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Outline of the Tutorial 

!   Parallel Programming Models 
!   Performance vs. Abstraction vs. Generality 
!   Distributed Data vs. Shared Memory 
!   One-sided communication vs. Message Passing 

!   Overview of the Global Arrays Programming Model 
!   Intermediate GA Programming Concepts and Samples 
!   Advanced GA Programming Concepts and Samples 
!   Global Arrays in NumPy (GAiN) 
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Parallel Programming Models 
!   Single Threaded 

!   Data Parallel, e.g. HPF 
!   Multiple Processes 

!   Partitioned-Local Data Access 
!   MPI 

!   Uniform-Global-Shared Data Access 
!   OpenMP 

!   Partitioned-Global-Shared Data Access 
!   Co-Array Fortran 

!   Uniform-Global-Shared + Partitioned Data Access 
!   UPC, Global Arrays, X10 
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Parallel Programming Models in Python 
!   Single Threaded 

!   Data Parallel, e.g. HPF 
!   Multiple Processes 

!   Partitioned-Local Data Access 
!   MPI (mpi4py) 

!   Uniform-Global-Shared Data Access 
!   OpenMP (within a C extension – no direct Cython support yet) 

!   Partitioned-Global-Shared Data Access 
!   Co-Array Fortran 

!   Uniform-Global-Shared + Partitioned Data Access 
!   UPC, Global Arrays (as of 5.0.x), X10 

!   Others: PyZMQ, IPython, PiCloud, and more 

4 
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High Performance Fortran 

!   Single-threaded view of computation 
!   Data parallelism and parallel loops 
!   User-specified data distributions for arrays 
!   Compiler transforms HPF program to SPMD program 

!   Communication optimization critical to performance 
!   Programmer may not be conscious of communication implications of 

parallel program 
s=s+1 
A(1:100) = B(0:99)+B(2:101) 
HPF$ Independent 
Do I = 1,100 
    A(I) = B(I-1)+B(I+1) 
End Do 

HPF$ Independent 
DO I = 1,N 
HPF$ Independent 
    DO J = 1,N 
         A(I,J) = B(J,I) 
    END 
END 

HPF$ Independent 
DO I = 1,N 
HPF$ Independent 
   DO J = 1,N 
      A(I,J) = B(I,J) 
   END 
END 
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Message Passing Interface 

!   Most widely used parallel programming model 
today 

!   Bindings for Fortran, C, C++, MATLAB 
!   P parallel processes, each with local data 

!   MPI-1: Send/receive messages for inter-
process communication 

!   MPI-2: One-sided get/put data access from/to 
local data at remote process 

!   Explicit control of all inter-processor 
communication 
!   Advantage: Programmer is conscious of 

communication overheads and attempts to 
minimize it 

!   Drawback: Program development/debugging 
is tedious due to the partitioned-local view of 
the data 

Private Data 

P0 P1 Pk 

Messages 
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OpenMP 

!   Uniform-Global view of shared data 
!   Available for Fortran, C, C++ 
!   Work-sharing constructs (parallel loops and 

sections) and global-shared data view ease 
program development 

!   Disadvantage: Data locality issues obscured 
by programming model 

Private Data 

P0 P1 Pk 

Shared Data 
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Co-Array Fortran 

!   Partitioned, but global-shared data view 
!   SPMD programming model with local and 

shared variables 
!   Shared variables have additional co-array 

dimension(s), mapped to process space; 
each process can directly access array 
elements in the space of other processes 
!   A(I,J) = A(I,J)[me-1] + A(I,J)[me+1] 

!   Compiler optimization of communication 
critical to performance, but all non-local 
access is explicit 

Private Data 

Co-Arrays 

P0 P1 Pk 
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Unified Parallel C (UPC) 

!   SPMD programming model with global shared view for 
arrays as well as pointer-based data structures 

!   Compiler optimizations critical for controlling inter-
processor communication overhead 
!   Very challenging problem since local vs. remote 

access is not explicit in syntax (unlike Co-Array 
Fortran) 

!   Linearization of multidimensional arrays makes 
compiler optimization of communication very 
difficult 

!   Performance study with NAS benchmarks (PPoPP 
2005, Mellor-Crummey et. al.) compared CAF and 
UPC 
!   Co-Array Fortran had significantly better scalability 
!   Linearization of multi-dimensional arrays in UPC 

was a significant source of overhead 

Private Data 

P0 P1 Pk 

Shared Data 
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Global Arrays vs. Other Models 

!   Advantages: 
!   Inter-operates with MPI 

!   Use more convenient global-shared view for multi-dimensional 
arrays, but can use MPI model wherever needed 

!   Data-locality and granularity control is explicit with GA’s get-
compute-put model, unlike the non-transparent 
communication overheads with other models (except MPI) 

!   Library-based approach: does not rely upon smart compiler 
optimizations to achieve high performance 

!   Disadvantage: 
!   Only useable for array data structures  
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Performance vs. Abstraction and Generality 

Domain 
Specific 
Systems 

CAF 
OpenMP 

Autoparallelized 
C/Fortran90 

GA 

MPI 

Generality 

Sc
al

ab
ili

ty
 

“Holy Grail” 
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Performance vs. Abstraction and Generality 

12 

Domain 
Specific 
Systems 

CAF 

Autoparallelized 
C/Fortran90 

GA 

MPI 

Generality 

Sc
al

ab
ili

ty
 

“Holy Grail” 
GA+Python? 

