
Abstract 

The complexity of modern scientific simulations 
combined with the complexity of the high-performance 
computer hardware on which they run place an ever-
increasing burden on scientific software developers, with 
clear impacts on both productivity and performance.  We 
argue that raising the level of abstraction of the 
programming model/environment is a key element of 
addressing this situation.  We present examples of two 
distinctly different approaches to raising the level of 
abstraction of the programming model while maintaining 
or increasing performance: the Tensor Contraction 
engine, a narrowly-focused domain specific language 
together with an optimizing compiler; and Extended 
Global Arrays, a programming framework that integrates 
programming models dealing with different layers of the 
memory/storage hierarchy using compiler analysis and 
code transformation techniques. 

 

1. Introduction 

The role of computational simulation in science and 
engineering has blossomed in recent years to the point 
where it is now recognized as a peer to experimental and 
theoretical approaches and has become an indispensable 
tool to the progress of modern science and technology.  
Moreover, the pace of change and improvement in 
scientific high-end computing has been tremendous: more 
powerful computers allow researchers to perform larger 
and higher fidelity simulations, which in turn inspire the 

need for yet larger and faster computers.  However this 
progress has not been without cost.  Software developers 
have had to face increases in the complexity of 
algorithms and methods concomitant with the increases in 
problem size and fidelity compounded by increases in 
software complexity required to tease the maximum 
performance out of hardware with deeper memory 
hierarchies, higher degrees of parallelism, and other 
“features”.  The result of this burgeoning complexity is 
that more and more of the software developer’s effort 
goes into dealing with the details, with obvious impacts 
on overall productivity.  
Any measure of productivity for a developer and user of 
software must take into account both the time required to 
develop the software and the time it takes to run, or the 
performance. A “productive” programming environment, 
therefore, is one that allows the programmer to easily 
express computational problem (i.e. a programming 
model which provides a high level of abstraction) while 
providing the highest possible performance.  Based on 
our collective experience in high-performance scientific 
computing and our assessment of progress in the field 
over the last 10-15 years, we argue that raising the level 
of abstraction available to the developer has become a 
crucial factor in the effort to increase software 
productivity in scientific computing. After discussing the 
idea of abstraction in high-end computing, this paper 
presents the Tensor Contraction Engine (TCE) and 
Extended Global Arrays (XGA) as examples of efforts 
that take different approaches toward the goal of raising 
the level of abstraction while maintaining high 
performance. 
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2. Abstraction, Scalability, and 
Generality in High Performance 
Programming 

For the programming model on which the software 
development effort is based, a key factor is the level of 
abstraction offered to the user.  This term covers a 
number of factors, including the ease of expressing the 
(essentially mathematical) problem to be solved, and the 
ease of expressing the (parallel) algorithms necessary to 
solve it. We use NWChem [14, 16] as an example to 
highlight the importance of the model’s level of 
abstraction in enhancing productivity in developing 
complex high-performance software. NWChem is a large 
(over a million lines of code) computational chemistry 
package that provides high-performance, scalable 
implementations of a broad spectrum of methods in 
computational chemistry.  Development of NWChem 
began in 1993, at a time when the chemistry community 
had experimented with parallel computing, but had 
produced few general, scalable, high-performance 
parallel algorithms. Experience had shown that many 
quantum chemical methods could not be implemented 
easily in the traditional message-passing programming 
model. In addition, effective abstractions and parallel I/O 
techniques were needed for out-of-core chemistry 
algorithms. These challenges led to emergence of novel 
parallel programming tools that enabled rapid 
development and implementation of scalable algorithms 
in this science domain, namely the Global Array (GA) 
toolkit [1, 26], Disk Resident Arrays (DRA) [21], and 
Shared Files [22, 13]. When coupled with algorithms that 
appropriately consider the non-uniform memory access 
(NUMA) nature of modern high-performance computers, 
the GA model augmented with DRA has proven both 
very high performance and very expressive for algorithms 
of the type that appear in quantum chemistry.  Indeed, at 
present, essentially all scalable parallel quantum 
chemistry packages utilize Global Arrays or an equivalent 
programming model rather than the two-sided message-
passing programming model that dominates most other 
scientific domains. Though no quantitative data is 
available, the qualitative experience of the NWChem 
effort (now ten years old, and embodying far in excess of 
100 person-years of effort) is that the high-level 
abstractions provided by GA, DRA, and Shared Files 
were found invaluable in rapid development of scalable 
algorithms for this scientific domain, and quickly enabled 
scientists without prior experience in parallel 
programming to become productive contributors in this 
large software development effort.  As previously noted, 
despite the continued popularity of the message-passing 
model in other fields, all scalable quantum chemistry 
codes use GA-like programming models. 

