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Abstract

LAPI is a low-level, high-performance communication interface
available on the IBM RS/6000 SP system. It provides an active-
message-like interface along with remote memory copy and syn-
chronization functionality. It is designed primarily for use by ex-
perienced programmers in developing parallel subsystems,
libraries and tools, but we also expect power programmers to
use it in end-user applications. IBM developed LAPI as a part of
a project with Pacific Northwest National Laboratory (PNNL) to
optimize the performance of the Global Arrays (GA) toolkit and
its applications on the IBM RS/6000 SP. We provide an overview
of LAPI characteristics and discuss its differences from other
models such as MPI-2. We present some base performance pa-
rameters of LAPI including latency and bandwidth and compare
it with performance of the MPI/MPL. The Global Arrays library
from PNNL was ported to LAPI to exploit the performance bene-
fits of this new interface. Experience using LAPI to implement
GA and the performance of the resulting library are presented. 

1 Introduction
The IBM RS/6000 SP [1] is a general-purpose scalable parallel
system based on a distributed-memory message-passing archi-
tecture. Generally available systems range from 2 nodes to 128
nodes. The uniprocessor nodes are available with the latest
Power2-Super (P2SC) microprocessors‡. The nodes are intercon-
nected via an adapter to a high-performance, multistage, packet-
switched network for interprocessor communication capable of
delivering bi-directional data-transfer rate of up to 110 MB/s be-
tween each node pair. Each node contains its own copy of the
standard AIX operating system and other standard RS/6000 sys-
tem software. Many communication APIs that utilize the high
performance switch are available on the SP system including
MPI, MPL and PVM [2,3]. All of them provide a message-pass-
ing interface. The MPL receive-and-call (rcvncall) operation al-
lows implementation of one-sided access to memory of a remote
process. There are implementations of MPI and MPL that exploit
user space communication on the SP. User space communication
improves performance by avoiding the expensive system calls,
mode switch and extra copy overheads associated with commu-
nication interfaces that have a path through the kernel. However,
there are other overheads associated with user space message
passing implementation. For instance, in order to satisfy the
MPI/MPL semantics, the implementation often needs to keep
multiple copies of the data. Further, the cost of interrupts is fairly
high in the implementation of the above libraries. LAPI (Low-

‡.  The SP nodes may also be SMPs based on the PowerPC pro
sors; here we deal with the type of nodes more commonly used 
technical computations.
ces-
in 

level Applications Programming Interface), a new communica-
tions library available as part of the SP software, was designed
with the following primary objectives in mind: Performance:
The primary design consideration for LAPI was to define syntax
and semantics that would allow efficient implementation on the
underlying hardware and software communications infrastruc-
ture of the SP. We believe that we have succeeded in eliminating
much of the protocol overheads discussed above. Flexibility:
LAPI is based on the remote memory copy (RMC) model. RMC
is a one-sided programming paradigm similar to the load/store
model of shared memory programming. The one-sided model
eases some of the difficulties of the send/receive model, which
uses two-sided protocols. The send/receive paradigm is not very
easy to use when the communication pattern between processes
cannot be easily determined a priori; this includes applications
that use sparse matrices, adaptive grids, any kind of indirect array
references, or dynamic load balancing, for example, in the elec-
tronic structure calculations. Extensibility: In addition to a set of
basic functions, LAPI also provides the active message style in-
terface [4]; with this interface, users can add additional commu-
nications functions that are customized for their specific
application or environment. Note that the choice of using LAPI
or MPI/MPL depends on the application requirements. IBM of-
fers the use of both MPI and LAPI in the same application. 

The material presented in this paper is based on results of
a project involving IBM and PNNL. The venture was initiated to
optimize performance of the Global Arrays [5,6] on the SP sys-
tem. The GA provides portable shared-memory style access to
distributed data structures. The implementation uses system spe-
cific features to provide the best possible performance to the ap-
plication. In Section 2, we provide an overview of LAPI and
compare it with other approaches. In Section 3, we briefly dis-
cuss related work in one sided communication and active mes-
sages, and contrast it with LAPI. In Section 4, we discuss the
base performance parameters of LAPI and compare it with the
MPI/MPL implementation on the SP. In Section 5, our experi-
ence in optimizing GA is discussed along with performance of
the toolkit and its applications. We conclude with some remarks
on the project accomplishments and future work in Section 6. 