OpenMP 
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Distributed Data vs Shared Memory 

!   Distributed Data 
!   Data is explicitly associated with 

each processor, accessing data 
requires specifying the location of the 
data on the processor and the 
processor itself. 

!   Data locality is explicit but data 
access is complicated. Distributed 
computing is typically implemented 
with message passing (e.g. MPI) 

!   To copy element from P5 to P0 using 
MPI 
!   P0 posts comm.recv(obj, 5) 
!   P5 posts comm.send(buf[27], 5) 

(0xf5670,P0) 
(0xf32674,P5) 

P0 P1 P2 
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Distributed Data vs Shared Memory (cont.) 

!   Shared Memory 
!   Data is in a globally 

accessible address space, 
any processor can access 
data by specifying its location 
using a global index  

!   Data is mapped out in a 
natural manner (usually 
corresponding to the original 
problem) and access is easy. 
Information on data locality is 
obscured and leads to loss of 
performance. 

(0,0) 

(150,200) 

(47,95) 

(106,171) 
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!   Distributed dense arrays that 
can be accessed through a 
shared memory-like style 

!   single, shared data structure/ 
global indexing 
!   e.g., ga.get(a, (3,2)) 

rather than buf[6] on process 1  

Global Arrays 

Physically distributed data 

Global Address Space 

0 2 4 6 

1 3 5 7 
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One-sided Communication  

message passing 
MPI 

P1 P0 
receive send 

P1 P0 
put 

one-sided communication 
SHMEM, ARMCI, MPI-2-1S 

Message Passing: 
Message requires cooperation  
on both sides. The processor 
sending the message (P1) and 
the processor receiving the 
message (P0) must both 
participate. 

One-sided Communication: 
Once message is initiated on 
sending processor (P1) the 
sending processor can 
continue computation. 
Receiving processor (P0) is 
not involved. Data is copied 
directly from switch into 
memory on P0. 
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Remote Data Access in GA vs MPI 

Message Passing: 

identify size and location of data 
blocks 

loop over processors: 
if (me = P_N) then 

pack data in local message 
buffer 
send block of data to 
message buffer on P0 

else if (me = P0) then 
receive block of data from 
P_N in message buffer 
unpack data from message 
buffer to local buffer 

endif 
end loop 

copy local data on P0 to local buffer 

Global Arrays: 

buf=ga.get(g_a, lo=None, hi=None, buffer=None) 

Global Array 
handle 

Global upper 
and lower 
indices of data 
patch 

Local ndarray 
buffer 

P0 

P1 

P2 

P3 
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Global Arrays (cont.) 

!   Shared data model in context of distributed dense arrays 
!   Much simpler than message-passing for many 

applications 
!   Complete environment for parallel code development 
!   Compatible with MPI 
!   Data locality control similar to distributed memory/

message passing model 
!   Extensible 
!   Scalable 
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Outline of the Tutorial 

!   Parallel Programming Models 
!   Overview of the Global Arrays Programming Model 

!   Downloading, Building GA using configure && make 
!   10 Basic GA Commands 
!   GA Models for Computation 

!   Intermediate GA Programming Concepts and Samples 
!   Advanced GA Programming Concepts and Samples 
!   Global Arrays in NumPy (GAiN) 
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Source Code and More Information 

!   Version 5.0.3 available, trunk to become 5.1 
!   Homepage at http://www.emsl.pnl.gov/docs/global/  
!   Platforms 

!   IBM SP, BlueGene 
!   Cray XT, XE6 (Gemini) 
!   Linux Cluster with Ethernet, Myrinet, Infiniband, or Quadrics 
!   Solaris 
!   Fujitsu 
!   Hitachi 
!   NEC 
!   HP 
!   Windows 
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Writing and Running GA programs 

!   Topics to cover so that we can all start programming! 
!   Installing GA 
!   Writing GA programs  
!   Running GA programs 
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Writing and Running GA programs (cont.) 

!   GA Webpage 
!   http://www.emsl.pnl.gov/docs/global/ 
!   GA papers, APIs, user manual, etc. 
!   Google: Global Arrays 

!   GA API Documentation 
!   GA Webpage, click on “User Interface” 
!   http://www.emsl.pnl.gov/docs/global/userinterface.html 

!   GA Support/Help/Announcements 
!   hpctools@googlegroups.com 
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Global Arrays 
and MPI are 
completely 
interoperable. 
Code can 
contain calls 
to both 
libraries. 

Structure of GA 

MPI 
Global  

operations 

ARMCI 
portable 1-sided communication 

put, get, locks, etc 

distributed arrays layer 
memory management, 

index translation 

system specific interfaces 
LAPI, GM/Myrinet, threads, VIA,.. 

Fortran 77 C C++ Babel 

F90 

Python 

Java Application 
programming 
language interface 

execution layer 
task scheduling, 
load balancing, 
data movement 
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Installing GA 
!   GA 5.0 uses autotools (configure && make && make install) for building 

!   Traditional configure env vars CC, CFLAGS, CPPFLAGS, LIBS, etc 
!   Specify the underlying network communication protocol 

!   Only required on clusters with a high performance network 
!   e.g. Infiniband: configure --with-openib 
!   Best guess: configure --enable-autodetect 

!   GA requires MPI for basic start-up and process management 
!   MPI is the default, searches for MPI compilers e.g. mpicc, mpif90 

!   Various make targets 
!   make to build GA libraries 
!   make install to install libraries 
!   make checkprogs to build C/Fortran tests and examples 
!   make check MPIEXEC=“mpiexec -np 4” to run test suite 

