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Introduction 
Both shared memory and distributed memory models have advantages and shortcomings. Shared memory model 
is much easier to use but it ignores data locality/placement. Given the hierarchical nature of the memory 
subsystems in the modern computers this characteristic might have a negative impact on performance and 
scalability. Various techniques, such as code restructuring to increase data reuse and introducing blocking in data 
accesses, can address the problem and yield performance competitive with message passing [Singh], however at 
the cost of compromising the ease of use feature. Distributed memory models such as message passing or one-
sided communication offer performance and scalability but they compromise the ease-of-use. In this context, the 
message-passing model is sometimes referred to as “assembly programming for the scientific computing” .  

The Global Arrays toolkit [GA1, GA2] attempts to offer the best features of both models. It implements a 
shared-memory programming model in which data locality is managed explicitly by the programmer. This 
management is achieved by explicit calls to functions that transfer data between a global address space (a 
distributed array) and local storage. In this respect, the GA model has similarities to the distributed shared-
memory models that provide an explicit acquire/release protocol. However, the GA model acknowledges that 
remote data is slower to access than local data and allows data locality to be explicitly specified and hence 
managed. The GA model exposes to the programmer the hierarchical memory of modern high-performance 
computer systems, and by recognizing the communication overhead for remote data transfer, it promotes data 
reuse and locality of reference. 

This paper describes the characteristics of the Global Arrays programming model, capabilities of the toolkit, and 
discusses its evolution.  

The Global Arrays Approach 
Virtually all the scalable architectures possess non-uniform memory access characteristics that reflect their 
multi-level memory hierarchies. These hierarchies typically comprise processor registers, multiple levels of 
cache, local memory, and remote memory. In future systems, both the number of levels and the cost (in 
processor cycles) of accessing deeper levels can be expected to increase. It is important for programming models 
to address memory hierarchy since it is critical to the efficient execution of scalable applications. The two 
dominant programming models for MIMD concurrent computing are message passing and shared memory.  

A message-passing operation not only transfers data but also synchronizes sender and receiver. Asynchronous 
(nonblocking) send/receive operations can be used to diffuse the synchronization point, but cooperation between 
sender and receiver is still required. The synchronization effect is beneficial in certain classes of algorithms such 
as parallel linear algebra where data transfer usually indicates completion of some computational phase; in these 
algorithms, the synchronizing messages can often carry both the results and a required dependency. For other 
algorithms, this synchronization can be unnecessary and undesirable, and a source of performance degradation 
and programming complexity. Despite programming difficulties, the message-passing paradigm’s memory 
model maps well to the distributed-memory architectures used in scalable MPP systems. Because the 
programmer must explicitly control data distribution and is required to address data-locality issues, message-
passing applications tend to execute efficiently on such systems. However, on systems with multiple levels of 
remote memory, for example networks of SMP workstations or computational grids, the message-passing 
model’s classification of main memory as local or remote can be inadequate. A hybrid model that extends MPI 
with OpenMP attempts to address this problem is very hard to use and often offers little advantage over the MPI 
only approach. 

In the shared-memory programming model, data is located either in “private”  memory (accessible only by a 
specific process) or in “global”  memory (accessible to all processes). In shared-memory systems, global memory 
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is accessed in the same manner as local memory. Regardless 
of the implementation, the shared-memory paradigm 
eliminates the synchronization that is required when message 
passing is used to access shared data. A disadvantage of many 
shared-memory models is that they do not expose the NUMA 
memory hierarchy of the underlying distributed-memory 
hardware. Instead, they present a flat view of memory making 
it hard for programmers to understand how data access 
patterns affect the application performance or how to exploit 
data locality. Hence, while programming effort involved in 
application development tends to be much lower than in the 
message-passing approach, achieved performance is usually 
less competitive. The shared memory model based on Global 
Arrays combines advantages of distributed memory model 
with the ease of use of shared memory. It is able to exploit 
SMP locality and deliver peak performance with the SMP by 
placing user's data in shared memory that allows accessing it 
directly rather than through a message-passing protocol. 

