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Abstract 
In this paper, we describe a novel parallelization approach we developed to solve the 
largest multireference configuration interaction (MRCI) problem ever attempted. From 
the mathematical perspective, the program solves the eigenvalue problem for a very 
large, sparse, symmetric Hamilton matrix. Using an out-of-core approach, shared 
memory programming model, improved data compression algorithms, and dynamic load 
balancing we were able to solve a problem six times larger than previously reported. The 
potential curve for the chromium dimer was calculated with a Hamilton matrix of 
dimension 1.3 billion (1,295,937,374). This task involved moving 1.5 terabytes of data 
between main memory and secondary storage per MRCI iteration. Furthermore, by 
employing Active Messages and user-level striping to combine multiple files on local 
disks on the IBM SP into a single logically-shared file, the execution time of the program 
was reduced by a factor of three, as compared to our initial implementation on top of the 
IBM PIOFS parallel filesystem.  
   

Introduction 
The multireference configuration interaction (MRCI) method [1] is widely used in 
computational chemistry to obtain accurate predictions of properties of chemical systems. 
The MRCI method is arguably the most generally-applicable, high-accuracy method for 
determination of the electronic structure of small molecules. It can be used to predict the 
energetics and other properties of molecular systems from which may be derived 
chemical information including thermochemistry, spectroscopy and detailed models of 
chemical reactions. Since the computational expense scales as greater than the sixth 
power of the molecular system size, it is only applicable to small molecules. The general 
applicability of MRCI results in the program being significantly more complex than other 
computational chemistry programs. However, an efficient, massively-parallel 
implementation of the MRCI method is highly desirable to enable greater accuracy and 
also application to molecular larger systems. Within the COLUMBUS program package 
[1-3] only the MRCI program has been parallelized, but for high-accuracy calculations 
this is by far the most expensive step. The parallelization of this program [4] has been 
conducted by a collaboration involving researchers at Pacific Northwest National 



Laboratory, Argonne National Laboratory, and the University of Vienna. Over a period 
of about seven years, the parallel efficiency of the program has increased from a paltry 
50% on about 8 nodes of an Intel distributed-memory computer, to over 94% on 512 
nodes of a CRAY-T3E. Most of this improvement in scalability results from extensive 
algorithmic modifications to expose greater parallelism, eliminate overhead from the 
parallel algorithm compared to the sequential one, eliminate disk I/O, and reduce 
communication and memory usage in part by using data compression. Until now the 
problem size that can be treated with this code [4] was, however, limited by the aggregate 
available memory to problems not much larger than have been done for some time using 
out-of-core techniques on vector supercomputers. Described in this paper is our 
implementation in the COLUMBUS MRCI program of an out-of-core approach that 
performs well on the IBM SP massively parallel computer. Since the program is 
implemented on top of portable programming tools and libraries it can be used on other 
platforms. We demonstrate the capability of this program by application to a problem six 
times larger than any previously reported.  

The MRCI method approximates the electronic wavefunction (at a given nuclear 
geometry) with a linear expansion in a basis of n-electron functions or configurations. 
The energy is then minimized by variation of the coefficients, or, equivalently, by the 
iterative extraction of the lowest few eigen-pairs of the Hamilton matrix. The dimension 
of the Hamilton matrix (number of configurations) can become very large and even 
though the matrix is very sparse, it cannot be stored explicitly. Instead, matrix-vector 
products are computed from integrals ((k|l) and (kl|mn) below) and coupling coefficients 
(A and B below) by using the Graphical Unitary Group Approach (GUGA) [6].  

 

The mostly dense integrals must be stored and the sparse coupling coefficients 
recomputed as required. The sparse matrix-vector product is reformulated as many, small 
(O(100)), dense matrix-matrix operations which execute with high single-processor 
efficiency. Most of the complexity in both the sequential and parallel algorithm arises 
from avoiding unnecessary movement of data (which include the integrals, input vector 
and output product vector), or redundant computation of coupling coefficients, while 
maintaining a completely general algorithm that is applicable to a wide class of chemical 
problems. Problems specific to the parallel algorithm are discussed below. The number of 
integrals is proportional to the fourth power of the one-electron basis set used in the 
calculation, typically a few hundred, so there may be several GBytes of these.  

The iterative Davidson diagonalization method [5] is used to solve the eigenproblem. In 
this scheme, the most time consuming step is the computation of the sparse matrix-vector 
product of the Hamilton matrix and the expansion vector. A set of expansion vectors is 
used to project the original orthogonal eigenvalue problem to a subspace in which a small 
non-orthogonal eigenvalue problem is solved.  