2 Overview of LAPI
LAPI is an asynchronous communication mechanism intended to
provide users the flexibility to write parallel programs with dy-
namic and unpredictable communication patterns. LAPI is archi-
tected to be an efficient (low latency, high bandwidth) interface.
In order to keep the LAPI interface as simple as possible it is de-
signed with a small set of primitives. However the limited set
does not compromise on functionality expected from a commu-
nication API. LAPI functionality includes data communication
as well as synchronization and ordering primitives. Further, by
providing the active message function as part of the interface the
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LAPI design allows users to expand the functionality to suit their
application needs. The set of LAPI functions are shown in Table
1 and are discussed briefly below. For a detailed description of
the LAPI functions please refer to [7].

2.1  Active Message Infrastructure
Active Message (AM) was selected as the underlying infrastruc-
ture for LAPI. We use the term origin to denote the task (or pro-
cess or processor) that initiates a LAPI operation, and the term
target to denote the other task whose address space is accessed
by the LAPI operation. The active message includes the address
of a user-specified handler. When the active message arrives at
the target process, the specified handler is invoked and executes
in the address space of that process. Optionally, the active mes-
sage may also bring with it a user header and data from the orig-
inating process. The user header contains parameters for use by
the header handler in the target process. The data is the actual
message the user intends to transmit from the origin to the target.
The operation is unilateral in the sense that the target process
does not have to take explicit action for the active message to
complete. Buffering (beyond what is required for network trans-
port) is not required because storage for arriving data (if any) is
specified in the active message, or is provided by the invoked
handler. The ability for users to write their own handlers pro-
vides a generalized yet efficient mechanism for customizing the
interface to one’s specific requirements. LAPI supports mess
es that can be larger than the size supported by the underl
network layer. This implies that data sent using an active m
sage call will arrive in multiple packets; further these packets c
arrive out of order. This places some requirements on how 
handler is written. When the active message brings with it d
from the originating process, LAPI requires that the “handler” 
written as two separate routines:

• A header_handler function: This is the function specified in
the active message call. It is called when the first packe
the message arrives at the target, and it provides the L
dispatcher (a part of the LAPI layer that deals with the arr
al of messages and invocation of handlers) with:  a) an 
dress where the arriving data of the message must be cop
and  b) the address of the optional completion handler; and

• A completion_handler which will be called after the whole
message has been received (i.e. all the packets of the 
sage have reached the target process).

The decoupling of the handler into a header handler/co
pletion handler in the active message infrastructure allows m
tiple independent streams of messages to be sent and rec
simultaneously within a LAPI context. At any given instanc
LAPI ensures that only one header handler per LAPI contex
allowed to execute. The rationale for this decision is that 
header handler is just expected to return a buffer pointer for

Operations Functions

Setup LAPI_Init, LAPI_Term

Active Message LAPI_Amsend

Data Transfer LAPI_Put, LAPI_Get

Mutual Exclusion LAPI_Rmw

Signaling Communication 
Progress

LAPI_Setcntr,LAPI_Waitcntr, 
LAPI_Getcntr

Ordering LAPI_Fence, LAPI_Gfence

Address Exchange LAPI_Address_init

Environment Query/Setup LAPI_Qenv, LAPI_Senv

Table 1: LAPI Functionality
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incoming message and locking overheads might be compara
ly expensive. Further, while the header handler executes,
progress can be made on the network interface. Multiple co
pletion handlers are allowed to execute concurrently per LA
context (the user is responsible for any synchronization am
the completion handlers).

Figure 1 illustrates the flow of data and control in a LAP
active message. A process on the origin makes 
LAPI_Amsend call. The call initiates a transfer of the head
uhdr and data udata at the origin process to the target proce
specified in the LAPI active message call. As soon as the use
allowed to reuse uhdr and udata, an indication is provided via
org_cntr at the origin process. At some point (Step 1) the hea
and data arrive at the target. On arrival at the target, an inter
is generated which results in the invocation of the LAPI d
patcher. The LAPI dispatcher identifies the incoming message
a new message and calls the hdr_hndlr specified by the user
(Step 2) in the LAPI active message call. The handler return
buffer pointer where the incoming data is to be copied (Step
The header handler also provides LAPI with an indication of t
completion handler that must be executed when the entire m
sage is copied into the target buffer specified by the header h
dler. The LAPI library moves the data (which may be transferr
as multiple network packets) into the specified buffer. On com-
pletion of the data transfer the user-specified completion rout
is invoked (Step 4). After the completion routine finishes exec
tion, the tgt_cntr at the target process and cmpl_cntr at the origin
process are updated indicating that the LAPI active message
is now complete. LAPI also provides a set of defined functio
built on top of the active message infrastructure. These defi
functions provide basic data transfer, synchronization, signali
and ordering functions. LAPI can be used in either interrupt
polling mode. The typical mode of operation is expected to 
interrupt mode. In the interrupt mode, a target process does
have to make any LAPI calls to assure communication progre
Polling mode may be used to provide better performance
avoiding the cost of interrupts. However a user of polling mo
should be aware that in the absence of appropriate polling,
performance may substantially degrade or may even resul
deadlock. The active message infrastructure and most LA
functions built on top of that are non-blocking. The non-bloc
ing nature allows the LAPI user to have a task initiate seve
concurrent operations to one or more target tasks. In our im
mentation, these concurrent calls return as soon as the mess
has been queued at the network, and do not have to wait for
communication event to actually complete. This "unorder
pipelining" architecture results in significantly reducing (hiding
the per-operation latency.

