
Abstract

The complexity of modern scientific simulations
combined with the complexity of the high-performance
computer hardware on which they run place an ever-
increasing burden on scientific software developers, with
clear impacts on both productivity and performance. We
argue that raising the level of abstraction of the
programming model/environment is a key element of
addressing this situation. We present examples of two
distinctly different approaches to raising the level of
abstraction of the programming model while maintaining
or increasing performance: the Tensor Contraction
engine, a narrowly-focused domain specific language
together with an optimizing compiler; and Extended
Global Arrays, a programming framework that integrates
programming models dealing with different layers of the
memory/storage hierarchy using compiler analysis and
code transformation techniques.

1. Introduction

The role of computational simulation in science and
engineering has blossomed in recent years to the point
where it is now recognized as a peer to experimental and
theoretical approaches and has become an indispensable
tool to the progress of modern science and technology.
Moreover, the pace of change and improvement in
scientific high-end computing has been tremendous: more
powerful computers allow researchers to perform larger
and higher fidelity simulations, which in turn inspire the

need for yet larger and faster computers. However this
progress has not been without cost. Software developers
have had to face increases in the complexity of
algorithms and methods concomitant with the increases in
problem size and fidelity compounded by increases in
software complexity required to tease the maximum
performance out of hardware with deeper memory
hierarchies, higher degrees of parallelism, and other
“features”. The result of this burgeoning complexity is
that more and more of the software developer’s effort
goes into dealing with the details, with obvious impacts
on overall productivity.
Any measure of productivity for a developer and user of
software must take into account both the time required to
develop the software and the time it takes to run, or the
performance. A “productive” programming environment,
therefore, is one that allows the programmer to easily
express computational problem (i.e. a programming
model which provides a high level of abstraction) while
providing the highest possible performance. Based on
our collective experience in high-performance scientific
computing and our assessment of progress in the field
over the last 10-15 years, we argue that raising the level
of abstraction available to the developer has become a
crucial factor in the effort to increase software
productivity in scientific computing. After discussing the
idea of abstraction in high-end computing, this paper
presents the Tensor Contraction Engine (TCE) and
Extended Global Arrays (XGA) as examples of efforts
that take different approaches toward the goal of raising
the level of abstraction while maintaining high
performance.

Raising the Level of Programming Abstraction in Scalable Programming
Models

David E. Bernholdt
Computer Science & Mathematics
Oak Ridge National Laboratory

bernholdtde@ornl.gov

Jarek Nieplocha
Computational Sciences & Mathematics
Pacific Northwest National Laboratory

j_nieplocha@pnl.gov

P. Sadayappan
Dept. of Computer and Information Science

Ohio State University
saday@cis.ohio-state.edu

2. Abstraction, Scalability, and
Generality in High Performance
Programming

For the programming model on which the software
development effort is based, a key factor is the level of
abstraction offered to the user. This term covers a
number of factors, including the ease of expressing the
(essentially mathematical) problem to be solved, and the
ease of expressing the (parallel) algorithms necessary to
solve it. We use NWChem [14, 16] as an example to
highlight the importance of the model’s level of
abstraction in enhancing productivity in developing
complex high-performance software. NWChem is a large
(over a million lines of code) computational chemistry
package that provides high-performance, scalable
implementations of a broad spectrum of methods in
computational chemistry. Development of NWChem
began in 1993, at a time when the chemistry community
had experimented with parallel computing, but had
produced few general, scalable, high-performance
parallel algorithms. Experience had shown that many
quantum chemical methods could not be implemented
easily in the traditional message-passing programming
model. In addition, effective abstractions and parallel I/O
techniques were needed for out-of-core chemistry
algorithms. These challenges led to emergence of novel
parallel programming tools that enabled rapid
development and implementation of scalable algorithms
in this science domain, namely the Global Array (GA)
toolkit [1, 26], Disk Resident Arrays (DRA) [21], and
Shared Files [22, 13]. When coupled with algorithms that
appropriately consider the non-uniform memory access
(NUMA) nature of modern high-performance computers,
the GA model augmented with DRA has proven both
very high performance and very expressive for algorithms
of the type that appear in quantum chemistry. Indeed, at
present, essentially all scalable parallel quantum
chemistry packages utilize Global Arrays or an equivalent
programming model rather than the two-sided message-
passing programming model that dominates most other
scientific domains. Though no quantitative data is
available, the qualitative experience of the NWChem
effort (now ten years old, and embodying far in excess of
100 person-years of effort) is that the high-level
abstractions provided by GA, DRA, and Shared Files
were found invaluable in rapid development of scalable
algorithms for this scientific domain, and quickly enabled
scientists without prior experience in parallel
programming to become productive contributors in this
large software development effort. As previously noted,
despite the continued popularity of the message-passing
model in other fields, all scalable quantum chemistry
codes use GA-like programming models.