Current state of the art MRCI calculations are in the range between 100 and 200 million 
configuration state functions [7,8]. Our goal was to develop a program which allows 
calculations of more than one billion configurations.  
   

Parallel Algorithm 
The most computationally demanding section of the MRCI algorithm is the 
diagonalization of the Hamilton matrix. Therefore, we concentrated on this step in our 
parallelization work. In an early version of the code, we used message passing to 
parallelize the computation of the matrix-vector product. Using the replicated data model 
each processor had to store a local copy of the expansion and corresponding product 
vector. This model required distribution of the expansion vector at the beginning and a 
global sum at the end. The computations of the subspace Hamilton matrix and the overlap 
matrix were not carried out in parallel. Due to the replicated data model the calculation 
size was limited by the memory of just a single processor. Furthermore, the standard 
message-passing model did not provide sufficient functionality to distribute fully data 
structures. The calculations would be performed in a MIMD task-parallel fashion driven 
by data-dependent dynamic load balancing. A major improvement could only be 
achieved if asynchronous access to data distributed over the core memory of all 
processors were possible in the sense of a "virtual shared memory". In this way two 
major bottlenecks could be removed at once:  

• broadcasting of all data at the beginning of each Davidson iteration and collecting 
the results via a global sum could be avoided because all necessary data were 
available just in time and 

• memory inefficiencies of the replicated data approach would be avoided. The 
problem would be limited now by the aggregate memory of the entire parallel 
computer. 

We use for this purpose the Global Array (GA) toolkit [9] that supports one-sided 
communication capabilities in context of distributed arrays. To address needs for a 
scalable locking mechanism to protect access to the distributed shared data structures in 
MRCI, we added to the GA toolkit distributed lock operations. In addition to global 
arrays we still have the option to store multiple copies of certain data files (like the two-
external integrals) locally in core because these files are relatively small but frequently 
accessed. We have developed a special data management scheme called virtual disk to 
store compressed and uncompressed data locally. The key advance described in this 
paper is to allow the largest shared data structures (the virtual disks) to spill over onto 
physical disk storage, while still maintaining the one-sided data access model, efficient 
scalable parallel execution and the ability to cache data in physical memory.  
   

Virtual disk 



A virtual disk is used to store variable length records of different logical files in an 
arbitrary sequence in private/ shared disk/memory. Files that are too large to fit into 
memory may spill over onto disk. Each variable length record in a file is divided into a 
linked list of blocks. In the absence of compression, these subblocks are of constant 
length, but when compression is enabled the dynamic updating of the data requires that 
each block is fragmented and also managed as a linked list. To avoid frequent access to 
physical disk, the record headers are cached in memory. However, if even these are too 
large, all record information for a logical file can be written to the virtual disk except for 
the address of the first block of each record which may be straightforwardly computed. If 
compression is enabled, the data structure of the virtual disk provides all the functionality 
necessary to store the data compactly. The aim is to have a memory saving almost equal 
to the saving coming from compression. As soon as a data segment is not fully filled the 
space is freed. Runtime statistics have shown that up to 99% efficiency is obtained in 
practice. Another goal was that the virtual disk should have no more than 10% space 
overhead required by the information to maintain the nested linked lists. Virtual disks are 
implemented on top of any or all local files or memory (for private disks), or global 
arrays or shared files (for shared virtual disks). The Shared File library is described below.  

Mutual exclusion is necessary to maintain the virtual-disk data structures in shared files. 
Atomic read-and-increment operations suffice to manage the list of free blocks used to 
grow/shrink the file. However, if the fragmentation of compressed data changes the 
mutual exclusion becomes necessary around the updating of the linked list information of 
that record. The operations used are described in more detail below.  

Data management 

The major bottleneck of the CI calculation is the large amount of data to be transferred. 
Due to memory limitations the expansion and product vectors are segmented. Four 
segments, two expansion vector segments and two product vector segments have to be 
kept in core to compute the matrix vector product. The expansion vector has to be read 
about the number of segments times, so there is a trade-off between increasing the 
available parallelism and increasing the total volume of data movement. Updating the 
product vectors requires double the amount of data to be transferred. Additionally, data 
compression has been implemented in connection with the implementation of a shared 
file (described in the following section). Major improvements have been made to increase 
the efficiency of the earlier compression algorithm [4]. The compression scheme for the 
expansion vectors as well as the compression scheme for the product vectors are now 
adjusted dynamically. Information about the structure of the eigenvectors is used to 
eliminate the redundant data completely. For better scalability, a time sorted task list has 
been implemented to improve the dynamic load balancing.  