2.2  Data Transfer Operations

LAPI provides get and put operations to allow basic data co
from the address space of one process to that of another. The
sometimes referred to as remote memory copy (RMC) ope
tions. Put copies data from the address space of the origin pro
to the address space of the target process; Get pulls data from
target process and copies it into the origin process. These op
tions are semantically unilateral or one-sided. The get or pu
initiated by the origin process, and no complementary action
the target process is necessary for the call to complete. This is
like traditional send/receive semantics, where a send has to
matched at the other end with a corresponding receive being p
ed with matching parameters before the data transfer opera
can complete. Since get and put are unilateral operations, n
blocking, and not guaranteed to complete in order, the user is
sponsible for explicit process synchronization when necess
for program correctness.
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udata buffer
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LAPI_Amsend LAPI 
1

Header Handler
hdr_hdl

buffer
cmpl_hdl

2

3

Completion
Handler
cmpl_hdl

4

Dispatcher

Figure 1: Interface to LAPI communication operations (left) and flow of data in the LAPI_Amsend operation (right)

LAPI_Get(handle, target, len, tgt_addr, org_addr, tgt_cntr, org_cntr)

LAPI_Put(handle, target, len, tgt_addr, org_addr, tgt_cntr, org_cntr, cmpl_cntr)

LAPI_Amsend(handle, target, hdr_hdl, uhdr, uhdr_len, udata, udata_len, 

tgt_cntr,  org_cntr,  cmpl_cntr)
2.3  Signaling completion of communication events
Put, Get and AM are unilateral communication operations that
are initiated by one task (the origin), but an indication of the com-
pletion of a communication operation is provided at both ends.
The definition of when a put or get operation is complete needs
some discussion. Intuitively, the origin may consider a put as
complete when the data has been moved from the origin to the
target, (i.e., The data is available at the target, and the origin data
may be changed). However, another equally valid interpretation
is one where the origin task considers the operation to be com-
plete when the data has been copied out of its buffer and either
the data is safely stored away or is on their way to the target. The
target task would consider the put complete, when the data has
arrived into the target buffer. Similarly, for a get, the target task
may consider the operation to be complete when the data has
been copied out of the target buffer, but has not yet been sent to
the origin task. In order to provide the ability to exploit these dif-
ferent intuitive notions, LAPI has a completion notification
mechanism via the use of counters. The user is responsible for as-
sociating counters with events related to message progress. How-
ever, the counter structure is an opaque object internally defined
by LAPI and the user is expected to access the counter using only
the appropriate interfaces provided in LAPI. The user may use
the same counter across multiple messages. This gives the user
the freedom to group different communication calls with the
same counter and check their completion as a group. The LAPI
library updates the user specified counters when a particular
event (or one of the events) with which the counter was associat-
ed has occurred. The user can either periodically check the
counter value (using the non-blocking polling LAPI function
Getcntr) or can wait until the counter reaches a specified value
(using the blocking LAPI Waitcntr function). On return from the
Waitcntr call, the counter value is automatically decremented by
the value specified in the Waitcntr call.

2.4  Synchronization
LAPI operations decouple synchronization from data movement
and there is no need for bilateral coordination of data transfers
between the origin and target. For maximum performance concu-
rrent operations may complete out of order. As a result, data de-
pendencies between the source and the destination must be enfor-
ced using explicit synchronization as is the case in the shared
memory programming style. However, in many cases the pro-
gram structure makes it unnecessary to synchronize on each data
transfer. LAPI provides atomic operations for synchronization.