!   VPATH builds: one source tree, many build trees i.e. configurations 
tar –xzf ga-5-0-3.tgz; cd ga-5-0-3 
mkdir bld; cd bld; ../configure; make 
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Installing GA for Python 
!   GA requires MPI for basic start-up and process management 

!   MPI is the default: configure 
!   MPI compilers are searched for by default e.g. mpicc 

!   Need to enable shared libraries: --enable-shared 
!   Build it: make && make python 

!   Installs GA libs/headers, runs setup.py build and install 
!   Python bindings always built from top-level source tree 
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Outline of the Tutorial 

!   Parallel Programming Models 
!   Overview of the Global Arrays Programming Model 

!   Downloading, Building GA using configure && make 
!   10 Basic GA Commands 
!   GA Models for Computation 

!   Intermediate GA Programming Concepts and Samples 
!   Advanced GA Programming Concepts and Samples 
!   Global Arrays in NumPy (GAiN) 
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GA Basic Operations 

!   GA programming model is very simple 
!   Most parallel programs can be written with these basic calls 

!   ga.initialize, ga.terminate() 
!   ga.nnodes(), ga.nodeid() 
!   ga.create(…), ga.destroy(…) 
!   ga.put(…), ga.get(…), ga.acc(…) 
!   ga.sync() 

!   We cover these and more in the next slides 
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GA Initialization/Termination 

!   For Python, there is only import ga 
!   To set maximum limit for GA memory, use 

 ga.set_memory_limit(limit) 
!   For Python, GA termination happens during atexit() 
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Where to Find the Tutorial Code 

!   From the top level GA source directory 
!   ./python/tutorial 

!   Don’t look at the answers! 
!   e.g. matrix.answer.py instead of matrix.py 

!   Some programs serve as a sample, some as a problem 
!   hello.py, hello2.py already work 
!   matrix.py, transpose.py require fixing by you 
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Running First GA Program – Hello World 

!   Requires MPI 
!   Needs a process manager 
!   Also certain collective operations 

!   import ga 
!   C’s GA_Initialize() called 
!   C’s GA_Terminate() registered with atexit() 

!   Single Program, Multiple Data 

# file: hello.py 
import mpi4py.MPI # initialize Message Passing Interface 
import ga # initialize Global Arrays 
print “Hello World!” 

To Run: 
mpiexec –np 4 python tutorial/hello.py 

$ mpiexec -np 4 python hello.py 
Hello World! 
Hello World! 
Hello World! 
Hello World! 
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Parallel Environment - Process Information 
!   Parallel Environment:  

!   how many processes are working together (size) 
!   what their IDs are (ranges from 0 to size-1) 

!   To return the process ID of the current process: 
!   nodeid = ga.nodeid() 

!   To determine the number of computing processes: 
!   nnodes = ga.nnodes() 



SciPy 2011 Tutorial – July 12 32 

Hello World with Process Information 

# file: hello.py 
import mpi4py.MPI # initialize Message Passing Interface 
import ga # initialize Global Arrays 
print “Hello from %s of %s” % (ga.nodeid(),ga.nnodes()) 

To Run: 
mpiexec –np 4 python tutorial/hello2.py 

$ mpiexec -np 4 python hello2.py 
hello from 0 out of 4 
hello from 2 out of 4 
hello from 3 out of 4 
hello from 1 out of 4 
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GA Data Types 
!   C/Python Data types 

!   C_INT   - int 
!   C_LONG  - long 
!   C_LONGLONG  - long long 
!   C_FLOAT  - float 
!   C_DBL   - double 
!   C_SCPL - single complex 
!   C_DCPL - double complex 

!   Fortran Data types (don’t use these for Python) 
!   F_INT  - integer (4/8 bytes) 
!   F_REAL  - real 
!   F_DBL  - double precision 
!   F_SCPL  - single complex 
!   F_DCPL  - double complex 
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Creating Arrays 
To create an array with a regular distribution: 
g_a = ga.create(type, dims, name="", chunk=None,pgroup=-1) 

string  name  - a unique character string   [input] 
integer  type  - GA data type      [input] 
integer  dims()  - array dimensions                        [input] 
integer  chunk() - minimum size that dimensions 

      should be chunked into    [input] 
integer  g_a  - array handle for future references   [output] 

g_a = ga.create(ga.C_DBL, [5000,5000], “Array_A”) 
if not g_a:a 

    ga.error(“Could not create global array A”, g_a) 
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Creating Arrays with Irregular Distributions 
To create an array with an irregular distribution: 
g_a = ga.create_irreg(int gtype, dims, block, map, 
        name="", pgroup=-1) 

string  name   - a unique character string    [input] 
integer  type   - GA datatype      [input] 
integer  dims      - array dimensions     [input] 
integer  nblock(*)  - no. of blocks each dimension is divided into  [input] 
integer  map(*)   - starting index for each block    [input] 
integer  g_a   - integer handle for future references   [output] 
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block = [3,2] 

map = [0,2,6,0,5] 

g_a = ga.create_irreg(ga.C_DBL, [8,10], “Array A”, block, map) 
if not g_a: 

    ga.error(“Could not create global array A”,g_a) 

Irregular Distributions Explained 
!   Example of irregular distribution: 

!   The distribution is specified as a Cartesian product of 
distributions for each dimension. The array indices start 
at 0.  
!   The figure demonstrates distribution of an 8x10 array 

on 6 (or more) processors 
!   block=[3,2] 
!  map = [0,2,6,0,5]; len(map) = 5 

!   The distribution is nonuniform because, P1 and P4 
get 20 elements each and processors P0,P2,P3, and 
P5 only 10 elements each.  