The Global Arrays toolkit attempts to offer the best features of 
the shared and distributed memory models. It implements a shared-memory programming model in which data 
locality is managed explicitly by the programmer. This management is achieved by explicit calls to functions 
that transfer data between a global address space (a distributed array) and local storage. In this respect, the GA 
model has similarities to distributed shared-memory models that provide an explicit acquire/release protocol. 
However, the GA model acknowledges that remote data is slower to access than local data and allows data 
locality to be explicitly specified and hence managed. Another advantage is that GA, by optimizing and moving 
only the data requested by the user, avoids issues such as false sharing or redundant data transfers present in 
some DSM solutions. The GA model exposes to the programmer the hierarchical memory of modern high-
performance computer systems, and by recognizing the communication overhead for remote data transfer, it 
promotes data reuse and locality of reference. 

The GA provides extensive support for controlling array distribution and accessing locality information. Global 
arrays can be created by 1)allowing the library to determine array distribution, 2) specifying decomposition only 
for one array dimension and allowing the library to determine the others, 3)specifying the distribution block size 
for all dimensions, or 4) specifying irregular distribution as a Cartesian product of irregular distributions for each 
axis. The distribution and locality information is available through library operations that 1) specify the array 
section held by a given process, 2) specify which process owns a particular array element, and 3) return list of 
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processes and the blocks of data owned by each process corresponding to a given section of an array. 

The primary mechanisms provided by GA for accessing data are copy operations that transfer data between 
layers of memory hierarchy, namely global memory (distributed array) and local memory. In addition, each 
process is able to access directly data held in a section of a global array that is logically assigned to that process. 
Atomic operations are provided that can be used to implement synchronization and assure correctness of an 
accumulate operation (floating-point sum reduction that combines local and remote data) executed concurrently 
by multiple processes and targeting overlapping array sections. 

GA extends its capabilities in the area of linear algebra by offering interfaces to third party libraries e.g., 
standard and generalized real symmetric eigensolvers (PeIGS), and linear equation solvers (ScaLAPACK). The 
library can be used in C, C++, Fortran 77, Fortran 90 and Python programs. 

Evolution of the Package and New Capabilities 
The original GA package [GA1, GA2] offered basic one-sided communication operations along with a limited 
set of collective operations on arrays in the style of BLAS. Only two-dimensional arrays and two data types were 
supported. The underlying communication mechanisms were implemented on top of the vendor specific 
interfaces. In the course of eight years, the package evolved substantially and the underlying code was 
completely rewritten. Separation of the GA internal one-sided communication engine from the data structure 
specific high-level operation was necessary. A new portable, general, and independent of GA communication 
library called ARMCI was created. The new capabilities that were later added to GA simply relied on the 
existing ARMCI interfaces.  The toolkit evolved in multiple directions:  

• Eliminating some of the restrictions in the original package such as limited set of data types and 
generalizing the arrays to support arbitrary dimensions. 

• Adding specialized capabilities that address needs of some the new application areas, e.g., ghost cells or 
operations for sparse data structures. 

• Expansion and generalization of the existing interfaces. For example, mutex and lock operations were 
added to better support development of shared memory style application codes.  

• Increased language interoperability and interfaces. For example, in addition to the original Fortran 
interfaces, C, Python, and C++ class library were developed. These efforts were further continued by 
developing a Common Component Architecture (CCA) component version of GA. 

• Developing additional interfaces to the third party libraries, especially in the parallel linear algebra area. 
Examples are ScaLAPACK [scalapack] and SUMMA [RVG]. Morerecently, interfaces to Tao [TAO] 
are being developed. 