In addition to level of abstraction and scalability of a 
programming model, a third, related, dimension is the 
generality of the programming model – whether it is 
appropriate to a narrow or broad range of computational 
problems and scientific domains. 

While it is hard or impossible to precisely quantify 
abstraction level, generality, and scalability of various 
programming models without reference to a particular 
class of problems and other factors, it is possible to 
estimate rough relative positions of various programming 
models within this three dimensional space. By way of 
example, Figure 1 presents such an assessment:  
• MPI [3] provides a very general, but rather low-level 
programming model and generally supports a high degree 
of optimization and tuning, making it possible to obtain 
performance close to the raw capabilities of the 
underlying hardware. It thus scores high with respect to 
model-generality and scalability, but ranks low regarding 
the abstraction-level offered to the software developer. 
• The Global Arrays [1, 26] library-based approach 
offers a global shared view of multi-dimensional array 
objects that can be accessed by processes via block 
get/put/update operations. It inter-operates with MPI and 
provides comparable performance and scalability. 
Through its shared global view of array objects, it offers a 
higher level of abstraction to the programmer. However, 
since it only applies to array objects, the GA model is less 
general than MPI. 
• OpenMP [4] is a completely general parallel 
programming model that offers a shared-space view of 
arbitrary data structures. Thus it ranks very highly along 
the dimension of generality, on par with MPI. We rank it 
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slightly higher than MPI and GA with respect to 
abstraction-level (referring in this case just to the ease of 
expressing the parallelism of the problem) However, 
scalable implementations of OpenMP for large-scale 
systems are yet to be realized.  
• Automatic parallelization of standard sequential 
C/Fortran programs: Standard sequential programming 
languages like C, C++ and Fortran have been heavily 
used for developing scientific and engineering 
applications. There has been a long history of efforts to 
automatically parallelize sequential programs. Although 
there was great optimism in the early days of parallel 
computing that compiler techniques could be developed 
to automatically parallelize sequential programs, today 
the prospects of achieving such a goal seem very dim. 
Several vendors have marketed commercial auto-
parallelizing compilers, but their effectiveness has been 
limited, especially in the context of highly parallel 
systems. 
• PETSc (Portable Extensible Toolkit for Scientific 
computation [5]) is an example of a class of tools that 
facilitates the parallel (as well as serial), numerical 
solution of PDEs that require solving large-scale, sparse 
nonlinear systems of equation. The user creates and 
manipulates matrix objects, whose underlying 
representation and distribution among nodes of a parallel 
machine are transparent to the user. A variety of linear 
and non-linear solvers are implemented. The level of 
abstraction is very high, since both the data distribution 
as well as the parallel nature of the underlying solvers can 
be completely transparent to the user. It ranks rather low 
with respect to generality, since the high level of 
abstraction is only available for the set of numerical 
methods implemented. 
From the viewpoint of the scientist/software developer, 
one might describe the “holy grail” of productive 
scientific computing as being able to write the equations 
for the problem to be solved in a form that is close or 
identical to the way they would be expressed in a 
scientific paper and have tools turn this input into 
efficient, high-performance code.  From the computer 
science viewpoint, the “holy grail” would be a 
programming model that maximizes all three axes (high 
abstraction/high generality/high performance), this is a 
daunting challenge (even for sequential computing!). 
However in order to address the looming crisis of 
software complexity, it is imperative to make progress 
toward solving this problem.  
Such efforts typically try to move along one or more of 
the three dimensions, while maintaining the level of the 
remainder. In the remainder of this paper, we present 
examples of two efforts, taking different paths in the 
effort to raise the level of abstraction while preserving 
scalability.  One involves the development of a high-level 

language and optimizing compiler called the Tensor 
Contraction Engine (TCE) for a class of problems in 
computational chemistry, and the other an effort to 
generalize the Global Array programming model to 
transparently manage multiple layers of memory 
hierarchy.  