In addition to level of abstraction and scalability of a
programming model, a third, related, dimension is the
generality of the programming model – whether it is
appropriate to a narrow or broad range of computational
problems and scientific domains.

While it is hard or impossible to precisely quantify
abstraction level, generality, and scalability of various
programming models without reference to a particular
class of problems and other factors, it is possible to
estimate rough relative positions of various programming
models within this three dimensional space. By way of
example, Figure 1 presents such an assessment:
• MPI [3] provides a very general, but rather low-level
programming model and generally supports a high degree
of optimization and tuning, making it possible to obtain
performance close to the raw capabilities of the
underlying hardware. It thus scores high with respect to
model-generality and scalability, but ranks low regarding
the abstraction-level offered to the software developer.
• The Global Arrays [1, 26] library-based approach
offers a global shared view of multi-dimensional array
objects that can be accessed by processes via block
get/put/update operations. It inter-operates with MPI and
provides comparable performance and scalability.
Through its shared global view of array objects, it offers a
higher level of abstraction to the programmer. However,
since it only applies to array objects, the GA model is less
general than MPI.
• OpenMP [4] is a completely general parallel
programming model that offers a shared-space view of
arbitrary data structures. Thus it ranks very highly along
the dimension of generality, on par with MPI. We rank it

Figure 1. Relative classification of programming
methodologies with respect to level of abstraction,
generality, and parallel scalability

TCE

GA

OpenMP

autoparallelized
C/Fortran90

PETSc

MPI

generality

ab
str

ac
tio

n

sc
al

ab
ili

ty

Figure 1. Relative classification of programming
methodologies with respect to level of abstraction,
generality, and parallel scalability

Figure 1. Relative classification of programming
methodologies with respect to level of abstraction,
generality, and parallel scalability

TCE

GA

OpenMP

autoparallelized
C/Fortran90

PETSc

MPI

generality

ab
str

ac
tio

n

sc
al

ab
ili

ty

slightly higher than MPI and GA with respect to
abstraction-level (referring in this case just to the ease of
expressing the parallelism of the problem) However,
scalable implementations of OpenMP for large-scale
systems are yet to be realized.
• Automatic parallelization of standard sequential
C/Fortran programs: Standard sequential programming
languages like C, C++ and Fortran have been heavily
used for developing scientific and engineering
applications. There has been a long history of efforts to
automatically parallelize sequential programs. Although
there was great optimism in the early days of parallel
computing that compiler techniques could be developed
to automatically parallelize sequential programs, today
the prospects of achieving such a goal seem very dim.
Several vendors have marketed commercial auto-
parallelizing compilers, but their effectiveness has been
limited, especially in the context of highly parallel
systems.
• PETSc (Portable Extensible Toolkit for Scientific
computation [5]) is an example of a class of tools that
facilitates the parallel (as well as serial), numerical
solution of PDEs that require solving large-scale, sparse
nonlinear systems of equation. The user creates and
manipulates matrix objects, whose underlying
representation and distribution among nodes of a parallel
machine are transparent to the user. A variety of linear
and non-linear solvers are implemented. The level of
abstraction is very high, since both the data distribution
as well as the parallel nature of the underlying solvers can
be completely transparent to the user. It ranks rather low
with respect to generality, since the high level of
abstraction is only available for the set of numerical
methods implemented.
From the viewpoint of the scientist/software developer,
one might describe the “holy grail” of productive
scientific computing as being able to write the equations
for the problem to be solved in a form that is close or
identical to the way they would be expressed in a
scientific paper and have tools turn this input into
efficient, high-performance code. From the computer
science viewpoint, the “holy grail” would be a
programming model that maximizes all three axes (high
abstraction/high generality/high performance), this is a
daunting challenge (even for sequential computing!).
However in order to address the looming crisis of
software complexity, it is imperative to make progress
toward solving this problem.
Such efforts typically try to move along one or more of
the three dimensions, while maintaining the level of the
remainder. In the remainder of this paper, we present
examples of two efforts, taking different paths in the
effort to raise the level of abstraction while preserving
scalability. One involves the development of a high-level

language and optimizing compiler called the Tensor
Contraction Engine (TCE) for a class of problems in
computational chemistry, and the other an effort to
generalize the Global Array programming model to
transparently manage multiple layers of memory
hierarchy.