ARMCI 
Development of the ARMCI (Aggregate Remote Memory Copy Interface) library represents the most substantial 
task associated with the GA project. ARMCI was developed to be a general, portable, and efficient one-sided 
communication interface that is able to achieve high performance without modification of the semantics or API 
on each vendor platform [ARMCI]. Another design requirement was for noncontiguous data transfers to be 
optimized to deliver performance levels as close to the contiguous data transfers as possible. This requirement 
has been possible to meet, thanks to the non-contiguous data interfaces available in the ARMCI data transfer 
operations: multi-strided and generalized UNIX I/O vector interfaces [ARMCI2]. ARMCI supports up to eight 
stride levels corresponding to eight-dimensional arrays. The library provides three classes of operations: 1) data 
transfer operations including put, get, and accumulate (operations also available in MPI-2 but not in any vendor 
specific remote memory interface); 2) synchronization operations— atomic read-modify-write, locks/mutex 
operations, and 3) operations for memory management, local and global fence, and error handling. ARMCI only 
targets remote memory allocated via the provided memory allocator routine, ARMCI_Malloc (similar to 
MPI_Win_malloc in MPI-2). On shared memory, systems including SMPs, this approach makes it possible 
allocate shared memory for the user data and consecutively map remote memory operations to direct memory 
references, thus achieving sub-microsecond latency and a full memory bandwidth [ARMCI3].  
ARMCI offers full portability to the Global Arrays package w.r.t. the communication interfaces. It also provides 
powerful interfaces for developing new capabilities and other data structures. ARMCI is currently a component 
of the run-time system in the Center for Programming Models for Scalable Parallel Computing project 
[pmodels]. 
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N-dimensional arrays 
The original version of the GA package has offered explicit support for two-dimensional arrays only. This 
characteristic was related to the original application domain of GA – numerical linear algebra and matrix related 
problems. It also influenced the API of most operations in the package. In the process of generalizing the 
capabilities of GA, this constraint had to be eliminated. It happened when the package was rewritten to use 
ARMCI. In the new version, only n-dimensional array capabilities are supported. The limit for the maximum 
number of dimensions is a compile time option with the default set to seven, the maximum number of 
dimensions supported by Fortran. For backwards compatibility, the original 2-dimensional interfaces are 
supported as wrappers to the new n-dimensional operations. 

Ghost Cells 
Many applications simulating physical phenomena defined on regular grids benefit from explicit support for 
ghost cells. These capabilities have been added recently to Global Arrays, along with the corresponding update 
and shift operations that operate on ghost cell regions. The update operation fills in the ghost cells with the 
visible data residing on neighboring processors. Once the update operation is complete, the local data on each 
processor contains the locally held “visible”  data plus data from the neighboring elements of the global array, 
which has been used to fill in the ghost cells. Thus, the local data on each processor looks like a chunk of the 
global array that is slightly bigger than the chunk of locally held visible data, see Figure 3. The update operation 
to fill in the ghosts cells can be treated as a collective operation, enabling a multitude of optimization techniques. 
It was found that depending on the platform, different communication algorithms (message-passing, one-sided 
communication, shared memory) work the bestThe implementation of this operation makes use of the optimal 
algorithm for each platform. GA also allows ghost cell widths to be set to arbitrary values in each dimension, 
thereby allowing programmers to improve performance by combining multiple fields into one global array and 
using multiple time steps between ghost cell updates. The GA update operation offers a multitude of embedded 
synchronization semantics: no synchronization whatsoever, synchronization at the beginning of the operation, at 
the end or both. They are selected by the user by calling an optional separate function that cancels any 
unnecessary synchronization points in the following update operation depending on the consistency of the data. 

Sparse Data Storage 
Unstructured meshes are typically stored in a compressed sparse matrix form where the arrays that represent the 
data structures are one-dimensional. Computations on such unstructured meshes often lead to irregular data 
access and communication patterns. They also map to a distributed, shared memory, parallel programming 
model. Developing high-level abstractions and data structures that are general and applicable to a range of 
problems and applications is a challenging task. Therefore, our plan was to identify a minimal set of lower level 
interfaces that facilitate operations on sparse data format first and then try to define higher level data structures 
and APIs after gaining some experience in using these interfaces.  
 