3. The Tensor Contraction Engine 

The Tensor Contraction Engine (TCE) is a domain-
specific program synthesis system [6] being developed by 
a team of computer scientists and computational 
chemists. It is a system to automatically transform a high-
level description of a quantum chemical model expressed 
in terms of complex tensor contraction expressions 
(essentially generalized matrix products on 
multidimensional arrays) into optimized parallel 
programs. A primary reason for the development of the 
system was to significantly decrease the amount of time 
needed to develop high-performance codes implementing 
accurate models for correlated electronic structure 
methods in computational chemistry packages. In this 
case, the level of abstraction (particularly the ease of 
expressing the problem itself) is so high that writing a 
program in the TCE environment is little more than 
writing out the tensor contraction expressions that define 
the method to be implemented and the parallelism is 
implicit in that input, but of course the TCE is limited to a 

Figure 2.  A schematic representation of the 
Tensor Contraction Engine’s architecture 
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narrow class of problems, as shown in Figure 1. Figure 2 
provides a high-level picture of the transformation 
system. A brief description of the components of the 
system follows.  

3.1. High-level language 

The input to the synthesis system is a sequence of tensor 
contraction expressions (essentially sum-of-products 
array expressions) together with declarations of index 
ranges and symmetry and sparsity of matrices. The high-
level notation offers two significant advantages: 
1. For the user, the high-level representation makes it 
extremely convenient to express complex tensor 
contraction expressions.  
2. For the compiler, the high-level representation 
provides essential information that facilitates domain-
specific optimizations; such information would be 
difficult or impossible to extract out of code 
implementing such expressions in a language such as 
Fortran or C. 
Figure 3 shows an example of a TCE program 
representing a term in a tensor contraction expression. It 
is shown along with a larger expression from a coupled-
cluster [19, 20] model, shown in a notation used by 
quantum chemists in describing the computation. The 
tensor contraction expressions for accurate electronic 
structure models can have hundreds of such terms, and 
the Fortran codes implementing them often have tens of 
thousands of lines of code. 

3.2. Algebraic transformations 

Input from the user in the form of tensor expressions is 
transformed into a computation sequence. The properties 
of commutativity and associativity of addition and 
multiplication and the distributivity of multiplication over 
addition are used to search for various possible ways of 
applying these properties to an input sum-of-products 
expression. A combination that results in an equivalent 
form of the computation with minimal operation cost is 
generated. The problem of determining an equivalent 
operation-minimal form of the expression is NP-
complete, but efficient pruning-search procedures have 
been developed that are very effective in practice [18]. 

3.3. Memory minimization 

The operation-minimal computation sequence 
synthesized by applying algebraic transformation might 
require an excessive amount of memory due to the need 
to use large temporary intermediate arrays. The Memory 
Minimization step seeks to perform loop fusion 
transformations to reduce the memory requirements. 

Optimal loop fusion is also an NP-complete problem 
[12]. An abstraction called the fusion-graph has been 
developed and has served as the basis for a search process 
used to evaluate alternate the loop fusion choices in the 
context of the TCE [17]. The loop fusion transformations 
along with array contractions to minimize memory are 
done without incurring any increase on the number of 
arithmetic operations. 

3.4. Space-time transformation 

If the memory minimization step is unable to reduce 
memory requirements of the computation sequence below 
the available disk capacity on the system a space-time 
trade-off is performed. This is done by exploring different 
ways of adding redundant loops that enable additional 
fusion and array contraction. The redundant loops 
increase the amount of computation, but additional array 
contractions so enabled might reduce space requirements 
of intermediate temporaries. Loop tiling can be used with 
the redundant loops to allow additional space-time trade-
off. The fusion graph framework has been used to 
develop a search procedure to seek the best choice of 
redundant loops and tile sizes that can fit the computation 
within the available storage while incurring a minimal 
computational overhead due to the redundant loops 
introduced [9]. 