The diagonalization task consists of two subsections, the subspace manipulation and the 
matrix-vector product. Due to memory limitations all expansion and product vectors are 
segmented equally. The algorithm of the matrix vector multiplication requires four 
segments to be stored in core. Each segment is divided into eight records. The vectors are 
stored in record units.  



 
Figure 1: CI vector structure 

  

The program allocates all possible distributed main memory for a one-dimensional global 
array and then creates a shared file to store data that does not fit in the distributed main 
memory, see Figure 1. Secondary storage is accessed in a noncollective fashion, with 
individual processors reading and writing records containing compressed data. Data is 
read from disk, uncompressed, updated, compressed, and written back to disk. Since the 
update can affect the compression rate, the size of the data written to the disk might be 
different from that of the original data. The average I/O request size in this program is 
approximately 30 KB. Due to the vector segmentation, the amount of available in-core 
memory, and the high efficiency of the compression, the request size could not be easily 
increased.  

Additional, mutual exclusion is necessary when accumulating into a virtual shared disk. 
For scalability, there is a separate lock for each record.  
   

Data Compression 



A data compression method [4] has been developed to significantly reduce the amount of 
data by eliminating data that will not contribute to a given matrix-vector product for the 
requested convergence threshold. The compression is based upon an error analysis for the 
expansion and product vector elements which includes the required solution accuracy and 
current convergence status. The requirement for the elements of the expansion and 
product vectors not to exceed given constant overall errors means that the number of 
significant digits in these elements varies and this number will increase or decrease with 
variation in the absolute values of the vector components. To make use of this fact, we 
devised a floating-point representation with a variable length mantissa, and discarded the 
insignificant digits. Major improvements have been made with regard to the previous 
algorithm [4]. Information about the structure of the eigensystem is now used to adjust 
the compression scheme dynamically, also taking into account the possibility of root 
crossings.  

The efficiency of the compression depends upon the sparsity of the Hamilton matrix and 
the requested convergence threshold. It is important to note that the number of iterations 
is not increased by the compression scheme when compared with an equivalent 
calculation with the same convergence threshold, but without compression. For an 
eigenvalue threshold of 10-6, saving factors of between 5 and 30 have been seen for 
various MRCI calculations.  
   

Interprocessor Communication 
Motivated by the irregularity of communication patterns resulting from the dynamic load-
balancing, the shared-memory programming rather than the message-passing model was 
selected for this application. The portable Global Array (GA) toolkit [9] supports an 
object-based shared-memory programming paradigm that matches well the 
communication requirements of this application. By eliminating the need to coordinate 
the sender and receiver of the data the programming effort was greatly reduced.  

The GA has been traditionally supported on the IBM SP through the interrupt-receive 
functionality (rcvncall) available in the IBM Message Passing Library (MPL). During the 
course of the work on parallelization of the MRCI code, a new implementation of GA has 
been developed based on the new low-level communication library called LAPI. The 
development of LAPI and the optimized port of GA to the IBM SP was a subject of a 
collaborative project between IBM and PNNL that started in March of 1996 [12]. At 
present time, both the PowerPC SMP and RS/6000 uniprocessor models of the SP 
support LAPI [12], a commercial implementation of Active Messages (AM) [13]. In 
particular, LAPI provides:  

• active message operations, 
• put, and get remote memory copy operations, and 
• additional synchronization and ordering operations useful in the shared memory 

style of programming. 



The LAPI implementation of GA has improved latency and bandwidth of this system, 
especially for codes like COLUMBUS that use 1-dimensional rather than multi-
dimensional distributed arrays. The primary GA communication operations used in the 
MRCI code are get, put, and accumulate. The latency and bandwidth (measured for 2MB 
requests) performance differences between MPL and LAPI implementations of these 
operations on system equipped with 120MHz P2SC uniprocessor nodes and the TB-3 
network adapter in a synthetic microbenchmark are shown in Figure 2.  
   

