
ABSTRACT 
Exploiting processor groups is becoming increasingly 
important for programming next-generation high-end 
systems composed of tens or hundreds of thousands of 
processors. This paper discusses the requirements, 
functionality and development of multilevel-parallelism 
based on processor groups in the context of the Global Array 
(GA) shared memory programming model. The main effort 
involves management of shared data, rather than 
interprocessor communication. Experimental results for the 
NAS NPB Conjugate Gradient benchmark and a molecular 
dynamics (MD) application are presented for a Linux cluster 
with Myrinet and illustrate the value of the proposed 
approach for improving scalability. While the original GA 
version of the CG benchmark lagged MPI, the processor-
group version outperforms MPI in all cases, except for a few 
points on the smallest problem size. Similarly, processor 
groups were very effective in improving scalability of a 
Molecular Dynamics application. 

Categories and Subject Descriptors 
D1.3 [Concurrent Programming]: Parallel programming 

General Terms: Performance, algorithms. 
Keywords: Multi-level parallelism, processor groups, 
Global Arrays, extreme scalability 

1. INTRODUCTION 
Exploiting processor groups is becoming increasingly 
important for programming next-generation high-end 
systems. Such systems, containing tens or hundreds of 
thousands of processors, present a challenge to many 
important scientific applications that are composed of 
algorithms with variable computation/communication 
granularity. One strategy to limit the negative effect of 
Amdahl’s law on the overall efficiency and scalability of the 
application is to execute the finer granularity algorithms on 
smaller subsets of processors, where their efficiency and 
speedup are high. Several classes of algorithms fit this 

model, e.g. ensemble averages. Ensemble averages are 
important in many areas of physics, particularly for systems 
representing a very large number of degrees of freedom or 
where there is a large uncertainty in the values of the input 
parameters. Examples include Monte Carlo calculations in 
condensed matter simulations, Monte Carlo calculations of 
sensitivity and uncertainty, and statistical averages of 
hydrodynamics and meteorological simulations. Very often, 
meaningful conclusions can be drawn only after running a 
large number of similar calculations. However, individual 
calculations may scale well only up to a small number of 
processors. However, it is often not possible to run single 
calculations on only one processor due to memory 
requirements. Another strategy for improving scalability 
through the processor groups involves replicating 
communication-sensitive data structures across the subset of 
processors and distributing them within each subset.  This 
technique can improve the communication efficiency and 
thus scalability by reducing the overall number of messages 
while increasing their size. It also uses less memory than a 
standard replicated data algorithm but requires more memory 
than a completely distributed approach. 
In the context of message-passing scientific applications (e.g. 
computational fluid dynamics, environmental modeling, 
ordinary differential equation solvers), decomposing a set of 
processors into groups has been used to reduce 
communication overhead and improve scalability [1-3]. ORT 
[4], a library based on group-SPMD programming model 
with orthogonal processor groups built on top of MPI, targets 
primarily grid-based applications. In [5] processor subgroups 
have been used to improve scalability by reducing 
synchronization overheads of block iterative solvers that 
employ a correction equation through an inner iterative 
method. Multilevel parallelization models [6] use processor 
groups to enable scientific applications to scale to a large 
number of processors more efficiently because a greatly 
reduced number of processes are involved in the 
communications at each level. 
Despite their excellent support for task-parallelism, the 
shared memory models (UPC[7], OpenMP, Global Arrays) 
currently have little or no explicit support for data-
parallelism based on process groups. For example, the 
Global Arrays (GA) data parallel operations require 
participation of all tasks in the program even if some of them 
would not be involved in computations in that operation. The 
inability of the OpenMP standard to specify nested 
parallelism within a parallel region has been pointed out in 
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several papers e.g., [6, 8]; however, despite research 
compiler efforts, no commercial compiler addresses this 
shortcoming. Clearly, for shared memory models to be 
effective for real world scientific applications on systems 
with very large processor counts, more flexibility is needed 
in terms of expressing available parallelism and distributing 
the workload among available processors. In the current 
paper we describe an ongoing effort to develop support for 
multi-level parallelism based on processor groups in the 
context of a shared memory programming model, as 
implemented in GA. The Global Arrays toolkit [9,10] 
presents to the application developer a distributed data 
structure as a single object and allows operations on it as if it 
resided in shared memory, even on distributed memory 
systems. By providing a rich, high-level set of library calls, 
the implementation of highly scalable data- and task-parallel 
algorithms has been greatly simplified even for non-expert 
users [11].  In addition to other applications, GA is the de 
facto standard parallel programming model in electronic 
structure computational chemistry, with some applications 
packages in this area, such as NWChem [12], exceeding a 
million of lines of code.  
We demonstrate the effectiveness of the proposed processor 
group extension in two contexts: a NAS CG benchmark and 
a molecular dynamics (MD) application. The NAS CG 
benchmark is characterized by a large amount of 
communication, memory reference, and computation 
patterns which are very common in real-world scientific 