3.5. Storage and data locality optimization 

If the space requirement exceeds physical memory 
capacity, portions of the arrays must be moved between 
disk and main memory as needed, in a way that 
maximizes reuse of elements in memory. The same 

range V = 3000; 
range O = 100; 

index a,b,c,d,e,f : V; 
index i,j,k : O; 

mlimit  = 1000000000000; 

function F1(V,V,V,O); 
function F2(V,V,V,O); 

procedure P(in T1[O,O,V,V], in T2[O,O,V,V], out X)= 

begin 
    X == sum[ sum[F1(a,b,e,k) * F2(c,f,b,k), {b,k}] 

     * sum[T1[i,j,c,e] * T2[i,j,a,f], {i,j}], 
     {a,e,c,f}]; 

end 
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Figure 3. An example of the typical representation
of tensor contraction expressions used in the
scientific literature (inset) together with sample of
the input language for the Tensor Contraction
Engine for one term in the inset expression 



 
 

considerations are involved in minimizing cache misses 
— blocks of data are moved between physical memory 
and the space available in the cache. Loop blocking is 
used to minimize disk-to-memory transfer overhead. The 
issue of tile-size optimization is discussed in [11].  

3.6. Data distribution and partitioning 

This component determines how best to partition the 
arrays among the processors of a parallel system. We 
assume a data-parallel model, where each tensor 
contraction is distributed across the parallel machine. The 
arrays are to be disjointly partitioned between the 
physical memories of the processors. The data 
distribution pattern that minimizes the total inter-
processor communication in executing a sequence of 
tensor contractions is determined. The data partitioning 
issue is discussed in [10]. 

3.7. Code generation 

The back end of the synthesis system provides the output 
as pseudo-code, Fortran or C code. The generated code 
can be either serial or parallel, using Global Arrays (GA). 
Though targeting a traditional message-passing or other 
programming model is also quite feasible, we have found 
that the abstraction of globally-addressable shared data 
provided by the GA programming model greatly 
simplifies conceptual and code generation issues involved 
in the interface between the TCE-generated code and the 
supporting infrastructure provided by existing quantum 
chemistry packages, such as NWChem. Depending on the 
circumstances, the synthesized code could also call 
highly-tuned, machine-specific Basic Linear Algebra 
Subprograms (BLAS) libraries, or optimized low-level 
functions from the existing quantum chemistry packages. 
The TCE approach has already demonstrated tremendous 
productivity gains.  Using the prototype version of the 
TCE, which does yet incorporate several optimizations, 
more than 20 different quantum chemical methods have 
been implemented in just a few weeks, many receiving 
their first-ever parallel implementation in this way [15].  
At a very conservative estimate of three months of effort 
each it would have required more than five years of effort 
to implement all these methods by hand, representing a 
productivity increase on the order of 50-100 fold, not 
including the improvements in time to solution due to the 
availability of parallel implementations. The ratio size of 
the synthesized Fortran code to the input tensor 
contraction expressions (measured as number of 
characters of source code, excluding comments) is also 
typically around two orders of magnitude. Work is 
underway on the fully optimizing version of the TCE to 
implement optimizations targeted at enhancing the 

performance and scalability of the synthesized parallel 
Fortran code.   

4. Extended Global Arrays 

A logical step to raise the level of abstraction of the 
GA+DRA model is to integrate the management of three 
layers of memory hierarchy -- distributed main memory, 
shared memory on the SMP node of a cluster, and 
secondary storage -- under a single programming 
interface in an environment which automatically manages 
the hierarchy through extensions to the compilers for 
traditional programming languages. This effort, which we 
call “Extended Global Arrays” (XGA), is currently in the 
design stage. 

4.1. Global Arrays 

The Global Arrays toolkit presents to the application 
developer a distributed data structure as a single object 
and allows access as if it resided in shared memory. 
These features help the developer raise the level of 
composition and increase code reuse. A higher level of 
composition reduces the amount of code that must be 
written and enables scientists to program in terms of 
physically meaningful concepts rather than low-level 
manipulation of distributed data and explicit 
communication.  Thus, it makes scientists more 
productive and permits more time to be spent optimizing 
performance-critical algorithms and application kernels. 
GA programming model includes as a subset message 
passing; in particular, the programmer can use full MPI 
functionality on both GA and non-GA data. The library 
can be used in C, C++, Fortran 77, Fortran 90 and Python 
programs.  
GA implements a shared-memory programming model in 
which data locality is managed by the programmer 
through explicit calls to functions that transfer data 
between a global address space (a distributed array) and 
local storage.  In this respect, the GA model has 
similarities to distributed shared-memory (DSM) models 
that provide an explicit acquire/release protocol. 
However, GA acknowledges that remote data is slower to 
access than is local data and therefore allows data locality 
to be explicitly specified and hence managed.  Another 
advantage is that GA, by optimizing and moving only the 
data requested by the user, avoids issues such as false 
sharing or redundant data transfers present in some DSM 
solutions.  The GA model exposes to the programmer the 
hierarchical memory of modern high-performance 
computer systems, and by recognizing the 
communication overhead for remote data transfer, it 
promotes data reuse and locality of reference.   