3. The Tensor Contraction Engine

The Tensor Contraction Engine (TCE) is a domain-
specific program synthesis system [6] being developed by
a team of computer scientists and computational
chemists. It is a system to automatically transform a high-
level description of a quantum chemical model expressed
in terms of complex tensor contraction expressions
(essentially generalized matrix products on
multidimensional arrays) into optimized parallel
programs. A primary reason for the development of the
system was to significantly decrease the amount of time
needed to develop high-performance codes implementing
accurate models for correlated electronic structure
methods in computational chemistry packages. In this
case, the level of abstraction (particularly the ease of
expressing the problem itself) is so high that writing a
program in the TCE environment is little more than
writing out the tensor contraction expressions that define
the method to be implemented and the parallelism is
implicit in that input, but of course the TCE is limited to a

Figure 2. A schematic representation of the
Tensor Contraction Engine’s architecture

Tensor Expressions

Algebraic
Transformations

Memory
Minimization

Performance
Model

System
Memory

Specification

Software
Developer

Data Distribution
and Partitioning

Parallel Code
Fortran/C/…

 Global Arrays

Sequence of Matrix Products
Element-wise Matrix Operations

Element-wise Function Eval.

Space-Time
Trade-Offs

Storage and Data
Locality Management

No sol’n fits disk Sol’n fits disk, not mem . Sol’n fits mem.

Sol’n fits mem.

No sol’n fits disk

narrow class of problems, as shown in Figure 1. Figure 2
provides a high-level picture of the transformation
system. A brief description of the components of the
system follows.

3.1. High-level language

The input to the synthesis system is a sequence of tensor
contraction expressions (essentially sum-of-products
array expressions) together with declarations of index
ranges and symmetry and sparsity of matrices. The high-
level notation offers two significant advantages:
1. For the user, the high-level representation makes it
extremely convenient to express complex tensor
contraction expressions.
2. For the compiler, the high-level representation
provides essential information that facilitates domain-
specific optimizations; such information would be
difficult or impossible to extract out of code
implementing such expressions in a language such as
Fortran or C.
Figure 3 shows an example of a TCE program
representing a term in a tensor contraction expression. It
is shown along with a larger expression from a coupled-
cluster [19, 20] model, shown in a notation used by
quantum chemists in describing the computation. The
tensor contraction expressions for accurate electronic
structure models can have hundreds of such terms, and
the Fortran codes implementing them often have tens of
thousands of lines of code.

3.2. Algebraic transformations

Input from the user in the form of tensor expressions is
transformed into a computation sequence. The properties
of commutativity and associativity of addition and
multiplication and the distributivity of multiplication over
addition are used to search for various possible ways of
applying these properties to an input sum-of-products
expression. A combination that results in an equivalent
form of the computation with minimal operation cost is
generated. The problem of determining an equivalent
operation-minimal form of the expression is NP-
complete, but efficient pruning-search procedures have
been developed that are very effective in practice [18].

3.3. Memory minimization

The operation-minimal computation sequence
synthesized by applying algebraic transformation might
require an excessive amount of memory due to the need
to use large temporary intermediate arrays. The Memory
Minimization step seeks to perform loop fusion
transformations to reduce the memory requirements.

Optimal loop fusion is also an NP-complete problem
[12]. An abstraction called the fusion-graph has been
developed and has served as the basis for a search process
used to evaluate alternate the loop fusion choices in the
context of the TCE [17]. The loop fusion transformations
along with array contractions to minimize memory are
done without incurring any increase on the number of
arithmetic operations.