2 P5 P2 

4 P4 P1 

2 P3 P0 
5 5 
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Duplicating and Destroying Arrays 
To duplicate an array: 
g_b = ga.duplicate(g_a, name=“”) 
Creates a new array by applying all properties of given array 

to the new array. 

Global arrays can be destroyed by calling the function: 
ga.destroy(g_a) 

g_a = ga_create(ga.C_INT, [200,300]) 

g_b = ga_duplicate(g_a) 

ga.destroy(g_a) 
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Put/Get 
Put copies data from a local array to a global array section: 
ga.put(g_a, buffer, lo=None, hi=None) 
integer    g_a  global array handle   [input] 
integer    lo(),hi()  limits on data block to be moved [input] 
double/complex/integer  buf  local buffer    [input] 

Get copies data from a global array section to a local array: 
buffer = ga.get(g_a, lo=None, hi=None, buffer=None) 

integer    g_a  global array handle   [input] 
integer    lo(),hi()  limits on data block to be moved [input] 
double/complex/integer  buf  local buffer    [output] 
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Put/Get (cont.) 

!   Example of put operation: 
!   local buffer must be either 1D 

contiguous or same shape as lo/hi 
patch 

!   Here: local array sliced to 9x9 
patch, put to 18x12 global array 

buf = numpy.arange(15*15).reshape(15,15) 

ga.put(g_a, buf[:9,:9], (9,0), (18,9)) 

lo 

hi 

global 

local 
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Sync 

!   Sync is a collective operation 
!   It acts as a barrier, which synchronizes all the processes 

and ensures that all the Global Array operations are 
complete at the call 

!   ga.sync()  

sync 
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Locality Information 

Discover array elements held by each processor 
lo,hi = ga.distribution(g_a, proc=-1) 

integer  g_a  array handle  [input] 
integer  proc  processor ID  [input] 
integer  lo(ndim) lower index  [output] 
integer  hi(ndim) upper index  [output] 

Follows Python half-open convention – lo is inclusive, hi is exclusive 

def print_distribution(g_a): 
    for i in range(ga.nnodes()): 
        print “Printing g_a info for processor”, i 
        lo,hi = ga.distribution(g_a, i) 
        print “%s lo=%s hi=%s” % (i,lo,hi) 
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Example: 1-D Transpose (transp1D.py) 

You now know enough for your first real application! 
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Example: Matrix Multiply (matrix.py) 

local buffers on the 
processor 

global arrays 
representing 
matrices 

• 

• 

= 

= 

nga_get!nga_put!

dgemm!

You now know enough for your second real application! 
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Outline of the Tutorial 

!   Parallel Programming Models 
!   Overview of the Global Arrays Programming Model 

!   Downloading and Building GA using configure && make 
!   10 Basic GA Commands 
!   GA Models for Computation 

!   Intermediate GA Programming Concepts and Samples 
!   Advanced GA Programming Concepts and Samples 
!   Global Arrays in NumPy (GAiN) 
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GA Model of Computations: Get/Put 

local memory 

Shared Object 

copy to local m
em

ory 

get 
compute/update 

local memory 

Shared Object 

 c
op

y 
to

 sh
ar

ed
 o

bj
ec

t 

local memory 

put 

!   Shared memory view for distributed dense arrays 
!   Get-Local/Compute/Put-Global model of computation 
!   MPI-Compatible 
!   Data locality and granularity control similar to message passing model 
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GA Model of Computations: Access/Release 

local memory 

Shared Object 

access local m
em

ory 

access 
compute/update 

local memory 

Shared Object 

local memory 

release 

!   Access-Local/Compute/Release-Global model of computation 
!   No communication! 
!   Be aware that other processes may be trying to get/put the same data 
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Data Locality in GA 

What data does a processor own? 

 lo,hi = ga.distribution(g_a, iproc=-1) 

Where is the data? 

 data = ga.access(g_a, lo=None, hi=None, proc=-1) 

Use this information to organize calculation so that 
maximum use is made of locally held data 



SciPy 2011 Tutorial – July 12 48 

Data Locality in GA (cont.) 
!   Global Arrays support abstraction of a distributed array object 
!   Object is represented by an integer handle 
!   A process can access its portion of the data in the global array 
!   To do this, the following steps need to be taken: 

!   Find the distribution of an array, i.e. which part of the data the 
calling process owns  

!   Access the data  
!   Operate on the data: read/write  
!   Release the access to the data  

0 1 

3 4 
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Locality Information 

!   To determine the process ID that owns the element 
defined by the array subscripts: 
proc = ga.locate(g_a, subscript) 

integer  g_a   array handle   [input] 
Integer  subscript(ndim)  element subscript  [input] 
integer  owner   process id   [output] 

0 4 8 

1 5 9 

2 6 10 

3 7 11 

owner=5 
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Locality Information (cont.) 
!   To return a list of process IDs that own the patch: 

map,procs = ga.locate_region(g_a, lo, hi) 

integer  np  - number of processors that own a portion of block  [output] 
integer  g_a  - global array handle    [input] 
integer  ndim  - number of dimensions of the global array 
integer  lo(ndim)  - array of starting indices for array section  [input] 
integer  hi(ndim)  - array of ending indices for array section  [input] 
integer  map(2*ndim,*)- array with mapping information   [output] 
integer  procs(np)  - list of processes that own a part of array section  [output] 