 
 

The GA toolkit provides extensive support for controlling 
array distribution and accessing locality information.  
Both task-parallel and data-parallel programming styles 
are possible.  Task parallelism is supported through the 
one-sided (non-collective) copy operations that transfer 
data between global memory (distributed/shared array) 
and local memory.  In addition, each process is able to 
access directly data held in a section of a global array that 
is logically assigned to that process.  Atomic operations 
are provided that can be used to implement 
synchronization and ensure correctness of updates of 
overlapping array sections.  The data parallel computing 
model is supported through the set of collectively called 
functions that operate on either entire arrays or sections 
of global arrays.  The set includes BLAS-like operations 
interfaces to the parallel linear algebra libraries such as 
Scalapack as well as the TAO optimization toolkit [7]. 

4.2. Disk Resident Arrays 

The disk resident arrays (DRA) model extends the GA 
model to another level in the storage hierarchy, namely, 
secondary storage [NF1996]. It introduces the concept of 
a disk resident array - a disk-based representation of an 
array. It provides functions for transferring blocks of data 
between global arrays and disk arrays. Hence, it allows 
programmers to access data located on disk via a simple 
interface expressed in terms of arrays rather than files. 
The benefits of global arrays (in particular, the absence of 
complex index calculations and the use of optimized 
array communication) can be extended to programs that 
operate on arrays that are too large to fit into memory. By 
providing distinct interfaces for accessing objects located 
in main memory (local and remote) and on the disk, GA 
and DRA render visible the different levels of the 
memory hierarchy in which objects are stored. Hence, 
programs can take advantage of the performance 
characteristics associated with access to these levels.  

4.3. SMP Arrays 

So-called SMP Arrays (SA) can be used as a shared 
memory cache for latency sensitive distributed arrays in 
cluster environments based on collection of Symmetric 
Multiprocessor (SMP) nodes. Due to its cost 
effectiveness, SMP systems are used as building blocks 
for both commodity clusters as well as custom 
architectures (e.g., IBM SP, SGI Altix, NEC SX, Cray 
X1). SA arrays resemble global arrays except their scope 
is limited to an SMP node rather than entire parallel job 
running on a cluster. SA are related to the mirrored 
arrays, that were initially introduced as an extension to 
Global Array model in context of wide-area-network grid 
computing environments [23, 24, 25] and recently 
proposed for reducing communication overhead on 

clusters [27].  In the latter context, shared memory 
mirroring is used to cache entire global arrays on every 
SMP node. The arrays are replicated across cluster nodes 
and distributed within each node. The goal is to take 
performance advantage of the shared memory, which 
constitutes the fastest interprocessor communication 
protocol, and use it as replacement for more expensive 
network communication.    In the mirrored approach, the 
user is responsible for managing consistency of the 
cached data and collective operations on arrays are 
globally synchronized. The SA arrays do not involve 
global synchronization in collective operations and are 
created and managed independently on each SMP node. 

4.4. Integrated Programming Framework 

The evolution of programming models is driven by the 
fundamental tradeoffs between high productivity and 
performance requirements in context of evolving scalable 
architectures. On one hand, high productivity demands 
high-level of abstractions that insulate the programmer 
from specificity of the underlying hardware details and 
allow describe the underlying mathematical model in 
terms of collection of algorithms and appropriate data 
structures. However, achieving high performance and 
scalability is difficult if the essential characteristics of the 
hardware, in particular the memory hierarchy, are 
ignored.  
Intelligent and automated management of data movement 
is a fundamental and unifying theme for the Extended 
Global Array interface we are developing. The goal is to 
have a single interface for managing data and high level 
representation of the mathematical algorithms operating 
on multidimensional arrays while the details on the 
underlying data movement between secondary storage, 
distributed memory, shared memory, and local memory 
are handled by the XGA implementation.  XGA attempts 
to address this problem while relying on three elements: 
• Compiler analysis and code transformation 
• Performance model for GA, SA, DRA operations 
• Information on resource availability and configuration 
(disk space, memory, processor affinity). 
The basic idea is to translate XGA programs into 
SA/GA/DRA code while orchestrating data movement, 
caching, and redistribution so that the performance is 
maximized while satisfying the constraints on the 
available resources. XGA would allow from a single 
source to generate in-core and out-of-core codes while 
reducing the programmer effort and maintenance costs. 