2.5  Message Ordering & Atomicity
Two LAPI operations that have the same origin task, are consid-
ered to be ordered with respect to the origin if one of the opera-
tions starts after the other has completed at the origin task.
Similarly, two LAPI operations that have the same target task, are
considered to be ordered with respect to that target, if one of the
operations starts after the other has completed at the target task.
If two operations are not ordered they are concurrent. LAPI pro-
vides no guarantees of ordering for concurrent communication
operations. For example, consider the case where a node issues
two non-blocking puts to the same target node, where the target
buffers overlap. These two operations may complete in any order,
including the possibility of the first put partially overlapping the
second, in time. Therefore, the contents of the overlapping region
will be undefined, even after both the puts complete. Waiting for
the first to complete (for instance using the completion counter)
before starting the second, will ensure that the overlapping region
contains the result of the second, after both puts have completed.
Alternatively, a fence call can be used to enforce order. 

3 Related Work
The MPI-2 one sided communication (MPI1S) [8] provides a
standard interface for one sided communication operations. It
was designed to be portable across multiple platforms but not
necessarily provide optimum performance for any particular plat-
form. LAPI differs from MPI1S in many ways, for example:
• MPI1S communication operations are restricted to windo

of address space marked for MPI1S operations. No conc
rent accesses to the same window by multiple processes
allowed. LAPI has no such restrictions.

• LAPI progress rules are less restrictive and ambiguous t
those in MPI1S. For example, to avoid uncertain interpre
tion of the progress rules in different MPI1S implement
tions (p.142 in [8]), the remote side has to post 
synchronization (MPI_WIN_FENCE or MPI_WIN_POST).

• LAPI provides a simple RMW (read-modify-write) mecha
nism with four atomic primitives for Swap,
Compare_and_Swap, Fetch_and_Add, Fetch_and_Or for
synchronization whereas MPI1S has three different synch
nization mechanisms which are quite complex: (
MPI_Lock, MPI_Unlock, (b) MPI_Start, MPI_Complete
MPI_Post, MPI_Wait and (c) MPI_Fence.

• Signaling completion of a communication operation is qu
different. LAPI provides 3 counters (2 at the origin and 1 
the target) which are incremented to signal completion 
communication operations, whereas in MPI1S completion
indicated when the control returns from the epoch end in
cated by one of three synchronization mechanisms.

• LAPI unlike MPI, does not have any support for differen
data-types. Also, LAPI does not have any concept of gro
ing tasks into a communicator or process groups. All LA
communication calls (except for LAPI_Address_init and
LAPI_Gfence) are point to point communication calls.
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Overall, LAPI provides a much simpler programming model
than MPI1S (in terms of progress rules, ease of implementation
and ease of use). 

LAPI active messages differ from the other active mes-
sage interfaces and implementations in terms of API and seman-
tics. The progress rules do not require remote processor polling.
However, LAPI performance in polling mode can benefit from
remote process probing for incoming messages. Other unique
features of LAPI active messages include decoupled header and
completion handlers and a very flexible mechanism for signal-
ing communication events using three counters (see Figure 1).
The decoupled header and completion handlers provide several
advantages over other interfaces for large data transfers. The ap-
plication is not required to specify the address of the remote
buffer like am_store in [9]. The address, if available, can be
transferred in the header for use by the header handler; if the ad-
dress is not available it can also be determined on the remote
process inside the header handler. The FM FMf_send interface
in [10] does not require the remote buffer address but it allocates
the buffer upon message arrival. In LAPI, by allowing the user
to manage the buffer allocation, it may be possible to avoid re-
dundant memory copies and better deal with limited memory re-
sources. The origin, target, and completion counters can be used
to signal to the application the important events associated with
the progress of communication initiated by LAPI Amsend, Put
and Get operations. Although the LAPI communication calls are
non-blocking, the blocking version is a simple extension by im-
mediately waiting on the appropriate counter after issuing the
non-blocking call. The sender can detect when the local buffer
can be reused and when the data transfer completed. The remote
process using a single target counter can be notified about the
completion status of a single or multiple messages targeting its
address space. Other AM interfaces use handler functions to sig-
nal such events. LAPI provides a simple mechanism to combine
multiple event signaling and allows the application to avoid the
overhead associated with message handlers when their sole role
is event signaling. 

4 LAPI Performance Study
In this section we discuss the performance of LAPI implementa-
tion on the SP with respect to latency, bandwidth, etc. in polling
and interrupt modes. We also compare the performances of LAPI
and MPI/MPL. The measurements were made in user space
mode on an SP with 120MHz P2SC nodes, SP switch and adapt-
er. The latency experiments for LAPI and MPI were performed
in polling and interrupt mode using 4-byte messages and results
are shown in Table 2. The MPI polling measurements were done
using the latest MPI (threaded) library. The round-trip interrupt
measurement was done using MPL rcvncall mechanism with tar-
get task sending back message to the origin from the interrupt
handler. We note that only the non-threaded version of MPL li-
brary is available and therefore the polling and interrupt mea-
surements for MPI/MPL are done using different libraries.