3.4. Space-time transformation

If the memory minimization step is unable to reduce
memory requirements of the computation sequence below
the available disk capacity on the system a space-time
trade-off is performed. This is done by exploring different
ways of adding redundant loops that enable additional
fusion and array contraction. The redundant loops
increase the amount of computation, but additional array
contractions so enabled might reduce space requirements
of intermediate temporaries. Loop tiling can be used with
the redundant loops to allow additional space-time trade-
off. The fusion graph framework has been used to
develop a search procedure to seek the best choice of
redundant loops and tile sizes that can fit the computation
within the available storage while incurring a minimal
computational overhead due to the redundant loops
introduced [9].

3.5. Storage and data locality optimization

If the space requirement exceeds physical memory
capacity, portions of the arrays must be moved between
disk and main memory as needed, in a way that
maximizes reuse of elements in memory. The same

range V = 3000;
range O = 100;

index a,b,c,d,e,f : V;
index i,j,k : O;

mlimit = 1000000000000;

function F1(V,V,V,O);
function F2(V,V,V,O);

procedure P(in T1[O,O,V,V], in T2[O,O,V,V], out X)=

begin
 X == sum[sum[F1(a,b,e,k) * F2(c,f,b,k), {b,k}]

 * sum[T1[i,j,c,e] * T2[i,j,a,f], {i,j}],
 {a,e,c,f}];

end

fk cb ek ab Y t t X

Y X Y X Y X

Y X Y X Y X A A

cf ae
af
ij

ce
ij afce

fceafaecfce a f a e c f c ae f a e c

cfeafaecfceaf a e c cf ae af ce

= =

+ + +

+ + =

, ,

,,, , , ,

,,,, , , 2
1

)

(3

Figure 3. An example of the typical representation
of tensor contraction expressions used in the
scientific literature (inset) together with sample of
the input language for the Tensor Contraction
Engine for one term in the inset expression

considerations are involved in minimizing cache misses
— blocks of data are moved between physical memory
and the space available in the cache. Loop blocking is
used to minimize disk-to-memory transfer overhead. The
issue of tile-size optimization is discussed in [11].

3.6. Data distribution and partitioning

This component determines how best to partition the
arrays among the processors of a parallel system. We
assume a data-parallel model, where each tensor
contraction is distributed across the parallel machine. The
arrays are to be disjointly partitioned between the
physical memories of the processors. The data
distribution pattern that minimizes the total inter-
processor communication in executing a sequence of
tensor contractions is determined. The data partitioning
issue is discussed in [10].

3.7. Code generation

The back end of the synthesis system provides the output
as pseudo-code, Fortran or C code. The generated code
can be either serial or parallel, using Global Arrays (GA).
Though targeting a traditional message-passing or other
programming model is also quite feasible, we have found
that the abstraction of globally-addressable shared data
provided by the GA programming model greatly
simplifies conceptual and code generation issues involved
in the interface between the TCE-generated code and the
supporting infrastructure provided by existing quantum
chemistry packages, such as NWChem. Depending on the
circumstances, the synthesized code could also call
highly-tuned, machine-specific Basic Linear Algebra
Subprograms (BLAS) libraries, or optimized low-level
functions from the existing quantum chemistry packages.
The TCE approach has already demonstrated tremendous
productivity gains. Using the prototype version of the
TCE, which does yet incorporate several optimizations,
more than 20 different quantum chemical methods have
been implemented in just a few weeks, many receiving
their first-ever parallel implementation in this way [15].
At a very conservative estimate of three months of effort
each it would have required more than five years of effort
to implement all these methods by hand, representing a
productivity increase on the order of 50-100 fold, not
including the improvements in time to solution due to the
availability of parallel implementations. The ratio size of
the synthesized Fortran code to the input tensor
contraction expressions (measured as number of
characters of source code, excluding comments) is also
typically around two orders of magnitude. Work is
underway on the fully optimizing version of the TCE to
implement optimizations targeted at enhancing the

performance and scalability of the synthesized parallel
Fortran code.

4. Extended Global Arrays

A logical step to raise the level of abstraction of the
GA+DRA model is to integrate the management of three
layers of memory hierarchy -- distributed main memory,
shared memory on the SMP node of a cluster, and
secondary storage -- under a single programming
interface in an environment which automatically manages
the hierarchy through extensions to the compilers for
traditional programming languages. This effort, which we
call “Extended Global Arrays” (XGA), is currently in the
design stage.