applications. In this context, processor groups were used to 
replicate some of the data structures to reduce the amount of 
communication in the manner consistent with the standard 
MPI [13] implementation of this benchmark. This helped the 
group version to improve scalability and outperform MPI on 
a Linux cluster. For example, for Class C, a performance 
improvement of 25.6% is achieved on 32 processors of a 
Linux cluster over the standard MPI implementation. 
Another example used in the paper is the molecular 
dynamics (MD) application. By exploiting multi-level 
parallelism based on processor groups, scalability of that 
application was substantially improved. 
The paper is organized as follows. Section 2 outlines features 
of GA toolkit. Section 3 describes our technical approach.  
Section 4 includes experimental evaluation. The paper is 
concluded in Section 5. 

2. GA SHARED MEMORY PROGRAMMING 
ENVIRONMENT 
In the traditional shared-memory programming model, data 
is located either in “private” memory (accessible only by a 
specific process) or in “global” memory (accessible to all 
processes). In shared-memory systems, global memory is 
accessed in the same manner as local memory, i.e., by 
load/store operations. The shared-memory paradigm 
eliminates the synchronization that is required when message 
passing is used to access non-private data. A disadvantage of 
many shared-memory models is that they hide the Non-

Physically distributed data 

Single, shared data structure 

1 

2 4 6 8 

3 5 7 

e.g., A(4,3) rather than buf(7) on task 2 

Figure 1: Left: GA manages a distributed array as a single shared data object. As shown, any process can 
access the distributed data using global indexing (e.g., using global index A(4,3)). Right: Any part of the array 
can be accessed noncollectively as if it is located in shared memory (e.g., Process X gets a block of the global 

array with global indices starting at (100,17) and block size=100x3). 

Process Y 
ga_get (a,180, 210, 23, 40, buf, 30) 

Process Z 
ga_get (a,175, 185, 19, 70, buf, 10)

Process X 
ga_get (a,100, 200, 17, 20, buf, 100) 
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Uniform-Memory-Access (NUMA) memory hierarchy of 
the underlying distributed-memory hardware. The Global 
Arrays toolkit strives to combine the better features of the 
shared and distributed-memory programming models [9, 10]. 
It implements a shared-memory programming approach in 
which the programmer manages data locality. Data transfer 
between a global address space (a distributed array) and local 
storage can be done through explicit calls to functions.  In 
this respect, the GA model has similarities to distributed 
shared-memory (DSM) models that provide an explicit 
acquire/release protocol e.g. [14].  However, the GA model 
acknowledges that remote data is slower to access than is 
local data and therefore allows data locality to be explicitly 
specified and hence managed.  The distribution and locality 
information is available through library operations that 1) 
specify the array section held by a given process, 2) specify 
which process owns a particular array element, and 3) 
returns a list of processes and the blocks of data owned by 
each process corresponding to a given section of an array. 
Figure 1 shows a dual view of the global array data structure. 
Another advantage is that GA, by optimizing and moving 
only the data requested by the user, avoids issues such as 
false sharing or redundant data transfers present in some 
DSM solutions [15-17].  The GA programming model 
includes as a subset message passing; in particular, the 
programmer can use the full MPI functionality in 
conjunction with GA, including the data stored in global 
arrays. The library can be used in C, C++, Fortran 77, 
Fortran 90 and Python programs.  
The GA programming model can be characterized as 
follows. Processes can communicate with each other by 
creating and accessing GA distributed matrices, as well as by 
using conventional message-passing (MPI). Global arrays 
are physically distributed blockwise, either regularly or as 
the Cartesian product of irregular distributions on each axis. 
Each process can independently and asynchronously access 
any N-dimensional patch of a GA distributed matrix, without 
requiring cooperation by the application code in any other 
process. Each process is assumed to have fast access to some 
portion of each distributed matrix, and slower access to the 
remainder. These speed differences define the data as being 
‘local’ or ‘remote’, respectively. If the data is ‘local’, the 
process can directly access the memory block to retrieve data 
instead of using a ‘get’ access. Each process can determine 
which portion of each distributed matrix is stored ‘locally’ 
and can access it directly (by a local pointer). Every element 
of a distributed matrix is guaranteed to be ‘local’ to exactly 
one process. 
The GA toolkit offers support for both task and data 
parallelism. Task parallel algorithms can be developed using 
the one-sided (noncollective) copy operations that transfer 
data between global memory (distributed/shared array) and 
local memory. In addition, each process is able to directly 
access data held in a section of a global array that is logically 
assigned to that process. The one-sided communications 