The non-blocking nature of LAPI communication calls
(LAPI Put, Get, etc.) allow multiple communication calls to be
pipelined and communication/computation to be overlapped. An
important performance metric is the amount of time it takes
LAPI to issue a communication call which we call the pipeline

Measurement LAPI [µs] MPI/MPL[µs]

polling 34 43

polling round-trip 60 86

interrupt round-trip 89 200

Table 2: Latency Measurements
latency. It is measured by computing the amount of time it takes
for a LAPI Put/Get call to return control to the user program.
The pipeline latency for Put is 16µs and for Get is 19µs. It in-
cludes the time for a Put message or a Get request to be injected
into the network.

The bandwidth benchmarks involved two tasks and mea-
sured the one way bandwidth for message sizes varying from 16
bytes to 2MB. The LAPI one-way bandwidth was measured by
having one task make a LAPI_Put call to the other task and wait-
ing for it to complete. The MPI one-way bandwidth was mea-
sured by running the same kind of experiment using message
passing. MPI bandwidth is reported using the default settings as
well as by setting the MP_EAGER_LIMIT environment variable
to 65536. By choosing the MP_EAGER_LIMIT we are chang-
ing the point where the MPI implementation uses a rendezvous
protocol. The results of the experiment are plotted in Figure 2.
The asymptotic one-way bandwidth in LAPI is approximately
97MB/s, whereas MPI achieves around 98MB/s. The message
size at which the transfer rate is half the asymptotic rate, is ap-
proximately 8Kbytes in LAPI and 23Kbytes in MPI. This shows
that the LAPI bandwidth rises much faster than the MPI band-
width as is clear from Figure 2. LAPI’s better performance c
be attributed to the following reasons, including:

• The one sided nature of LAPI helps in the implementation
simpler communication protocols avoiding complex matc
ing and buffering overheads. The MPI standard on the ot
hand imposes complex semantics of ordering, matchi
grouping and buffering which can lead to higher impleme
tation overheads.

• LAPI has no ordering requirements and hence the amoun
state that needs to be maintained is less.

• LAPI has a small but powerful set of functions which help 
easier and more efficient implementation.

For medium sized messages (256 - 64K)bytes most commo
used in applications bandwidth in LAPI) is considerably grea
than in MPI. The peak bandwidth in MPI is slightly greater th
in LAPI because the LAPI packet header size (48 bytes) is lar
than the MPI packet header size (16 bytes). Hence the LAPI p
load per packet is smaller. The reason for the larger header 
stems from the one sided nature of LAPI; where the origin s
making the LAPI call must specify the parameters to be used
the target side as well and all these parameters need to be pa
in the packet header. Reducing the packet header size in l
message is a subject of future work. The slight flattening of 
bandwidth curve for MPI for message size greater than 4Kby
occurs because for message sizes greater than 4K MPI swit
from eager protocol to rendezvous protocol resulting in an extra
round-trip cost. This flattening can be avoided by setting t
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Figure 2: LAPI and MPI bandwidth
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MP_EAGER_LIMIT environment variable to 64K (the maxi-
mum value). The difference between the default MPI bandwidth
curve and the MPI curve with the modified setting is caused by
the extra round-trip in the rendezvous protocol. The difference
between the MPI bandwidth with the MP_EAGER_LIMIT set-
ting and the LAPI bandwidth caused by an extra copy in MPI.

5 Example User Library: Global Arrays
In this section we discuss implementation issues and perfor-
mance of the Global Array toolkit [5,6] as an example of a user-
level library that uses LAPI. We had earlier mentioned that LAPI
was designed to aid development of libraries, tools and compiler
run-time systems rather than general-purpose applications. Al-
though LAPI can be used by “power users” to develop compl
applications, it requires experience using concurrent progra
ming concepts such as threads, synchronization, memory con
tency, and asynchronous handlers. The GA portable sha
memory-programming model has been adopted in a variety
applications ranging from financial security forecasting, paral
rendering, molecular dynamics to numerous electronic-struct
quantum chemistry calculations. Some of them contain hundr
of thousands lines of code. All applications that we and oth
tried ran unchanged on top of LAPI. In the following subse
tions, we give a brief description of the GA model, its impleme
tation, and performance. We address differences between 
and LAPI memory models, describe techniques used to ach
optimum performance for variety of message requests sizes
access patterns, manage the resources, implement mutual e
sion, and assure robust and deadlock-free execution.