A set of functions was designed to operate on distributed, compressed, sparse matrix data structures built on top 
of one-dimensional global arrays. These functions have been patterned after similar functions in CMSSL on the 
Thinking Machines CM-2 and CM-5 massively parallel computers in the late 80’s and early 90’s. The types of 

 
 
 
 
 
 
 
 
 
 
 
Figure 3: Schematic illustration of extension of ordinary global array (left) to global array with ghost 
cells (right). Heavy solid lines are global array boundaries, light solid lines are boundaries of visible 
data on each processor, and dotted lines are boundaries of ghost cell data. 
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functions that have been designed, implemented and tested includes: 1) enumerate; 2) pack/unpack; 3) 
scatter_with_OP, where OP can be plus, max, min; 4) segmented_scan_with_OP, where OP can be plus, max, 
min, copy; 5) binning (i.e., N-to-M mapping); and 6) a 2-key binning/sorting function. All the functions operate 
on one-dimensional global arrays and can form a foundation for building unstructured mesh data structure. They 
were adopted in mesh generation (NWGrid [NWG]) and computational biophysics (NWPhys [NWP]) codes. In 
numerous applications, the performance has been demonstrated to scale linearly with the number of processors 
and problem size, as most unstructured mesh codes that do optimal data partitioning algorithms should. Figure 4 
shows a graphic of the mesh, partitioning, and sparse matrix structure [HET]. 

Disk Resident Arrays 
The disk resident arrays (DRA) model extends the GA model to another level in the storage hierarchy, namely, 
secondary storage [DRA]. It introduces the concept of a disk resident array—a disk-based representation of an 
array–and provides functions for transferring blocks of data between global arrays and disk arrays. Hence, it 
allows programmers to access data located on disk via a simple interface expressed in terms of arrays rather than 
files. The benefits of global arrays (in particular, the absence of complex index calculations and the use of 
optimized array communication) can be extended to programs that operate on arrays that are too large to fit into 
memory. By providing distinct interfaces for accessing objects located in main memory (local and remote) and 
on the disk, GA and DRA render visible the different levels of the memory hierarchy in which objects are stored. 
Hence, programs can take advantage of the performance characteristics associated with access to these levels. In 
modern computers, memory hierarchies consist of multiple levels, but are managed between two adjacent levels 
at a time. For example, a page fault causes the transfer of a data block (page) to main memory while a cache 
miss transfers a cache line. Similarly, GA and DRA allow data transfer only between adjacent levels of memory. 
In particular, data transfer between disk resident arrays and local memory is not supported.  
 
Disk resident arrays have a number of uses. They can be used to checkpoint global arrays. Implementations of 
out-of-core computations can use disk arrays to implement user-controlled virtual memory, locating arrays that 
are too big to fit in aggregate main memory in disk arrays, and then transferring sections of these disk arrays into 
main memory for use in the computation. DRA functions are used to stage the disk array into a global array; 
individual processors then use GA functions to transfer global array components into local storage for 
computation. If the global array is updated, a DRA write operation may be used to write the global array back to 
the appropriate component of the disk array. DRA has been designed to support collective transfers of large data 
blocks. No attempts are made to optimize performance for small (<0.5MB) requests.  
 
The DRA library evolved similarly to the GA. The original version shared the same limitations as GA regarding 
the number of dimensions and data types supported. The current version supports n-dimensional arrays, a range 

Figure 4: Example of domain decomposition of an unstructured mesh of a biological cell for 16 parallel processors. 
This series of images show the mesh, partitioned mesh, exploded mesh, along with the before (right/top) and after 
(right/bottom) partitioning of the sparse matrix representation of the unstructured mesh. 
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of C, and Fortran data types. Performance and scalability have not been sacrificed when developing these 
capabilities, see Figure 5 (coming from Bruce). The concept of chunked data layout has been adopted for n-
dimensional arrays to increase locality of reference and concurrency of I/O [DRPA]. 

Multi-language Interfaces and Interoperability 
The original GA package, although developed in C, supported primarily Fortran applications. However, the 
package evolved to become more language independent. The core library is still written in C, however, user 
interfaces are now available in multiple languages(see Figure 6). The primary languages are Fortran and C. In 
addition, a C++ class library and Python interfaces have been developed. GA attempts to provide as much 
compatibility between different language interfaces as possible. For example, arrays crated in Fortran with 
Fortran data types are accessible through the C interface. The same applies the other way around if a Fortran data 
type corresponding to C exists. Moreover, for even greater compatibility, the C interface supports either the 
Fortran or C view of multidimensional arrays in terms of data layout (column- or row-major based) and 
indexing. 