    
Figure 2: Performance of GA get, put, and accumulate under LAPI and MPL 

   
To support the application needs for mutual exclusion when updating data structures (e.g., 
product vector) on disk or in memory atomically, the lock operations have been added to 
the GA package. The implementation is platform specific. On systems with shared 
memory or global address space (Cray T3D/E) the traditional algorithm based on atomic 
fetch-and-add (already available in GA as ga_read_inc operation) and lock queue was 
used. For distributed memory systems (IBM SP, Intel Paragon), a new algorithm has been 
implemented that maintains a lock queue on the remote node within the interupt-receive 
or active message handlers. The cost of acquiring an uncontested lock on the IBM SP is 
comparable to that of the get operation.  

Parallel I/O 

To address the memory limitations in solution of large problems, the MRCI code adopted 
a disk-based approach using the Shared Files library [10]. The portable Shared Files (SF) 
library is one of the three parallel I/O libraries developed by the ChemIO project [10] at 
Pacific Northwest and Argonne National Laboratories. The ChemIO project has defined 
I/O interfaces that capture the I/O patterns found in important computational chemistry 
applications and provided high-performance portable implementations of these interfaces. 
The Shared Files library supports the concept of a parallel file in which every process in a 
parallel computation can read and write independently at arbitrary locations. The 
differences between SF and other systems include the following:  

• Shared files are not guaranteed to be persistent. Shared file operations are 
typically used to write "scratch" data, which may be read subsequently during the 



same run, but might not persist beyond program termination. Persistency is a 
property of the filesystem on which SF is created, rather than the model itself. 

• Shared Files support files larger than 2 GB even in the Fortran API. 
• Shared Files read and write operations are nonblocking and contain an offset 

argument rather than a separate seek operation. 
• Unlike record based I/O models in Fortran, SF provide byte addressable disk 

access. 

On the IBM SP, the original implementation of SF depended on the IBM parallel 
filesystem, PIOFS. The initial results of experiments with this application on the LLNL 
IBM SP-2 with 8 PIOFS servers were very promising, as described in reference [10]. 
However, the performance and scalability of SF on the next generation of machine (IBM 
SP) with faster network, processors and 44 PIOFS servers turned out to be rather 
disappointing. To address the performance and scalability problems as experienced in the 
SF-PIOFS implementation of Columbus, we decided to investigate other approaches.  
Each node of the IBM SP contains at least one local disk. The aggregate I/O bandwidth 
and capacity of the local disks presented an attractive opportunity to move the shared 
files from PIOFS to local disks by striping a single logically shared file on local disks 
available on the computing nodes on which the application was running. However, to 
support shared memory style of computations involving non-collective access to data 
stored in a single shared file, a new remote disk access technology had to be developed. 
We decided not to use the existing approaches like IBM Virtual Shared Disk (VSD) since 
they:  

1. require file system reconfiguration which is not practical in a general purpose 
multi-application system operation mode adopted by the computing centers 
supporting a scientific/technical user community, 

2. use server processes and communication approaches (based on polling) designed 
for the traditional client-server applications which likely would consume 
significant memory and CPU resources and have negative impact on the 
application process sharing the same processor. 

What was needed was a dynamic part-time-server/part-time-client I/O model that would 
localize I/O to the set of resources available to the application during its run-time and had 
minimal impact on the performance of the application thread. To support the non-
collective I/O model of Shared Files we developed the Distant I/O model [11]. Distant 
I/O combines one-sided communication with I/O to secondary storage memory at remote 
processors. Distant I/O has several useful properties, including the following:  

• Distributed view of secondary storage: Secondary storage is used as an extension 
of main memory in distributed memory systems and accessed with the convenient 
one-sided communication paradigm. 

• Flexibility: DIO can be used to implement parallel I/O models and libraries even 
on systems that lack parallel/shared filesystems. 



• Capacity and bandwidth scalability: As the number of application processors with 
attached disks grows, the aggregate I/O bandwidth and aggregate capacity 
proportionally increases. 

The distant I/O implementation on the IBM SP uses LAPI Active Messages to send 
specifications of read/write operation to remote nodes. Upon arrival an interrupt is 
generated, the AM completion handler is invoked and executed by a separate thread. 
Within the AM completion handler code, LAPI remote memory copy and standard C 
language library I/O are used. For dio_write, LAPI_Get transfers data to an internal DIO 
buffer. This step is followed by a blocking write. For dio_read, blocking read is followed 
by a LAPI_Put, which transfers data read from the disk to the internal DIO buffer and 
then to the user buffer at the requesting processor, see Figure 3. In addition, LAPI_Put 
increments the counter variable cntr to notify the requesting node that the data arrived 
into the user buffer.  