used by Global Arrays eliminate the need for the 
programmer to account for responses by remote processors. 
Only the processor issuing the data request is involved, 
which considerably reduces algorithmic complexity 
compared to the programming effort required to move data 
around in a two-sided communication model. To copy data 
from a local buffer to a distributed array requires only a 
single call to nga_put. Based on the data distribution, the GA 
library handles the decomposition of the put into separate 
point-to-point data transfers to each of the different 
processors to which the data must be copied and implements 
each transfer. 
The data parallel computing model is supported through a 
set of collective functions that operate on either entire arrays 
or sections of global arrays.  The set includes BLAS-like 
operations (copy, additions, transpose, dot products, matrix 
multiplication). These are collective data-parallel operations 
that are called by all processes in the parallel job. For 
example, movement of data between different arrays can be 
accomplished using a single function call. The 
nga_copy_patch function can be used to move a patch, 
identified by a set of lower and upper indices in the global 
index space, from one global array to a patch located within 
another global array. The only constraints on the two patches 
are that they contain equal numbers of elements. In 
particular, the array distributions do not have to be identical 
and the implementation can perform as needed the necessary 
data reorganization. 
GA has been used intensively in scientific applications and 
shown high performance and scalability [9]. 

3. TECHNICAL APPROACH 
Due to the required (by applications) compatibility of GA 
with MPI, our design goal was to follow the MPI approach 
to the processor group management as closely as possible. 
However, in shared memory programming, management of 
shared data rather than the explicit interprocessor 
communication is the central topic. More specifically, we 
need to determine how to create, access, share, and destroy 
shared data in the framework of the processor group 
management of MPI. For example, Figure 2 illustrates the 
concept of using shared arrays by processor groups. The 
three processor groups (Group1, Group2, and Group3 in 
Figure 2) execute tasks that operate on three arrays: A, B, 
and C. Array A is in the scope of all three processor groups. 
Array B is distributed on processor Group 1. Array C is 
distributed on processor group 3. All arrays can be accessed 
using collective (individual and multiple arrays) and one-
sided (non-collective) operations. 
The other explicit design goals were: 
• preserving the ease of use GA model offers 
• achieving high performance i.e., implementation 

efficiency of existing operations on global arrays should 
not be degraded by introducing group-awareness 
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• providing mechanisms that simplify conversion of 
existing non-group codes to the group-aware 
environment.  

This effort involves two areas: defining and implementing 
functionality extensions to the GA itself and developing 
efficient run-time support for the new capabilities. 

3.1 Functionality Extensions 
The minimum set of group-aware operations in the context 
of GA involves the ability to create shared arrays on subsets 
of processors. The interfaces to define processor groups as 
defined by MPI are adequate. In addition, the ability to 
access data stored in global arrays by processors that created 
the arrays is required for any application. Furthermore, full 
compatibility of existing GA operations (~150 calls) with 
processor groups, providing that the operations do not 
involve arrays defined on different groups, is important for 
supporting existing applications.  
As the next step, we developed support for the data-parallel 
copy operation that works on arrays (or subsections) defined 
on different processor groups as long as one group is a subset 
of the other. Data distributed in a processor group 
(containing M processors) can be redistributed to another 
processor group (containing N processors) regardless of the 
number of processors in each group and the data layout. This 
can be done as a collective call across processors in both the 
groups or as a non-collective one-sided operation. This 
enables development of applications with nontrivial 
relationships between processor groups. 
Default Processor Groups 
The concept of the default processor group is a new, 
powerful capability that enables rapid development of new 
group-based codes and simplifies conversion of existing, 
non-group aware codes. Under normal circumstances, the 
default group for a parallel calculation is the MPI world 
group (contains the complete set of processors), but a call is 