4.1. Global Arrays

The Global Arrays toolkit presents to the application
developer a distributed data structure as a single object
and allows access as if it resided in shared memory.
These features help the developer raise the level of
composition and increase code reuse. A higher level of
composition reduces the amount of code that must be
written and enables scientists to program in terms of
physically meaningful concepts rather than low-level
manipulation of distributed data and explicit
communication. Thus, it makes scientists more
productive and permits more time to be spent optimizing
performance-critical algorithms and application kernels.
GA programming model includes as a subset message
passing; in particular, the programmer can use full MPI
functionality on both GA and non-GA data. The library
can be used in C, C++, Fortran 77, Fortran 90 and Python
programs.
GA implements a shared-memory programming model in
which data locality is managed by the programmer
through explicit calls to functions that transfer data
between a global address space (a distributed array) and
local storage. In this respect, the GA model has
similarities to distributed shared-memory (DSM) models
that provide an explicit acquire/release protocol.
However, GA acknowledges that remote data is slower to
access than is local data and therefore allows data locality
to be explicitly specified and hence managed. Another
advantage is that GA, by optimizing and moving only the
data requested by the user, avoids issues such as false
sharing or redundant data transfers present in some DSM
solutions. The GA model exposes to the programmer the
hierarchical memory of modern high-performance
computer systems, and by recognizing the
communication overhead for remote data transfer, it
promotes data reuse and locality of reference.

The GA toolkit provides extensive support for controlling
array distribution and accessing locality information.
Both task-parallel and data-parallel programming styles
are possible. Task parallelism is supported through the
one-sided (non-collective) copy operations that transfer
data between global memory (distributed/shared array)
and local memory. In addition, each process is able to
access directly data held in a section of a global array that
is logically assigned to that process. Atomic operations
are provided that can be used to implement
synchronization and ensure correctness of updates of
overlapping array sections. The data parallel computing
model is supported through the set of collectively called
functions that operate on either entire arrays or sections
of global arrays. The set includes BLAS-like operations
interfaces to the parallel linear algebra libraries such as
Scalapack as well as the TAO optimization toolkit [7].

4.2. Disk Resident Arrays

The disk resident arrays (DRA) model extends the GA
model to another level in the storage hierarchy, namely,
secondary storage [NF1996]. It introduces the concept of
a disk resident array - a disk-based representation of an
array. It provides functions for transferring blocks of data
between global arrays and disk arrays. Hence, it allows
programmers to access data located on disk via a simple
interface expressed in terms of arrays rather than files.
The benefits of global arrays (in particular, the absence of
complex index calculations and the use of optimized
array communication) can be extended to programs that
operate on arrays that are too large to fit into memory. By
providing distinct interfaces for accessing objects located
in main memory (local and remote) and on the disk, GA
and DRA render visible the different levels of the
memory hierarchy in which objects are stored. Hence,
programs can take advantage of the performance
characteristics associated with access to these levels.

4.3. SMP Arrays

So-called SMP Arrays (SA) can be used as a shared
memory cache for latency sensitive distributed arrays in
cluster environments based on collection of Symmetric
Multiprocessor (SMP) nodes. Due to its cost
effectiveness, SMP systems are used as building blocks
for both commodity clusters as well as custom
architectures (e.g., IBM SP, SGI Altix, NEC SX, Cray
X1). SA arrays resemble global arrays except their scope
is limited to an SMP node rather than entire parallel job
running on a cluster. SA are related to the mirrored
arrays, that were initially introduced as an extension to
Global Array model in context of wide-area-network grid
computing environments [23, 24, 25] and recently
proposed for reducing communication overhead on

clusters [27]. In the latter context, shared memory
mirroring is used to cache entire global arrays on every
SMP node. The arrays are replicated across cluster nodes
and distributed within each node. The goal is to take
performance advantage of the shared memory, which
constitutes the fastest interprocessor communication
protocol, and use it as replacement for more expensive
network communication. In the mirrored approach, the
user is responsible for managing consistency of the
cached data and collective operations on arrays are
globally synchronized. The SA arrays do not involve
global synchronization in collective operations and are
created and managed independently on each SMP node.