5.1  Characteristics of the Global Array Model
GA supports an abstraction of shared objects (dense 2-dim
sional arrays) for message-passing applications. GA operat
such as put, get, scatter and gather transfer data between loca
and global arrays in a shared-memory style. Synchronization
erations such as locks, atomic read-and-increment, and barrier
are provided. An atomic accumulate (reduction) operation can be
used to combine local and remote data values. GA operat
have a 2-dimensional array API motivated by the HPF notati
Many shared-memory programming facilities [11,12,13,14] hi
from the user performance differences in accessing remote vs
cal data and present a flat view of the memory hierarchy. G
makes users aware of the memory hierarchy of the current M
systems. It recognizes variable costs of accessing remote an
cal data, furnishes to the user control over data distribution, 
provides full locality information and control. These feature
have been essential for achieving good performance and scal
ity of massively parallel applications on distributed-memory sy
tems [15,16,17]. GA operations are unilateral, just as is the c
with LAPI operations. The progress of operations does not 
pend on the target process taking any action (such as polling
requests to be serviced in the target process address space. 
polling can be effective in the compiler run-time systems of la
guages used to develop complete applications, it is not prac
for many applications that use large standard libraries. Use
polling in such applications would require inserting polling ca
to all of the application code including the large standard libr
ies [18]. There are similarities and differences between mem
models in GA and LAPI. In both models, remote store operatio
do not complete upon return from the library call. Both GA a
LAPI provide fence calls to enforce completeness and order
of remote store operations. LAPI operations (puts and gets) can
complete out of order. GA allows out-of-order completion on
for operations that reference non-overlapping array sections.
example, two consecutive put calls targeting array section
A(1:100,2:2) and A(2:2,300:400) can complete in arbitrary o
der. This would not be the case if second put targeted
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A(2:2,1:400), for example. The accumulate operation is commu-
tative and thus the completion order is arbitrary.

5.2  MPL implementation
A previous implementation of GA on the RS/6000 SP-1/2 us
the MPL interrupt-receive rcvncall functionality [6]. Access to
the remote data was accomplished by sending an MPL req
message that interrupted the target process and invoked a 
sage-handler. The handler copied the data from the message 
er to local memory of the target process (put/scatter) or copied
data from the local memory of the target process to another m
sage buffer and sent the requested data back to the origin pro
in the case of get/gather operation. The atomicity of accumulate
or read-and-increment operations was accomplished by dis
abling and enabling interrupts (with lockrnc) and taking advan-
tage of the single-threaded execution of the handler or 
application code. This mechanism worked reliably despite p
formance problems. First, high latency (>300 µS for the get op-
eration on the previous generation of the SP) was caused by t
AIX overhead in creating the handler context. Second, it was 
possible to utilize the network bandwidth because of the nec
sary additional copies to and from message buffers on both si
The alternative to MPL solutions such as a dedicated “hidd
agent” thread to service remote requests or polling-based im
mentation of Active Message from Cornell [19] have been co
sidered. However, they either appeared inefficient (a messa
passing library integrated with a preemptively scheduled thre
package would be needed in “hidden-agent” approach) or 
consistent with the GA progress rules (because of polling).

5.3  LAPI implementation
The key considerations in designing the LAPI-based protoc
for GA implementation were:
1. need for good performance profile for a wide range of GA

message sizes and different array section access pattern
which is expected by users from a general purpose library

2. out-of-order delivery of messages in LAPI,
3. efficient management of the AM buffer memory, and
4. robustness (ability to handle high-levels of contention, de