available that can be used to change the default group to a 
processor subgroup. This call must be executed by all 
processors in the subgroup. Furthermore, although it is not 
required, it is probably a very good idea to make sure that the 
default groups for all processors in the system (i.e. all 
processors contained in the original world group) represent a 
complete non-overlapping covering of the original world 
group.  Once the default group has been set, all operations 
are implicitly assumed to occur on the default processor 
group unless explicitly stated otherwise. Shared arrays are 
created on the default processor group and global operations 
by default are restricted to the default group. Inquiry 
functions, such as the number of tasks and the task rank, 
return values relative to the default processor group. 
Exploiting Locality and Efficient Direct Access 
For performance reasons shared memory is used for storing 
global arrays within SMP nodes. Therefore, any  
process/task can directly access the memory allocated for a 
global array on any other process in the same SMP node.  
Although every process is guaranteed to have fast access to 
the portion of array it owns, all the other processes in the 
same SMP node are able to access this memory directly, 
thereby avoiding unnecessary copies. In the case of a shared 
memory system, such as the SGI Altix, a process can access 
data in the entire global array directly. An appropriate 
interface for task mapping to individual SMP nodes of a 
cluster in the parallel job was introduced to enable exploiting 
the performance advantages of shared memory. 
3.2 Runtime Support 
An important component of the current work is providing 
group-awareness in the runtime layer. The ARMCI library 
[19, 20] has been used for communication and memory 
management by Global Arrays and other systems such as the 
Rice Co-Array Fortran compiler. Most of the required effort 
falls into the area of memory management, and our solution 
is based on a layered approach, see Figure 3. Efficient 

Group1 Group2

Group3

Array B 

Array A

Array C

Figure 2: An example of multilevel parallelism in Global Arrays. 
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interprocessor communication for groups relies on the “fast” 
(registered shared) memory, and exploits task mapping and 
system locality information. Since “fast” memory is 
provided by our memory management layer, supporting 
process groups does not require modification to the low-level 
point-to-point communication protocols. 
On clustered systems with multiprocessor nodes based on 
commodity Symmetric-Multi-Processor (SMP) clusters, it is 
important to handle process groups, which might include 
arbitrary subsets of processes and cross the SMP node 
boundaries, while still managing memory efficiently. Instead 
of node-local and group-specific memory management 
schemes, we use a single shared memory heap on each SMP 
node, and integrate its instances across all the nodes. 
Experimental results showed [21] that this approach not only 
reduces memory fragmentation and resource consumption, 
but also simplifies implementation of the memory protection 
and registration required by the network communication 
protocols on modern interconnects such as the Myrinet or 
Infiniband.  

 
The components of the memory management layers shown 
in Figure 3 are as follows. 
 
Shared Memory Allocation 
This layer supports a variety of operating systems (e.g., 
Microsoft Windows, Linux, Cygwin, AIX, Tru64, Mac OS-
X, and other Unix-like systems), networks, and interfaces for 
shared memory allocation. Depending on the platform, 
shared memory is allocated using one of the following 
interfaces: System V shmget/shmat calls, mmap, Posix 
shm_open, Hitachi’s combuf_object_get, NEC’s dp_malloc, 
Microsoft’s CreateFileMapping, and others. The shared 
memory allocation is a cooperative procedure between 

processes involved in the memory allocation: it involves 
allocation of a shared memory segment from the OS by one 
selected “master” process, followed by a broadcast of the 
associated handle/identifier to the other processes within the 
node and, finally, mapping of the allocated memory in the 
address space of each process on the node.  
 
Registration and Access Protection 
On networks that support RDMA and require registration of 
communication buffer memory, we attempt to register 
memory with the network driver after allocating shared 
memory. With each shared memory segment allocated from 
the OS, we maintain a record of information including size, 
address, and information about whether or not the 
registration was successful and the memory access keys (if 
applicable). The memory access keys and registration status 
information are exchanged with processes on other cluster 
nodes and are stored in a table describing registered memory 
segments on every cluster node. If the specified address falls 
within the address range for the registered segments on both 
ends of the data transfer, the most efficient zero-copy 
communication protocols are used. 
 