0 4 8 

1 5 9 

2 6 10 

3 7 11 

procs = {0,1,2,4,5,6} 
map = {lo01,lo02,hi01,hi02, 
       lo11,lo12,hi11,hi12, 
       lo21,lo22’hi21,hi22, 
       lo41,lo42,hi41,hi42, 
       lo51,lo52,hi51,hi52’ 
       lo61’lo62,hi61,hi62} 
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Access and Release 
To provide direct access to local data in the specified patch of the array 

owned by the calling process: 
buffer = ga.access(g_a, lo=None, hi=None, proc=-1) 
Processes can access the local position of the global array 

!   Process “0” can access the specified patch of its local 
position of the array 

!   Avoids memory copy 
!   Defaults to entire local array 
!   Returns None if no local data 

If not modified: 
ga.release(g_a, lo=None, hi=None) 
If modified:  
ga.release_update(g_a, lo=None, hi=None) 

0 1 2 

3 4 5 

6 7 8 

Access: 
gives an 

ndarray to 
this local 

patch 
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Example: 1-D Transpose (transp1D.py) 

Can you do this again but use ga.access() somewhere? 
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Example: Matrix Multiply (matrix.py) 

local buffers on the 
processor 

global arrays 
representing 
matrices 

• 

• 

= 

= 

nga_get!nga_put!

dgemm!

Can you do this again but use ga.access() somewhere? 
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global 

local 

Atomic Accumulate 

Accumulate combines the data from the local array with data in the 
global array section:  

ga.acc(g_a, buffer, lo=None, hi=None, alpha=None) 

integer  g_a array handle     [input] 
integer  lo(), hi() limits on data block to be moved  [input] 
double/complex/int  buffer  local buffer   [input] 
double/complex/int  alpha  arbitrary scale factor  [input] 

g_a(i,j) = g_a(i,j)+alpha*buf(k,l) 
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Global Operations 

buffer = ga.brdcst(buffer, root) 
Sends vector from root process to all other processes. 

buffer = ga.gop(x, op) 
Combines buffers from all processes using “op”. 
Op can be “+”, “*”, “max”, “min”, “absmax”, “absmin” 
Alternatively: 
ga.gop_add(…), ga.gop_multiply(…), ga.gop_max(…), 
ga.gop_min(…), ga.gop_absmax(…), ga.gop_absmin(…) 
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Basic Array Operations 

!   Whole Arrays or Array Patches: 
!   To set all the elements in the array to zero: 

!   ga.zero(g_a, lo=None, hi=None) 
!   To assign a single value to all the elements in array: 

!   ga.fill(g_a, val, lo=None, hi=None) 
!   To scale all the elements in the array by factor val: 

!   ga.scale(g_a, val, lo=None, hi=None) 
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Example: Calculating PI (pi.py) 

You know enough of the API to try the next example! 
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Outline of the Tutorial 

!   Parallel Programming Models 
!   Overview of the Global Arrays Programming Model 
!   Intermediate GA Programming Concepts and Samples 
!   Advanced GA Programming Concepts and Samples 
!   Global Arrays in NumPy (GAiN) 
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Copy 
!   Whole Arrays: 

!   To copy data between two arrays: 
!   ga.copy(g_a, g_b) 

!   Arrays must be same size and dimension 
!   Distribution may be different 
!   See “copy.py” for sample g_a = ga.create(ga.C_INT, [4,25], 

 chunk=[4,-1]) 

g_b = ga.create(ga.C_INT, [4,25], 
 chunk=[-1,25]) 

# fill GA’s with values 

ga.copy(g_a, g_b) 

0 1 2 

3 4 5 

6 7 8 

“g_a” 

0 1 2 

3 4 5 

6 7 8 

“g_b” 

Global Arrays g_a and g_b distributed on a 3x3 process grid 
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Copy Patches 
!   Patch Operations: 

!   The copy patch operation: 
!   ga.copy(g_a, g_b, 
   alo=None, ahi=None, 
   blo=None, bhi=None, trans=False) 

!   Number of elements must match 

0 1 2 

3 4 5 

6 7 8 

“g_a” 

0 1 2 

3 4 5 

6 7 8 

“g_b” 
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Scatter/Gather 

!   Scatter puts array elements into a global array:  
!   ga.scatter(g_a, values, subsarray) 

!   Scatter accumulate puts array elements into a global array:  
!   ga.scatter_acc(g_a, values, subsarray, alpha=None) 

!   Gather gets the array elements from a global array into a local array:  
!   values = ga.gather(g_a, subsarray, values=None) 

integer   g_a  array handle    [input] 
double/comple/int values  array of values    [input/output] 
integer   n  number of values   [input] 
integer   subsarray  coordinates within global array  [input] 

“values” is a 1D vector 
“subsarray” can be either 2D of shape=(N,ndim) or flattened 1D version thereof 
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Scatter/Gather (cont.) 