 
Figure 3: Implementation of remote read operation (dio_read) on top of LAPI 

Other active-message�style facilities, including the Berkley/Cornell AMs, could be used 
in a similar fashion to implement DIO on other platforms, including networks of 
workstations.  
The microbenchmark results for distant I/O implemented on local SCSI disks (each rated 
at approximately 6 MB/s) of the IBM SP at PNNL indicate very good performance of this 
model, see Figure 4. In this benchmark, we are comparing performance of read and write 
operations to local and remote disks with variable request size and total 1 GB of data. 
The performance differences in access to local and remote files is moderate and decreases 
with increased request size.  



 
Figure 4: Performance of DIO read and write operations as a function of request size in 

access to local and remote files 

   

The DIO-based version of the Shared Files library is implemented by striping a parallel 
logical file across multiple physical files located on all disks available on the computing 
nodes on which the parallel application is running. It uses Distant I/O to perform remote 
read/write operations. When a shared file is created, the user can provide several hints 
that the underlying implementation can exploit to optimize the performance. In particular, 
the "typical request size" can be used by SF to determine the appropriate value of the 
striping factor. The striping is performed in a round-robin fashion, see Figure 5.  

 
 Figure 5: Example sf_write request decomposed into DIO operations on component files 

for a shared file implemented on three processors with local disks 



The SF library is able to support some shared files on PIOFS and others on DIO/local 
disks in the same program. The particular implementation is chosen dynamically based 
on the path argument to the sf_create operation that specifies the location in a 
filesystem where a shared file metafile is created. Process 0 creates a file in the specified 
location and then the other processes attempt to access it. This attempt is successful if the 
file resides on a shared filesystem, in which case the parallel filesystem implementation is 
chosen, otherwise the DIO implementation is selected.  

Performance Results and Discussion 
The calculations we describe in this section were carried out on the PNNL/EMSL IBM 
SP with 512 Power-2-Super processors most of them equipped with 128 Mbytes of 
memory. The peak performance on each processor is 480 Mflops. We describe results of 
the largest MRCI calculation that was ever performed. In addition, we present:  

• interprocessor communication performance in context of our application for MPL 
and LAPI 

• scalability study of the application for a smaller problem size that could be 
performed on 64 processors 

• performance of I/O using SF on top of PIOFS and DIO 

We have chosen the chromium dimer as one of our benchmark examples because it is an 
outstanding chemical problem and requires extremely extended CI expansions. Up to this 
time, a really satisfactory calculation for this system had not been performed. The reason 
for these large expansion spaces is that the core-valence correlation has to be included in 
order to give reliable potential energy curves. Moreover, large basis sets (up to h 
functions) are necessary. A series of extended test calculations have been performed so 
far in order to evaluate the importance of different factors (valence and core-valence 
electron correlation, basis set effects, computational efficiency, etc.). Both of the 
calculations used a primitive basis 20s15p10d6f contracted as 4+5s,2+6p,1+6d,1+4f (the 
notation being core+valence) due to Bauschlicher and Partridge [14], the 3088 CSF 
reference set of Stoll and Werner [15], and the MR-QAQCC method of Szalay and 
Bartlett [16]. In the first calculation only the 12 valence electrons are correlated, giving 
rise to 90,679,216 CSF in D2h symmetry.  

In the largest MRCI calculation ever performed, 24 electrons are correlated in an attempt 
to describe core-valence correlation effects, giving rise to 1,295,937,374 CSF in D2h 
symmetry. This is a very much harder calculation than a full-CI calculation of similar 
dimension since the wavefunction is much more complex, and the Hamiltonian is much 
less sparse.  
   

Interprocessor communication 

To better understand performance of MPL and LAPI implementations of GA in the 
application context rather than a synthetic microbenchmark, we instrumented the 



application and measured the time required to read the integrals in Columbus. The 
request size was 262,144 bytes. Figure 6, compares average performance of the MPL and 
LAPI implementations of GA for this message size. The LAPI version runs three times 
faster.  

 
Figure 6: Communication bandwidth in Columbus when reading integrals 

  
  

Scalability Study 

We have chosen a smaller calculation to investigate the scaling of the in-core version of 
the program. A test case was chosen for which all data could be kept in core starting with 
64 processors. The dimension of the Hamilton matrix is 125 million (125,033,696). The 
relative speedup was calculated with respect to the 64-processor run and is presented in 
Figure 7. It shows that program scales very well with the number of processors.  