Common Component Architecture (CCA) GA component 
High performance scientific applications are assembled from large blocks of hand crafted code into monolithic 
applications, which also includes many generic support routines. A major disadvantage of this traditional 
approach is that software boundaries (function interfaces and global symbols) are frequently not well defined 
throughout the code [CCA]. The component approach attempts to address this problem. Components encapsulate 
well-defined units of reusable functionality and they interact through standard interfaces. Components are 
protected from changes in the software environment outside their boundaries. The Common Component 
Architecture (CCA) is a component model specifically designed for high performance computing. Components 
are peers, i.e. they are viewed as equal participants rather than as elements in an inheritance hierarchy. The CCA 
consists of three types of entities: components, ports and frameworks. Components are the basic units of 
software that are composed together at run-time to form applications. Ports are the fully abstract well-defined 
interfaces on components, which are managed by the framework in the composition process. Frameworks 
provide the means to hold the components and compose them into applications [CCA]. CCAFFEINE, a CCA-
compliant framework composes single program multiple data (SPMD) applications from components. A peer 
component communicates via ports with other components in the same address space and communicates via a 
process-to-process protocol (e.g. MPI) within its SCMD (Single Component Multiple Data) set of corresponding 
components on all P processors [Allan]. We developed an object-oriented global arrays (GA) peer component 
for high performance computing using the CCA standard.  
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Figure 6: Structure of the GA package 
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GA Component Application Component

CCA Services

Port Instance: ”ga”
Port Class     : GlobalArrayPort

getPor t(“ ga” )

getPor t(“ dadf” )Port Instance: ”dadf”
Port Class     : DADFPort

addProvidesPort(“ga” )
addProvidesPort(“dadf” )

registerUsesPort(“ga” )
registerUsesPort(“dadf” )

CCA Services

Port Instance: ”ga”
Port Class     : GlobalArrayPort

Port Instance: ”dadf”
Port Class     : DADFPort

Figure 7: Peer-to-peer connection mechanism in GA component

 
GA Component provides a shared-memory programming interface for distributed-memory computers to access 
dense multi-dimensional arrays. It provides two ports: GlobalArrayPort and DADFPort. These ports are the set 
of public interfaces that the GA component implements, which can be referenced and used by other components. 
GlobalArrayPort provides public interfaces for creating and accessing distributed arrays. These interfaces are 
intended to support the collection of the global information and creation of GlobalArray objects. All details of 
the data distribution, addressing, and data access are encapsulated in the GlobalArray objects. The GlobalArray 
object offers a set of operations for one-sided data transfer operations (get, put, scatter, gather, etc), collective 
array operations, and supportive operations for data locality control and queries. 
 
DADFPort provides public interfaces for defining and querying array distribution templates and distributed array 
descriptors. These array templates and descriptors, when combined, provide a uniform means to describe the 
parallel data distribution of dense multi-dimensional rectangular arrays. An array template is a virtual 
multidimensional array to which one or more actual distributed arrays may be aligned and an array descriptor is 
the association of real data (pointers, strides, etc.) to the distribution defined by a particular template. DADFPort 
interfaces are intended to support the creation, cloning, and destruction of DistArrayTemplate and 
DistArrayDescriptor objects, defined by the data working group of the CCA forum [DDADF]. 
DistArrayTemplate objects are used to describe the distribution template for a distributed array. These objects 
can also be used to create an actual data object. The DistArrayDescriptor object is constructed from size and 
type information, pointers to the local data on each process, and a mapping onto a distribution template. It 
describes any distributed array sufficiently to allow the construction of parallel communications schedules and 
other data movement-related operations. It is used together with DistArrayTemplate object to provide a complete 
description (i.e. an array descriptor) of the data distribution of a distributed array. These objects are primarily 
intended to low-level use within new components. 
 