lock-free execution etc.).
LAPI provides only contiguous interface to remote mem

ry copy operations. Noncontiguous data can transferred in mu
ple contiguous chunks in separate put/get messages. 
significant message overhead and poor utilization of the mess
packet space makes this solution not effective for small and 
dium chunks. Alternatively, the AM interface can to be used
send all noncontiguous data in a single message. Similarly to
MPL rcvncall implementation two extra memory copies are r
quired for noncontiguous data in this approach. Since rem
memory copy operations inherently have better performance 
user handlers are executed or intermediate buffering is requi
than active message interface, GA uses hybrid protocols 
switch between remote memory copy operations and active m
sages for implementing get, put, scatter and gather operati
Active messages have been used before in the GA impleme
tions under SUNMOS [20], on the Intel Paragon, and rela
Fast Messages [21] have been used on the clusters of PCs 
The hybrid protocols have been designed to achieve opti
transfer rate for a wide range of message sizes and array ac
patterns. The thresholds used for switching between differ
protocols are selected empirically to maximize the performan
5.3.1  Management of AM buffers
The application is responsible for management of the LAPI A
buffer memory. LAPI requires that the application specify in t
AM header handler a pointer to receive buffer for every incomi
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active message that contains user data. Since LAPI uses this
buffer to copy data from the network, the header handler cannot
block or return a NULL pointer. The data can be consumed by
the ongoing computation inside completion handler and then the
buffer space can be released. The completion and header han-
dlers are executed independently by potentially separate threads.
There can be many messages received and header handlers exe-
cuted before the completion handler for the first message is in-
voked. Unlike the send/receive operations in the message-
passing model, the GA remote store and accumulate operations
are one-sided, and there can be multiple outstanding operations
issued by one node to another. In case of a contention in the GA
application, the rate of data arrival can be higher than the rate at
which the data is consumed in the completion handler which
could quickly deplete memory available at the node. These con-
siderations make dynamic memory allocation for active-message
buffer not practical for GA. Common solutions to similar prob-
lems in message-passing libraries use rendezvous protocols to
negotiate buffer space before sending the data or preallocate
multiple buffers for incoming messages. Due to higher start-up
costs, such protocols are suitable for larger messages. Protocols
that use preallocated buffers offer lower latency. Hybrid proto-
cols combine preallocated message buffers for short messages
with a round-trip protocol for larger messages. Preallocating one
buffer for every remote process is not an optimal solution for the
GA flow control. The model does not impose a limit on the num-
ber of outstanding store operations (targeting non-overlapping
memory locations) that a process can send to another process
without blocking. Fortunately, the LAPI Active Messages offer
two important features that allow avoid preallocating multiple
buffers: 1) a substantial room for user data in the AM header and
2) pipelining. Active Messages can transfer a substantial amount
of user data(the packet size less LAPI AM header which on the
current SP switch leaves around 900 bytes to the application).
The exact amount is implementation specific and can be obtained
through the LAPI_Qenv operation. GA exploits the pipelining by
splitting medium-size requests into multiple active messages that
each carry up to a 900-byte payload. They are processed by LAPI
with reduced overhead compared to the cost of processing a sin-
gle message. Pipelining works well (see Section 4) because on
the sender side LAPI internally copies smaller messages (since
retransmissions might be required in a case of switch failures)
into its internal buffers, sends the message, and returns immedi-
ately without waiting for the acknowledgment. It allows a pro-
cess to prepare and send the next active message in a very short
time. The remote node can receive it before the processing of a
previous message is complete thus avoiding an interrupt.

5.3.2  Ordering and Completion of Operations

LAPI fence operations can be used to enforce order and comple-
tion of data transfers through the network in the LAPI put, get
and active message interfaces. They do not ensure the operation-
al completion. When a fence operation returns, for the outstand-
ing active messages this event indicates that data has been copied
out from the network to the remote user buffers but the status of
corresponding completion handlers is not known. In order to en-
force completion or ordering of operations implemented on top
of active messages one can use completion counters in
LAPI_Amsend interface. In particular, an array of generalized
counters (one per remote node) is employed in GA. A general-
ized counter structure contains a LAPI counter (used as comple-
tion counter for both LAPI_Amsend and LAPI_Put), a GA
operation code (put/scatter etc.) for the most recent operation
that used AM, and the number of requests issued. This number is
passed to LAPI_Waitcntr to wait for completion of the outstand-
ing active messages targeting a particular node when necessary
(GA fence or barrier). The GA operation code is used to recog-
nize operations that do not require ordering (for instance, accu-
mulate is commutative) and to avoid redundant fencing.
5.3.3  Mutual exclusion and related considerations
Data transfer in the put and accumulate operation (that combines
origin and target data in a manner similar to DAXPY) is almost
identical. However, with accumulate the target data has to be up-
dated atomically. Even on a single-processor SP node, there can
be up to three threads executing the accumulate operation: the
main application thread, completion handler and header handler
(for short messages) threads. Mutual exclusion is implemented
with the Pthread mutexes. Some care is needed to avoid de-sched-
uling of the LAPI thread that runs the header handler, when for
short requests the mutex protecting a critical section has already
been acquired by another thread. This could stall the network
adapter, possibly cause packet loss, and consequently require
data retransmission.