4.4. Integrated Programming Framework

The evolution of programming models is driven by the
fundamental tradeoffs between high productivity and
performance requirements in context of evolving scalable
architectures. On one hand, high productivity demands
high-level of abstractions that insulate the programmer
from specificity of the underlying hardware details and
allow describe the underlying mathematical model in
terms of collection of algorithms and appropriate data
structures. However, achieving high performance and
scalability is difficult if the essential characteristics of the
hardware, in particular the memory hierarchy, are
ignored.
Intelligent and automated management of data movement
is a fundamental and unifying theme for the Extended
Global Array interface we are developing. The goal is to
have a single interface for managing data and high level
representation of the mathematical algorithms operating
on multidimensional arrays while the details on the
underlying data movement between secondary storage,
distributed memory, shared memory, and local memory
are handled by the XGA implementation. XGA attempts
to address this problem while relying on three elements:
• Compiler analysis and code transformation
• Performance model for GA, SA, DRA operations
• Information on resource availability and configuration
(disk space, memory, processor affinity).
The basic idea is to translate XGA programs into
SA/GA/DRA code while orchestrating data movement,
caching, and redistribution so that the performance is
maximized while satisfying the constraints on the
available resources. XGA would allow from a single
source to generate in-core and out-of-core codes while
reducing the programmer effort and maintenance costs.

5. Discussion

In this paper, we have discussed two efforts that we are
currently engaged in, that seek to raise the level of
abstraction offered to the developers of high-end
software. Although message-passing with MPI can be
used to develop and tune parallel programs in any
application domain, we believe that the effort required to
develop, validate and maintain very complex high-
performance software is a deterrent and an impediment.
Historically, in the quantum chemistry domain, the need
for higher-level abstractions to aid in coping with the
complexity led to the development of the GA and DRA
libraries; these libraries provide a programming model
that has found many uses outside of the quantum
chemistry domain as well. In the newer efforts described
above, we are investigating other approaches to raising
the level of abstraction while maintaining scalability and
performance. The TCE is, once again, motivated by the
needs of the quantum chemistry community, though in
this case, the result is applicable to a relatively narrow
domain because of the extremely high level of abstraction
provided by the high-level language used. However, we
believe that many of the approaches developed for the
TCE can also be applied in the context of other more
broadly applicable efforts at raising the level of
abstraction in programming models for high-end
computing. An example is the automatic memory
hierarchy management aspect of XGA.
Figure 4 shows the relationships between these models in
the two-dimensional abstraction/generality space. The
third dimension of scalability can be made implicit when
only considering models that achieve satisfactory levels
of performance/scalability. The TCE uses GA in its
implementation, but is not an extension of the GA model.
The XGA effort, on the other hand is specifically an
effort to extend the GA model to higher levels of
abstraction. The two very different approaches to raising
the level of abstraction of the programming model we
have presented here have clear benefits to software
productivity (some already realized, in the case of the
TCE, and more expected following further development,
in the case of both TCE and XGA). They also
demonstrate the transferability of ideas in this space
(automatic memory hierarchy management from TCE
moving into XGA). Although the “holy grail” of a
programming model with high level of abstraction, high
generality and high scalability may be a distant goal,
broad exploration of this space is likely to yield many
new ideas with broad applicability and lead to the
development of programming models that raise
programmer productivity while delivering high
performance.

In the future, we plan to explore ways of moving along
the dimension of generality, while again maintaining
scalability. Other approaches might seek to proceed along
different paths in the three dimensional space of
generality, abstraction-level and scalability, with the
ultimate goal of developing very general-purpose
programming language frameworks that offer high levels
of abstraction and high scalability. However, there is a
potential problem with approaches where the initial
starting point has inadequate scalability, as exemplified
by the experience with High-Performance Fortran [2]. A
significant problem with HPF was that users were unable
to achieve high performance for many applications with
the initial releases of the compilers from vendors. This
was because challenging compiler optimization problems
had to be solved before performance could be delivered
for a range of applications and this resulted in a vicious
cycle. Vendors did not see it worthwhile investing in
compiler optimization technology unless they perceived
user demand; there was insufficient user demand without
scalable performance.
The end goal of programming language models that rank
high in all three dimensions is an extremely challenging
one. Significant advances in compiler technology will be
essential in achieving high scalability with general-
purpose programming models offering high levels of
abstraction. The sustained vision and support of
governmental funding agencies towards this goal will be
crucial. It will be very important for funding agencies to