Figure 7 illustrates the mechanism for making a peer-to-peer connection, which connects a GA component with 
an application component using CCAFFEINE [Armstrong]. The GA component adds the “provides”  ports, 
which is visible to other components to the CCA Services object. The application component registers the ports 
that it will need with the CCA Services object. The CCAFEINE framework connects two components and 
transfers the GlobalArrayPort and DADFPort to the application component (or any component) using GA 
Component’s Services object. The application component uses its Services object to retrieve the ports provided 
by GA Component. The connected components are set in motion by the go() function in GoPort , which is 
provided by the application component.  
 
It is apparent that the latency overhead for using components is equivalent to one virtual function call when 
using C++ [Allan]. We are also proceeding with plans to provide ports that employ interfaces developed by the 
Equation Solver Interface (ESI) Forum group. 
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Performance 
GA’s communication interfaces form a thin wrapper around ARMCI interfaces. Performance of GA is hence 
proportionate to and in-line with ARMCI performance. Table-1 gives the GA and ARMCI bandwidth and 
latency on CRAY-T3E and Linux cluster for intra-SMP node (local on Cray) and remote get operations. The 
very narrow difference in both bandwidth and latency numbers for GA and ARMCI can be seen in Table-1. On 
Linux, performance of remote operations has been shown with both GM and VIA as underlying networks. The 
Linux systems used for measurements are SGI 1100 servers with dual 1GHz Intel Pentium III processors. GM 
readings were obtained using Myrinet-2000 cards and a version 1.5pre4 of the GM software. VIA readings were 
obtained on a CLAN network running version 1.3 of the CLAN driver. 
Performance of inter-node operations in ARMCI follows very closely performance of the memory copy 
operation on that system. Similarly, ARMCI achieves bandwidth close to the underlying network protocols. The 
same applies to latency if the native platform protocol supports the equivalent remote memory operation (e.g., 
shmem_get on the Cray T3E). In cases platforms which do not support remote get (GM,VIA) the latency 
includes cost of interrupt processing that is used in ARMCI to implement get operation. 
 

GA Latency (us) ARMCI Latency(us) GA Bandwidth(MBps) 
ARMCI 

Bandwidth(MBps) Platform      
SMP/Local  Remote SMP/Local Remote SMP/Local Remote SMP/Local Remote 

Cray-T3E 6.4 8.05 0.81 3.01 215 329 225 330 

Linux-GM 37.30 37.2 168 168 

Linux-VIA 
1.56 

38.30 
0.302 

38.10 
409 

104 
412 

104 
                Table-1: Perfomance results of GA and ARMCI on CRAY-T3E and Linux (with GM and VIA) 

Conclusions  
Since it was introduced, the GA toolkit has proved itself an effective tool for developing scalable parallel 
applications. The applications of GA span quantum chemistry, molecular dynamics, image processing, electron 
microscopy data processing, financial security forecasting, computational fluid dynamics, computational 
biology, and other areas. The library has become the de facto standard parallel programming tool within the 
electronic structure computational chemistry community. Of the ten most widely used packages that execute in 
parallel (NWChem, Gamess-UK, Gamess-US, Molpro, Molcas, COLUMBUS, Qchem, Gaussian, Cadpac, ADF) 
five of them have adopted GA (NWChem, Gamess-UK, Molpro, Molcas, COLUMBUS), one is in a process of 
adopting it (QChem, a commercial s/w package) and one developed a library emulating a subset of the Global 
Arrays capabilities (Gamess-US). The remaining ones that do not use GA (Gaussian, Cadpac, ADF) also do not 
emphasize scalability. 
 
Over the years, the toolkit has evolved substantially by expanding its capabilities to serve new application areas 
and it has been ported to many new architectures. However, despite the many changes in h/w and the toolkit 
itself, the basic concepts behind GA have been proven successful. The current GA toolkit is 100% fully 
backward compatible with the interfaces in the original package. The package will be advanced in the future. 
Some of the recent capabilities described in this paper are only first steps. For example, sparse data structures 
and GA component efforts will surely bring new concepts and capabilities into the package. 
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