0 1 2 3 4 5 6 7 8 9 
0 
1 
2 5 
3 3 7 
4 
5 
6 2 
7 
8 8 
9 

!   Example of scatter operation:  
!   Scatter the 5 elements into a 10x10 global array  

!   Element 1  v[0] = 5  subsArray[0][0] = 2 
   subsArray[0][1] = 3 

!   Element 2  v[1] = 3  subsArray[1][0] = 3 
   subsArray[1][1] = 4 

!   Element 3  v[2] = 8  subsArray[2][0] = 8 
   subsArray[2][1] = 5 

!   Element 4  v[3] = 7  subsArray[3][0] = 3 
   subsArray[3][1] = 7 

!   Element 5  v[4] = 2  subsArray[4][0] = 6 
   subsArray[4][1] = 3 

!   After the scatter operation, the five elements 
would be scattered into the global array as shown 
in the figure.  
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Read and Increment 
!   Read_inc remotely updates a particular element in an integer global 

array and returns the original value: 
!   val = ga.read_inc(g_a, subscript, inc=1) 
!   Applies to integer arrays only 
!   Can be used as a global counter for dynamic load balancing 

integer  g_a     [input] 
integer  subscript(ndim), inc   [input] 

    

# Create task counter 
g_counter = ga.create(ga.C_INT, [1]) 
ga.zero(g_counter) 
: 
itask = ga.read_inc(g_counter, [0]) 
# ... Translate itask into task … 

Global Lock 
(access to data  

is serialized) 

NGA_Read_inc 
(Read and Increment) 

Global Array 



SciPy 2011 Tutorial – July 12 64 

Outline of the Tutorial 

!   Parallel Programming Models 
!   Overview of the Global Arrays Programming Model 
!   Intermediate GA Programming Concepts and Samples 
!   Advanced GA Programming Concepts and Samples 
!   Global Arrays in NumPy (GAiN) 
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Non-blocking Operations 
!   The non-blocking APIs are derived from the blocking interface by adding a 

handle argument that identifies an instance of the non-blocking request. 
!   handle = ga.nbput(g_a, buffer, lo=None, hi=None) 

!   buffer,handle = ga.nbget(g_a, lo=None, hi=None, 
numpy.ndarray buffer=None) 

!   handle = ga.nbacc(g_a, buffer, lo=None, hi=None, 
alpha=None) 

!   ga.nbwait(handle) 
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Matrix Multiply (a better version) 

local buffers on the 
processor 

more scalable! 
(less memory, 
higher parallelism) • 

• 

= 

= 

get atomic accumulate 

dgemm 
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SRUMMA Matrix Multiplication 

A B C=A.B 

Computation  

Comm. 
(Overlap) 

patch matrix multiplication 

= 
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SRUMMA Matrix Multiplication: 
Improvement over PBLAS/ScaLAPACK 
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Example: SRUMMA Matrix Multiplication 

A B C=A.B 

Computation  

Comm. 
(Overlap) 

patch matrix multiplication 

= 

Alright, give the next example a try: srumma.py 
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Example: SRUMMA Using ga.read_inc() 

A B C=A.B 

Computation  

Comm. 
(Overlap) 

patch matrix multiplication 

= 

Can you modify srumma.py to use ga.read_inc()? 
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Cluster Information 
!   Example:  
!   2 nodes with 4 processors each. Say, there are 7 

processes created.  
!   ga.cluster_nnodes returns 2 
!   ga.cluster_nodeid returns 0 or 1 
!   ga.cluster_nprocs(inode) returns 4 or 3 
!   ga.cluster_procid(inode,iproc) returns a processor ID 
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Cluster Information (cont.) 
!   To return the total number of nodes that the program is running 

on: 
!   nnodes = ga.cluster_nnodes() 

!   To return the node ID of the process: 
!   nodeid = ga.cluster_nodeid() 

N0 N1 
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Cluster Information (cont.) 
!   To return the number of processors available on node inode: 

!   nprocs = ga.cluster_nprocs(inode) 
!   To return the processor ID associated with node inode and the 

local processor ID iproc: 
!   procid = ga.cluster_procid(inode, iproc) 

0(0) 1(1) 

2(2) 3(3) 

4(0) 5(1) 

6(2) 7(3) 
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Accessing Processor Memory 
Node 

R8 R9 R10 R11 

P8 P9 P10 P11 

SMP Memory 

if ga.nodeid() == 8: 
    ga.access(g_a, proc=10) 
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Example: access.py 
Node 

R
8 

R
9 

R
10 

R
11 

P8 P9 P10 P11 

Using the cluster functions, have 
the master (zeroth) process on 
each cluster to sum the values of a 
global array. 

!   Example:  
!   2 nodes with 4 processors each. Say, there are 7 

processes created.  
!   ga.cluster_nnodes returns 2 
!   ga.cluster_nodeid returns 0 or 1 
!   ga.cluster_nprocs(inode) returns 4 or 3 
!   ga.cluster_procid(inode,iproc) returns a 

processor ID 
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Processor Groups 

world group 

group A group B 

group C 
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Processor Groups 
!   To create a new processor group: 

!   pgroup = ga.pgroup_create(list) 
!   To assign a processor groups: 

!   g_a = ga.create(type, dims, name, chunk, pgroup=-1) 
!   To set the default processor group 

!   ga.pgroup_set_default(p_handle) 
!   To access information about the processor group: 

!   nnodes = ga.pgroup_nnodes(p_handle) 
!   nodeid = ga.pgroup_nodeid(p_handle) 

integer  g_a   - global array handle   [input] 
integer  p_handle  - processor group handle   [output] 
integer  list(size)  - list of processor IDs in group  [input] 
integer  size   - number of processors in group  [input] 
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Processor Groups (cont.) 
!   To determine the handle for a standard group at any point 

in the program: 
!   p_handle = ga.pgroup_get_default() 
!   p_handle = ga.pgroup_get_mirror() 
!   p_handle = ga.pgroup_get_world() 
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Default Processor Group 

