lorenzo, N. Masuda, A.
Müller, R. Rühl, W. Sawyer, B. J. N. Wylie, and F.
Zimmermann, "HPF and MPI implementation of the
NAS Parallel Benchmarks supported by integrated
program engineering tools," Proceedings of PDCS'96,
1996.

272