5.4  Performance
We present performance of the LAPI version of GA and compare
it with the MPL implementation. The performance studies were
performed on the 512-node IBM RS/6000 SP at PNNL. This sys-
tem runs AIX 4.2.1 with PSSP 2.3 parallel software environment
which includes LAPI. We used “thin” nodes with the 120MH
P2SC processors. Our synthetic benchmark runs on four no
and measures performance of get and put operations that refer-
ence data in global array sections located on remote nodes.
timed a series of operations with the series length decreasin
the request size increases. Every request issued by node 0 ac
es other nodes in a round-robin fashion. To avoid caching effe
each time a different array patch is referenced. The benchm
measures performance for both square 2-D as well as 1-D a
sections. Since the leading dimension of the 2-D array does
match patch dimension, non-contiguous (strided) data is re
enced. The latency measured for transfer of a single elemen
bytes) of a double-precision array is 94.2µs in GA get and 49.6µs
for put in the LAPI implementation. In the MPL implementation
the corresponding numbers are 221µs for GA get and 54.6µs for
put. The GA bandwidth profile in the data transfers ranging fro
8-bytes to 2MB is shown in Figures 3 and 4. 

Performance of the GA implementation using LAPI fo
GA put for large and small requests is better than when us
MPL. Since the operation is non-blocking the much larger buf
space in MPL/MPI allows the send operation to return to the 
plication sooner for messages larger than 1KB and smaller t
20KB. For larger messages, buffering of all the data is not po
ble on the sender side and LAPI implementation is faster. For
1-D requests, GA uses LAPI_Put directly and avoids the copy
overhead required in the AM-based protocols. This allows G
put to achieve bandwidth within 6% of LAPI_Put for larger mes-

Figure 3: Performance of GA put under LAPI and MPL
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sages. For larger 2D requests (0.5MB in the figure), GA switch-
es to LAPI_Put protocol to send individual columns of a 2-D
patch but their size is not large enough to exploit the available
network bandwidth. For very large square 2-D patches (18MB)
the asymptotic bandwidth of LAPI_Put can be achieved. The
MPL implementation of GA performs identically for the 1-D
and 2-D requests. The extra memory copy on the sender side
cannot be avoided even for 1-D requests because of the MPL
progress rules (in-order message delivery) that prevent separa-
tion of the GA request header and the data into separate messag-
es. Since the GA get operation is blocking, the measured
performance of LAPI and MPL implementations is easier to ex-
plain than for the GA put. Figure 4 shows that LAPI outper-
forms MPL for all the cases. Both MPL and LAPI versions
perform better for 1-D than 2-D requests. The LAPI version
uses LAPI_Get operation directly and avoid two memory copies
for entire message range and MPL implementation is able to
avoid one memory copy. With 2-D requests, the implementation
switches to LAPI_Get protocol for request size approx. 0.5 MB
similarly to the put operation. 

To date several GA applications from the electronic struc-
ture computation and molecular dynamics area have been used
under LAPI. The particular algorithms include self-consistent
field (SCF), density functional theory (DFT), second-order Mol-
ler-Plesset (MP-2) and multi-reference configuration. The per-
formance improvement over MPL-versions vary from 10 to 50%
depending on the problem size, ratio of communication and cal-
culations, and physical properties of the problems. The most
performance improvement can be obtained in codes that mostly
rely on 1-D array communication since it allows to avoid redun-
dant memory copies in the AM-based protocols. 

6 Concluding Remarks
LAPI is a new low-level communication library on the IBM
RS/6000 SP system. It provides one-sided communication capa-
bilities and, as we just demonstrated, it delivers excellent perfor-
mance competitive with that of the MPI. The Active Message
infrastructure chosen for LAPI makes it both flexible and exten-
sible. The Global Array library is a higher-level shared-memory
communication library implemented on top of LAPI and is cur-
rently used by many applications that together contain millions
of lines of source code. We presented our experience in optimiz-
ing performance of GA on top of LAPI as an example to illustrate
how features of LAPI can be exploited by the applications. Both
performance of the GA library and its applications improved
considerably as compared to the older implementation based on
the MPL message-passing library. There are several ways in
which LAPI architecture and implementation can be enhanced,
for example:1) Providing a non-contiguous interface to

Figure 4: Performance of GA get under LAPI and MPL
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LAPI_Put and LAPI_Get to help applications like GA which re-
quire non-contiguous data transfer by removing the overhead as-
sociated with multiple requests or the copy overhead in the AM-
based implementations. 2) Providing multiple completion han-
dler and multiple message-passing threads which will be impor-
tant for SMP nodes. 3) Extending LAPI for use by kernel
subsystems by avoiding copies into the DMA buffer for im-
proved performance. 
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