Intra-node Dynamic Memory Manager 
The purpose of this layer is to minimize the overhead of 
system calls involved in allocating shared memory and to 
ensure that the allocated memory segments are managed 
efficiently (i.e., minimize fragmentation). It is also critical 
for addressing the OS resource limitations. Examples of such 
limitations in the System V shared memory interfaces [22] 
are the number of segments that a single process can attach 
to (SHMSEG), minimum shared memory segment size 
(SHMMIN), system wide maximum number of segments 
(SHMALL), or limits for the per process maximum number 
of shared memory segments (SHMSEG). Since the 
registration process described in the previous subsection 
involves pinning of the associated pages in physical 
memory, it is imperative for the intra-node memory manager 
to guarantee that allocated memory is used efficiently. The 
memory manager code can be executed by any process on 
behalf of the processes in the group that are running on the 
same node. To satisfy the request for global memory, the 
requested memory sizes are added for all such processes. 
When the suitably sized free segment is located on the free 
list or allocated from the OS, the offset and shared memory 
handle/identifier are broadcast to others within the node. The 
offset is then used to calculate the pointer to the allocated 
memory, after assuring that the memory is mapped in the 
corresponding process address space. The list of free and 
used blocks is updated in the shared data structure 
accordingly. 
 

Figure 3: Memory management layers 
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Shared Memory Allocation 

Memory Registration/Protection 

Inter-node exchange of 
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Application 
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Address and Access Protection Exchange  
On clusters, after memory is allocated on each SMP node 
independently, we need to exchange addresses and other 
types of information required by the network communication 
protocols to transfer data to/from that memory. This 
operation is executed as a part of the collective global 
memory allocation interface. For processor groups, the 
operation is performed for the given processor group. On 
some platforms that offer a limited set of RMA operations, 
the missing capabilities can be implemented using an extra 
“helper” thread [23]. In those cases, additional steps are 
involved in the memory management system. For example, 
on Infiniband if a new shared memory segment allocated 
from the OS is registered, the thread is awoken to set the 
memory access protection keys for that segment. 
 

4. EXPERIMENTAL EVALUATION 
We demonstrate the effectiveness of the proposed processor 
group extension in two contexts: a NAS CG benchmark and 
a molecular dynamics (MD) application. The NAS CG 
benchmark exhibits the communication volume, memory 
reference, and computation patterns which are very common 
in real-world scientific applications. This benchmark has 
been parallelized and studied in the context of multiple 
programming models [24-32], including shared memory. In 
all of these studies, MPI was hard to outperform: none of the 
other models showed a consistent performance advantage 
over the standard MPI implementation of the CG 
benchmark. 
The experiments were performed on a cluster of 24 dual 
1GHz Itanium-2 nodes. The compute nodes run Red Hat 
Linux with kernel 2.4-20. The compute nodes have 6 GB of 
memory per node and are interconnected with the dual port 
Myrinet E cards. We used the GNU C compiler version 3.3 
and the Intel Fortran compiler version 7.0. 
4.1 NAS CG Benchmark 
NAS CG uses the inverse power method to find an estimate 
of the largest eigenvalue of a symmetric positive definite 
sparse matrix with a random pattern of nonzero entries [26]. 
The inverse power approach involves solving an 
unstructured sparse linear system of equations Az = x using 
the conjugate gradient method. Figure 4 illustrates the 
algorithm and shows values for the size of the system n, 
number of outer iterations, and the shift λ for different 
problem sizes in the benchmark (see Table1). In every 
iteration, the calculated eigenvalue estimate ζ must agree 
with the reference value ζREF within a tolerance of 1.0 × 10-