# create subgroup p_a, run a parallel task 
p_a = ga.pgroup_create(list) 
ga.pgroup_set_default(p_a) 
parallel_task() 
ga.pgroup_set_default(ga.pgroup_get_world()) 

def parallel_task(): 
    p_b = ga.pgroup_create(new_list) 
    ga.pgroup_set_default(p_b) 
    parallel_subtask() 

Take a shot at groups.py! 
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Creating Arrays with Ghost Cells 

!   To create arrays with ghost cells: 
!   For arrays with regular distribution: 
g_a = ga.create_ghosts(type, dims, width,      

name=“”, chunk=None, pgroup=-1) 
!   For arrays with irregular distribution: 
g_a = ga.create_ghosts_irreg(type, dims, width, 

block, map, name=“”, pgroup=-1) 

 integer width(ndim) - iterable of ghost cell widths  [input] 

Code 
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Ghost Cells 

normal global array 
global array with ghost cells 

Operations: 

 ga.create_ghosts   - creates array with ghosts cells 
 ga.update_ghosts   - updates with data from adjacent processors 
 ga.access_ghosts   - provides access to “local” ghost cell elements 
 ga.nbget_ghost_dir   - nonblocking call to update ghosts cells 
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Ghost Cell Update 

Automatically update ghost 
cells with appropriate data 
from neighboring 
processors. A multiprotocol 
implementation has been 
used to optimize the 
update operation to match 
platform characteristics. 
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Periodic Interfaces 
!   Periodic interfaces to the one-sided operations 

have been added to Global Arrays in version 3.1 
to support computational fluid dynamics 
problems on multidimensional grids. 

!   They provide an index translation layer that 
allows users to request blocks using put, get, 
and accumulate operations that possibly extend 
beyond the boundaries of a global array.  

!   The references that are outside of the 
boundaries are wrapped around inside the 
global array. 

!   Current version of GA supports three periodic 
operations: 
!   periodic get  
!   periodic put 
!   periodic acc  

ga.periodic_get(g_a,lo=None,hi=None,buf=None) 

global 

local 
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Periodic Get/Put/Accumulate 
!   ndarray = ga.periodic_get(g_a, lo=None, hi=None, buffer=None)  

!   ga.periodic_put(g_a, buffer, lo=None, hi=None) 

!   ga.periodic_acc(g_a, buffer, lo=None, hi=None, alpha=None) 
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Lock and Mutex 
!   Lock works together with mutex. 
!   Simple synchronization mechanism to protect a critical 

section 
!   To enter a critical section, typically, one needs to: 

!   Create mutexes 
!   Lock on a mutex 
!   Do the exclusive operation in the critical section 
!   Unlock the mutex 
!   Destroy mutexes  

!   The create mutex function is: 
!   bool ga.create_mutexes(number) 

number  - number of mutexes in mutex array  [input]  
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Lock and Mutex (cont.) 

Lock Unlock 
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Lock and Mutex (cont.) 
!   The destroy mutex functions are: 

!   bool ga.destroy_mutexes() 
!   The lock and unlock functions are: 

!   ga.lock(mutex) 
!   ga.unlock(mutex) 

integer  mutex   [input]  ! mutex id 
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Fence 
!   Fence blocks the calling process until all the data transfers corresponding to 

the Global Array operations initiated by this process complete 
!   For example, since ga.put() might return before the data reaches final 

destination, ga.init_fence() and ga.fence() allow process to wait 
until the data transfer is fully completed 
ga_init_fence() 

ga_put(g_a, ...) 

ga_fence() 
!   The initialize fence function is:  

!   ga.init_fence() 
!   The fence function is:  

!   ga.fence() 
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Synchronization Control in Collective 
Operations  
!   To eliminate redundant synchronization points: 

ga.mask_sync(prior_sync_mask, post_sync_mask) 

logical  first  - mask (0/1) for prior internal synchronization [input] 
logical  last  - mask (0/1) for post internal synchronization [input] 

ga.mask_sync(False,True) 
ga.duplicate(g_a, g_b) 
ga.zero(g_b) 

duplicate 

sync 

sync 

zero 

sync 

sync 

duplicate 

sync 

zero 

sync 

sync 
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Linear Algebra 
!   To add two arrays: 

ga.add(g_a, g_b, g_c, alpha=None, beta=None, 
   alo=None, ahi=None, blo=None, bhi=None, 
   clo=None, chi=None) 

!   To multiply arrays: 
gemm(ta, tb, m, n, k, alpha, g_a, g_b, beta, g_c) 

integer    g_a, g_b, g_c  - array handles   [input] 
float/complex/int   alpha   - scale factor   [input] 
float/complex/int   beta   - scale factor   [input] 
bool     transa, transb    [input] 
integer     m, n, k      [input] 
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Linear Algebra (cont.) 
!   To compute the element-wise dot product of two arrays: 

!   Python has only one function: ga.dot(g_a, g_b) 
!   This is not NumPy’s dot i.e. not matrix multiply 

ga.dot(g_a, g_b, 
 alo=None, ahi=None, 
 blo=None, bhi=None, 
 ta=False, tb=False) 
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Linear Algebra (cont.) 