 
Figure 7: Speedup for a smaller problem 

  

Large calculation 



We used both PIOFS and DIO implementations of Shared Files to solve the largest MRCI 
single and double excitation problem ever attempted, represented by a matrix of 
dimension 1,295,937,374. The calculations were performed on 128 processors of the 512-
node IBM SP with Power-2-Super processors at PNNL. It took 24 iterations to compute 
one point of the potential curve for chromium dimer. To get the full potential curve, 8 
points need to be calculated. Therefore, we ran the program 8 times.  

To better illustrate the challenging nature of this calculation, in Figure 8 we show the 
aggregate volume of data that had to be transferred in a single iteration of the algorithm 
in the three most data intensive components of the code. Since integrals are frequently 
used and fit in-core, reading integrals involved the MPL or LAPI communication. The 
expansion and product vectors are kept in secondary storage. Therefore, the amount of 
data that had to be moved between main (distributed) memory and secondary storage is 
approximately 1.5 TB. Due to the dynamic nature of the algorithm (calculations driven 
by dynamic load balancing) the amounts of data transferred in MPL-PIOFS and LAPI-
DIO versions of the code are slightly different.  

Figure 8: Volume of data (in gigabytes) transferred in different computational phases of 
the large calculation (per single iteration) 

  

Because of the data volume, despite the significant differences in performance between 
MPL and LAPI, as shown in Figure 6, the performance of the I/O subsystem has much 
higher impact on the overall performance of the out-of-core version of the program.  

In Table 1, we report timing results for the initial implementation that used SF on top of 
PIOFS and the newest implementation of SF using DIO on top of local disks. The PIOFS 
parallel filesystem was configured with 44 servers with 4 SSA disks each (which appears 
to be the largest PIOFS configuration available at that time anywhere). Each of the 



compute nodes of the system contains a local SCSI disk rated at 6 MB/s. We report 
performance of the I/O only for reading expansion vectors (approximately 900 
GB/iteration) because the performance was easier to measure and analyze. On the other 
hand, the updating of the product vector involved: reading, writing, compression and 
mutual exclusion operations which complicated the performance measurements. For 
example, the write operation due to the buffering and caching effects in AIX could not be 
timed reliably without impacting the program performance. This was considered 
unacceptable.  

The improvement in the execution time after incorporating the DIO implementation of 
Shared Files and LAPI implementation of Global Arrays into the program is remarkable. 
Most of the 70% reduction of the execution time as compared to the initial MPL-PIOFS 
implementation is contributed to the increase of the Shared File performance. This 
improved by more than a factor of three by switching to DIO and local disks. With this 
version, the time spent for I/O has been reduced to about 20% of the program execution 
time.  

Table 1: MRCI performance on top of PIOFS and DIO (local disks) on the IBM SP 

  Aggregate I/O time/iteration 
(reading integrals) 

I/O bandwidth/CPU/iteration 
(reading integrals) 

Total execution time 
(wall clock) 

PIOFS 906297.07s 0.994MB/s 305.5 hours 

DIO 235708.32s 3.823MB/s 79.6 hours 

   

Our additional scalability study for MRCI indicates that the I/O bandwidth per processor 
observed in the local disk implementation of MRCI is approximately constant with the 
number of processors (and disks) used. The observed bandwidth to PIOFS does not scale 
that well.  
   

Conclusions 
Our novel, out-of-core, massively-parallel MRCI algorithm has enabled much larger 
scale calculations than have been possible before. Calculations with several billion 
configuration state functions are now quite feasible. The implementation upon the IBM 
SP using the Shared Files library on top of the Distant I/O model employing the LAPI 
active message library to support access to physically distributed disks has proven very 
scalable. In addition, we also obtain close to the hardware limits for I/O bandwidth. Since 
the program is implemented on top of portable programming tools and libraries such as 
Global Arrays and Shared Files it can be used on other platforms as well. The substantial 
progress we achieved has required intimate collaboration over an extended period 
between computational chemists and computer scientists and led to advancements both in 
the computer science area (such as the novel Distant I/O model) and chemistry. Future 



goals include abstracting the essential content of some of the data compression 
algorithms and distributed data structures, and expressing them as libraries that may be 
more widely used. Finally, as the gap between the speed of processors and the speed of 
memory, and especially disk, widens the MRCI algorithm must be adjusted to 
accommodate the deeper memory hierarchy and proportionately slower disk.  
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