Generality

Le
ve

l o
f A

bs
tra

ct
io

n TCE

MPI

GA

XGA

Ideal

Generality

Le
ve

l o
f A

bs
tra

ct
io

n TCE

MPI

GA

XGA

Ideal

Figure 4: GA and TCE are programming models at
different levels of abstraction and generality,
developed to make high-end software development
easier than using MPI. XGA is a proposed model to
further raise the level of abstraction above GA

engage in a long-term plan to support a variety of efforts
that seek to advance the state-of-the-art in programming
models offering high levels of abstraction, generality and
performance. Progress will be greatly facilitated by
sustained and strong interaction between application
developers and systems software developers in vertically
integrated teams, with expertise cutting across multiple
layers: from the applications layer, programming
models/frameworks layer, run-time layer,
communications layer and hardware architecture.

Acknowledgements

We wish to thank all of the members of the Tensor
Contraction Engine collaboration and the Global Arrays
team, without whose efforts this paper would not have
been possible. This research is sponsored in part by the
Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory, by the Office of
Mathematical, Information, and Computational Sciences
(MICS) of the U. S. Department of Energy Office of
Science, Environmental Molecular Sciences Laboratory
at PNNL, and by the National Science Foundation
through the ITR program. ORNL is managed by UT-
Battelle, LLC for the U. S. Department of Energy under
Contract No. DE-AC05-00OR22725. PNNL is managed
by the Battelle Memorial Institute for the U. S.
Department of Energy under Contract No. DE-AC06-
76RLO 1830.

References

[1] Global Array Toolkit Home Page,
http://www.emsl.pnl.gov/docs/global.

[2] High Performance Fortran Forum. High Performance
Fortran Language Specification, Ver. 2.0, 1997.
http://dacnet.rice.edu/Depts/CRPC/HPFF/versions/hpf2/.

[3] Message Passing Interface Forum, “MPI: a message-
passing interface standard,” Intl. J. Supercomputer Appl.
and High Perf. Comp. 8, 159-416 (1994).

[4] OpenMP: Simple, Portable, Scalable SMP Programming,
http://www.openmp.org.

[5] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh
Kaushik, Matt Knepply, Lois Curfman McInnes, Barry F.
Smith, and Hong Zhang. PETSc Users Manual, Technical
Report ANL-95/11 Revision 2.1.5, Argonne National
Laboratory, 2002.

[6] G. Baumgartner, D.E. Bernholdt, D. Cociorva, R. Harrison,
S. Hirata, C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam
and P. Sadayappan. A High-Level Approach to Synthesis
of High-Performance Codes for Quantum Chemistry. Proc
Supercomputing 2002, 2002.

[7] Steve Benson, Lois Curfman McInnes, Jorge J. More, and
Jason Sarich. TAO Users Manual, Technical Report

ANL/MCS-TM-242-Revision 1.5, Argonne National
Laboratory, 2003.

[8] Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr,
Dror Maydan, and Jeff McDonald. Parallel Programming
in OpenMP. Morgan Kauffman, 2000, ISBN 1-55860-671-
8.

[9] D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, J.
Ramanujam, M. Nooijen, D. Bernholdt, and R. Harrison.
Space-Time Trade-Off Optimization for a Class of
Electronic Structure Calculations. Proc. of ACM
SIGPLAN 2002 Conference on Programming Language
Design and Implementation (PLDI), June 2002, pp. 177–
186.

[10] D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C.
Lam, P. Sadayappan, J. Ramanujam. Global
Communication Optimization for Tensor Contraction
Expressions under Memory Constraints. Proc. of 17th
International Parallel & Distributed Processing Symposium
(IPDPS), Apr. 2003.

[11] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan,
J. Ramanujam, M. Nooijen, D.E. Bernholdt, and R.
Harrison. Towards Automatic Synthesis of High-
Performance Codes for Electronic Structure Calculations:
Data Locality Optimization. Proc. of the Intl. Conf. on
High Performance Computing, Dec. 2001, Lecture Notes
in Computer Science, Vol. 2228, pp. 237–248, Springer-
Verlag, 2001.

[12] Alain Darte. On the complexity of loop fusion. In Parallel
Computing, Vol. 26, No. 9, 1175-1193.