10, i.e.,     |ζ - ζREF| ≤ 1.0 × 10-10.  
Our first implementation of CG using GA involved 
distributing the array A in rows among processes and 
distributing the vectors p and q. This is the simplest and most 
natural parallelization strategy for the CG benchmark using 
GA, and it was derived by closely following the serial 

version of the benchmark (rather than the MPI version). That 
version, although simple to implement, did not scale as well 
as the standard MPI version distributed by NASA, see Figure 
5. The reason for better scalability of the MPI 
implementation was the use of replication to reduce 
communication cost. The standard MPI version of CG uses 
multiple replicas of vectors p, q, r, z to reduce the volume of 
communication. In the MPI fully distributed CG 
implementation, every process is assigned a strip of rows of 
matrix A. Accordingly, every vector is distributed among the 
processes. Every process first retrieves the whole vector p 
then performs the matrix-vector multiplication. The 
MPI_Allgather operation is then used to store the partial 

matrix-vector multiplication result into vector q. In this 
implementation, there are two major data-communication 
phases. The first occurs in the matrix multiplication; every 
process needs to obtain the portion of vector p it does not 
own. The second is the MPI_Allgather operation to assure 
that every process has the current value of q.  
4.1.1. Group-Based Version   
We discovered that without groups, it was virtually 
impossible to implement a similar replication algorithm as 
used in the MPI version while preserving the GA data-
parallel calls. Not having these calls would make the 
implementation difficult and increase the code complexity. 

Table 1: Parameters for the NAS CG benchmark 
Size n iteration

s 
non-zeros 
per row 

λ 

Class A 14000 15 11 20 
Class B 75000 75 13 60 

Class C 150000 75 15 110 

 
z=0 
r = x 
ρρρρ = rTr 
p = r 
do i = 1, 25 
 q = Ap 
 αααα = ρρρρ / (pTq) 
 z = z + ααααp 
 ρρρρ0 = ρρρρ 
 r = r - ααααq 
 ρρρρ = rTr 
 ββββ = ρρρρ / ρρρρ0  
 p = r + ββββp 
enddo 
compute residual norm explicitly: ||r|| = ||x – Az|| 

Figure 4: Conjugate Gradient Method: algorithm 
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With the group capabilities, the vectors are replicated 
between the processor groups and distributed within the 
group. Because of similar distributions, MPI and our 
implementation will have similar calculation and 
communication patterns. Collective linear algebra operations 
in the GA implementation can be made to operate within the 
scope of any group. A processor group, based on how many 
processes it is created with, could encompass more than one 
SMP node.  
We start off by determining the number of rows of the 
matrix A that should be assigned to each processor group.  
Within every processor group, the vectors are distributed; 
across the group, they are replicated. When possible, matrix-
vector multiplication exploits shared memory, but the 
computation load remains the same as in the MPI version. 

We changed the access to matrix A so that the two processes 
that are on the same SMP node could share access and 
compute a partial q. As in the MPI implementation, after the 
matrix-vector multiplication, there are two stages of 
communication: 1) Summation of q within the processor 
group, and 2) Exchange of vector q among the groups. The 
summation operation involves adding parts of the computed 
q within a group. This is done in a pairwise manner using a 
pairwise all-reduce algorithm. In addition, an exchange with 
the transpose process needs to be done. This is accomplished 
with a non-blocking put to the transpose processor. From 
Figure 6 it can be seen that GA has one additional transpose 
compared to MPI; however, when running on SMP nodes 
with more than one process per node, this extra transpose is 
done within the SMP node.  

MPI version GA version 

Figure 6: Transpose processes exchange on 2-way SMP node 
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Figure 5: CG Class B performance of the standard MPI implementations compared to the original non-

group version of GA on the Linux cluster with Myrinet 
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Performance results presented in Figure 7 demonstrate that 
the GA version runs faster than the standard MPI 
implementation, with exception for a few data points for the 
smallest problem size (Class A).  This is in part due to the 
computation overlapped with data exchange that replaces the 
all-gather operation in MPI. Direct use shared memory 
access contributes to the efficient execution of matrix-vector 
multiplication and data exchange is done within the local 
node.  On the other hand, the MPI counterpart code uses a 
less efficient communication scheme and thus requires more 
time to complete these two operations.  