!   To symmetrize a matrix: 
ga.symmetrize(g_a) 

!   To transpose a matrix: 
ga.transpose(g_a, g_b) 
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Linear Algebra – Array Patches (cont.) 
!   To perform matrix multiplication: 

ga.matmul_patch(transa, transb, 
     alpha, beta,  
     g_a, ailo, aihi, ajlo, ajhi, 

     g_b, bilo, bihi, bjlo, bjhi, 
     g_c, cilo, cihi, cjlo, cjhi) 

integer   g_a, ailo, aihi, ajlo, ajhi  patch of g_a  [input] 
integer   g_b, bilo, bihi, bjlo, bjhi  patch of g_b  [input] 
integer   g_c, cilo, cihi, cjlo, cjhi  patch of g_c  [input] 
dbl prec/comp  alpha, beta    scale factors  [input] 
character*1   transa, transb   transpose flags  [input] 
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Block-Cyclic Data Distributions 

Normal Data Distribution Block-Cyclic Data Distribution 
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Block-Cyclic Data (cont.) 

0,0 0,1 
1,0 1,1 

0 6 12 18 24 30 
1 7 13 19 25 31 
2 8 14 20 26 32 
3 9 15 21 27 33 
4 10 16 22 28 34 
5 11 17 23 29 35 

Simple Distribution Scalapack Distribution 

0 1 0 1 0 1 
0 
1 

0 
1 
0 
1 



SciPy 2011 Tutorial – July 12 96 

Block-Cyclic Data (cont.) 

!   Most operations work exactly the same, data distribution 
is transparent to the user 

!   Some operations (matrix multiplication, non-blocking put, 
get) not implemented 

!   Additional operations added to provide access to data 
associated with particular sub-blocks 

!   You need to use the new interface for creating Global 
Arrays to get create block-cyclic data distributions 
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New Interface for Creating Arrays 

handle = ga.create_handle() 
ga.set_data(g_a, dims, type) 
ga.set_array_name(g_a, name) 
ga.set_chunk(g_a, chunk) 
ga.set_irreg_distr (g_a, map, nblock) 
ga.set_ghosts(g_a, width) 
ga.set_block_cyclic(g_a, dims) 
ga.set_block_cyclic_proc_grid(g_a, dims, proc_grid) 
bool ga.allocate(int g_a) 
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Creating Block-Cyclic Arrays 
!   Must use new API for creating Global Arrays 

ga.set_block_cyclic(g_a, dims) 
ga.set_block_cyclic_proc_grid(g_a, block, proc_grid) 

integer dims[]   - dimensions of blocks 
integer proc_grid[]  - dimensions of processor grid (note that product of all 

   proc_grid dimensions must equal total number of  
   processors) 
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Block-Cyclic Methods 
!   Methods for accessing data of individual blocks 

num_blocks,block_dims = ga.get_block_info(g_a) 
blocks = ga.total_blocks(g_a) 
ndarray = ga.access_block_segment(g_a, iproc) 
ndarray = ga.access_block(g_a, idx) 
ndarray = ga.access_block_grid(g_a, subscript) 

integer length   - total size of blocks held on processor 
integer idx   - index of block in array (for simple block-cyclic  

    distribution 
integer subscript[]  - location of block in block grid (for Scalapack  

    distribution) 
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Interfaces to Third Party Software Packages 

!   Scalapack 
!   Solve a system of linear equations  
!   Compute the inverse of a double precision matrix  
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Example: ufunc.py 

!   Can you use ga.access() to generically reimplement a 
distributed NumPy unary ufunc? 
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Outline of the Tutorial 

!   Parallel Programming Models 
!   Overview of the Global Arrays Programming Model 
!   Intermediate GA Programming Concepts and Samples 
!   Advanced GA Programming Concepts and Samples 
!   Global Arrays in NumPy (GAiN) 

!   Overview and Using GAiN 
!   Differences with NumPy 
!   Advanced GAiN and GA/GAiN interoperability 



Overview of Global Arrays in NumPy (GAiN) 
!   All documented NumPy functions are collective 

!   GAiN programs run in SPMD fashion 
!   Not all arrays should be distributed 

!   GAiN operations should allow mixed NumPy/GAiN inputs 
!   Reuse as much of NumPy as possible (obviously) 
!   Distributed nature of arrays should be transparent to user 
!   Use owner-computes rule to attempt data locality 

optimizations 

103 



GAiN is Not Complete (yet) 

104 

!   What’s finished: 
!   Ufuncs (all) 
!   ndarray 
!   flatiter 
!   numpy dtypes are reused! 
!   Various array creation and other functions: 

!   zeros, zeros_like, ones, ones_like, empty, empty_like 
!   eye, identity, fromfunction, arange, linspace, logspace 
!   dot, diag, clip, asarray 

!   Everything else doesn’t exist 



How to Use GAiN 
Change one line in your script: 
#import numpy 
import ga.gain as numpy 

Run using the MPI process manager: 
$ mpiexec -np 4 python script.py 

Go ahead and write something using NumPy!  Do you have 
an application already on your computer?  Try to use 
GAiN as shown above. 
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GA/GAiN Interoperability 
!   gain.from_ga(g_a) 

!   Won’t ga.destroy(g_a) when garbage collected 
!   Allows custom data distributions 

!   Block and block cyclic not currently supported by GAiN 



Additional Examples to Try 
1.  Write a NumPy code, run it serially, then convert it to use 

GAiN. 
2.  Use process groups with GAiN. 
3.  Use process groups and ga.read_inc() with GAiN. 
4.  Is GAiN missing something you need??  WRITE IT. 

This is it, folks!  Thank you!! 
jeff.daily@pnnl.gov 
hpctools@googlegroups.com 
http://www.emsl.pnl.gov/docs/global/ 