[13] Holger Dachsel, Jarek Nieplocha, and Robert Harrison. An
Out-of-Core Implementation of the COLUMBUS
Massively-Parallel Multireference Configuration
Interaction Program. Proceedings of the 1998 ACM/IEEE
Conference on Supercomptuing, San Jose, CA, pp. 1-10,
1998.

[14] High Performance Computational Chemistry Group,
NWChem, A Computational Chemistry Package for
Parallel Computers, Version 4.5 (2003), Pacific Northwest
National Laboratory, Richland, WA 99352,
http://www.emsl.pnl.gov/docs/nwchem

[15] S. Hirata, .Tensor contraction engine: abstraction and
automated parallel implementation of configuration-
interaction, coupled-cluster, and many-body perturbation
theories,. The Journal of Physical Chemistry A, ASAP
Article 10.1021/jp034596z S1089-5639(03)04596-1.2.

[16] Ricky A. Kendall, Edo Apra, David E. Bernholdt, Eric J.
Bylaska, Michel Dupuis, George I. Fann, Robert J.
Harrison, Jailin Ju, Jeffrey A. Nichols, Jarek Nieplocha, T.
P. Straatsma, Theresa L. Windus, and Adrian T. Wong,
“High Performance Computational Chemistry: Overview
of NWChem, a Distributed Parallel Application,” Comp.
Phys. Comm. 128, 260-283 (2000).

[17] C. Lam, D. Cociorva, G. Baumgartner and P. Sadayappan.
Optimization of Memory Usage and Communication
Requirements for a Class of Loops Implementing Multi-
Dimensional Integrals. Proc. 12th LCPC Workshop San
Diego, CA, Aug. 1999.

[18] C. Lam, P. Sadayappan and R.Wenger. On Optimizing a
Class of Multi-Dimensional Loops with Reductions for
Parallel Execution. Par. Proc. Lett., (7) 2, pp. 157–168,
1997.

[19] T. J. Lee and G. E. Scuseria. Achieving chemical accuracy
with coupled cluster theory. In S. R. Langhoff (Ed.),
Quantum Mechanical Electronic Structure Calculations
with Chemical Accuracy, pp. 47-109, Kluwer Academic,
1997.

[20] J. M. L. Martin. In P. v. R. Schleyer, P. R. Schreiner, N. L.
Allinger, T. Clark, J. Gasteiger, P. Kollman, H. F. Schaefer
III (Eds.), Encyclopedia of Computational Chemistry,
Wiley & Sons, Berne (Switzerland). Vol. 1, pp. 115-128,
1998.

[21] J. Nieplocha and I. Foster. Disk Resident Arrays: An
Array-Oriented I/O Library for Out-of-Core Computations.
Proc. 6th Symposium on the Frontiers of Massively
Parallel Computing, Anapolis, MD, March 1996.

[22] Jarek Nieplocha, Ian Foster, and Rick A. Kendall.
ChemIO: High-Performance Parallel I/O for
Computational Chemistry Applications, Intl. J. Supercomp.
Apps. High Perf. Comp.12, 345-363 (1998).

[23] J. Nieplocha and R. J. Harrison. Shared memory NUMA
programming on I-WAY. 5th International Symposium on
High Performance Distributed Computer (HPDC-5), pp.
432-441, 1996.

[24] J. Nieplocha and R. J. Harrison. Shared-Memory
Programming in Metacomputing Environments: The
Global Array Approach. J. Supercomputing, 11, 119-136
(1997).

[25] J. Nieplocha, R. J. Harrison, and I. Foster. Explicit
Management of Memory Hierarchy. In L. Grandinetti, J.
Kowalik, and M. Vajtersic (Eds.), Advances in High
Performance Computing, Kluwer Academic, NATO ASI
Series #30, pp. 185-198, 1996.

[26] J. Nieplocha, R.J. Harrison, and R.J. Littlefield, “Global
Arrays: A Non-Uniform-Memory-Access Programming
Model for High-Performance Computers,” J. Supercomp.
10, 169 (1996).

[27] B. Palmer, J. Nieplocha, and E. Apra. Shared Memory
Mirroring for Reducing Communication Overhead on
Commodity Networks. 5th International Conference on
Cluster Computing (CLUSTER 2003), Kowloon, Hong
Kong, December 2003.