4.2 Molecular Dynamics Application 
A parallel molecular dynamics (MD) code that was 
developed based on Global Arrays was modified to exploit 
processors groups. That original MD code is based on a 
spatial decomposition algorithm that partitions particles 
between different processors. The processors are mapped 
onto a rectangular grid and the number of processors on each 
grid axis is used to decompose the simulation volume into a 

similar grid. The particles in each spatial grid block are 
assigned to the corresponding processor in the processor 
grid. As the simulation proceeds in time, the particles move 
from one region of space to another and it is necessary to 
periodically update the distribution of particles on 
processors, see Figure 8. 
 The evaluation of the force on a particle also involves 
knowing the location of all particles within a given distance 
of a particular particle, which means that each processor 
must know the coordinates of all particles on neighboring 
processors that are within a certain cutoff distance of the 
spatial boundaries corresponding to the volume assigned to a 
processor. These coordinates must be updated at every step 
in the time integration of the system. The particle 
redistribution, the coordinate updates, and the scattering of 
forces back to particles after the force calculation require 
nearest neighbor communication between all processors in 
the processor grid. This particular code is designed to look at 
cluster nucleation in liquids, so the molecular dynamics 
algorithm has been supplemented with a rigid, hard-sphere 

P0 P1 P3

P4 P5 P6 P7

spatial decomposition 

P2

redistribution

Figure 8: Spatial decomposition (left) and redistribution during simulation (right) 
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Figure 7: Performance of group-based GA and standard MPI implementations illustrated on log-linear scale 
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confining potential that keeps particles in the nucleating 
cluster confined to the center of the system. This confining 
potential introduces numerous additional synchronization 
operations and small global summations. The overall code 
represents a complicated combination of nearest-neighbor 
communication and synchronization. The nearest-neighbor 
communication is managed by creating a set of global arrays 
that are used as communication buffers. Communication of 
particle indices and coordinates is managed by copying the 
information into the communication arrays using put 
operations, synchronizing, and then copying data out of the 
arrays using get operations. 
The type of MD calculations described here is composed of 
several independent tasks, and is also relevant to Monte 
Carlo averaging over an ensemble of problem realization as 
well as being useful for calculations of the potential of mean 
force and other determinations of thermodynamic quantities. 
These MD tasks can be executed on processor groups or run 
one by one by the all available processors as in the original 
version of the MD application. 
To convert this code to run on groups, some additional work 
was done to make the code more self-contained. Portions of 
the setup that had originally been done by separate programs, 
such as generation of the initial configuration, were 
incorporated into the main simulation code. More options for 
controlling the initial equilibration and data accumulations 
stages, which originally were controlled by running 
successive simulations, were also added so that useful data 
could be extracted in a single simulation. Once these 
modifications had been made to the original parallel code, a 
small, top-level code was written that subdivides the world 
group into smaller groups and then executes a list of 
simulations by assigning them successively to available 

groups. As each group finishes its calculation, it gets the next 
simulation from the list. The simulations used for the timing 
studies in this paper, where all too short to have any 
scientific use, but they illustrate the scaling properties of the 
application. 
Experimental results for a simulation consisting of 16 
molecular dynamics tasks were obtained. The goal would be 
to combine output from these tasks to efficiently sample the 
cluster distribution functions based on short simulations of 
individual clusters. Each of the individual tasks involves 
about 4000 atoms. Results shown in Figure 9 indicate that 
the use of processor groups benefits this application. The 
graph shows the speedup of the complete set of calculations 
as a function of the number of processors. The calculations 
using processor groups used small groups containing only 2 
processors, this corresponds to a portion of the speedup 
curve for the simulation without processor groups that is still 
relatively efficient. The simulation with processor groups 
shows excellent scalability. The simulation without 
processors groups (where the individual tasks are run 
sequentially) is becoming rapidly dominated by 
communication costs as the number of processors grows.  

5. CONCLUSIONS AND FUTURE WORK 
Supporting extreme scalability will become the key for any 
parallel programming model aiming to support high-end 
systems of the future because of the increasingly large 
processor counts deployed in these architectures.  The 
current paper describes the development of processor group 
extensions to the shared memory programming model of 
GA. Based on our experience we believe that the use of 
locality awareness, implicit rather than explicit 
communication, and its high level programming interfaces, 
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Figure 9: Performance of the MD simulation on Linux cluster with and without processor groups.  
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makes the shared memory programming model of GA well 
suited for developing application codes for the next 
generation systems. The processor-group capabilities enable 
expression of multi-level parallelism and thus can be 
instrumental to extending scalability for existing and new 
applications. This benefit was demonstrated in the context of 
the NAS CG benchmark and in a molecular dynamics 
simulation. However, the current development effort is far 
from being complete. Shared memory style access to arrays 
created on other processors, data-parallel operations 
involving arrays created by disjoint processor groups, or 
dynamic group management in the context of fault tolerant 
environments are some of the features that will require 
further consideration and development. 
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