 
 

5. Discussion 

In this paper, we have discussed two efforts that we are 
currently engaged in, that seek to raise the level of 
abstraction offered to the developers of high-end 
software. Although message-passing with MPI can be 
used to develop and tune parallel programs in any 
application domain, we believe that the effort required to 
develop, validate and maintain very complex high-
performance software is a deterrent and an impediment.  
Historically, in the quantum chemistry domain, the need 
for higher-level abstractions to aid in coping with the 
complexity led to the development of the GA and DRA 
libraries; these libraries provide a programming model 
that has found many uses outside of the quantum 
chemistry domain as well.  In the newer efforts described 
above, we are investigating other approaches to raising 
the level of abstraction while maintaining scalability and 
performance. The TCE is, once again, motivated by the 
needs of the quantum chemistry community, though in 
this case, the result is applicable to a relatively narrow 
domain because of the extremely high level of abstraction 
provided by the high-level language used.  However, we 
believe that many of the approaches developed for the 
TCE can also be applied in the context of other more 
broadly applicable efforts at raising the level of 
abstraction in programming models for high-end 
computing. An example is the automatic memory 
hierarchy management aspect of XGA.   
Figure 4 shows the relationships between these models in 
the two-dimensional abstraction/generality space. The 
third dimension of scalability can be made implicit when 
only considering models that achieve satisfactory levels 
of performance/scalability. The TCE uses GA in its 
implementation, but is not an extension of the GA model. 
The XGA effort, on the other hand is specifically an 
effort to extend the GA model to higher levels of 
abstraction. The two very different approaches to raising 
the level of abstraction of the programming model we 
have presented here have clear benefits to software 
productivity (some already realized, in the case of the 
TCE, and more expected following further development, 
in the case of both TCE and XGA). They also 
demonstrate the transferability of ideas in this space 
(automatic memory hierarchy management from TCE 
moving into XGA). Although the “holy grail” of a 
programming model with high level of abstraction, high 
generality and high scalability may be a distant goal, 
broad exploration of this space is likely to yield many 
new ideas with broad applicability and lead to the 
development of programming models that raise 
programmer productivity while delivering high 
performance.   

In the future, we plan to explore ways of moving along 
the dimension of generality, while again maintaining 
scalability. Other approaches might seek to proceed along 
different paths in the three dimensional space of 
generality, abstraction-level and scalability, with the 
ultimate goal of developing very general-purpose 
programming language frameworks that offer high levels 
of abstraction and high scalability. However, there is a 
potential problem with approaches where the initial 
starting point has inadequate scalability, as exemplified 
by the experience with High-Performance Fortran [2]. A 
significant problem with HPF was that users were unable 
to achieve high performance for many applications with 
the initial releases of the compilers from vendors. This 
was because challenging compiler optimization problems 
had to be solved before performance could be delivered 
for a range of applications and this resulted in a vicious 
cycle. Vendors did not see it worthwhile investing in 
compiler optimization technology unless they perceived 
user demand; there was insufficient user demand without 
scalable performance. 
The end goal of programming language models that rank 
high in all three dimensions is an extremely challenging 
one. Significant advances in compiler technology will be 
essential in achieving high scalability with general-
purpose programming models offering high levels of 
abstraction. The sustained vision and support of 
governmental funding agencies towards this goal will be 
crucial. It will be very important for funding agencies to 
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Figure 4: GA and TCE are programming models at 
different levels of abstraction and generality, 
developed to make high-end software development 
easier than using MPI. XGA is a proposed model to 
further raise the level of abstraction above GA 



 
 

engage in a long-term plan to support a variety of efforts 
that seek to advance the state-of-the-art in programming 
models offering high levels of abstraction, generality and 
performance. Progress will be greatly facilitated by 
sustained and strong interaction between application 
developers and systems software developers in vertically 
integrated teams, with expertise cutting across multiple 
layers: from the applications layer, programming 
models/frameworks layer, run-time layer, 
communications layer and hardware architecture.  
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