High Performance Computing in Python using NumPy and the Global Arrays Toolkit

Jeff Daily¹

P. Saddayappan², Bruce Palmer¹, Manojkumar Krishnan¹, Sriram Krishnamoorthy¹, Abhinav Vishnu¹, Daniel Chavarría¹, Patrick Nichols¹

¹Pacific Northwest National Laboratory
²Ohio State University
Outline of the Tutorial

- Parallel Programming Models
 - Performance vs. Abstraction vs. Generality
 - Distributed Data vs. Shared Memory
 - One-sided communication vs. Message Passing
- Overview of the Global Arrays Programming Model
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAiN)
Parallel Programming Models

- Single Threaded
 - Data Parallel, e.g. HPF

- Multiple Processes
 - Partitioned-Local Data Access
 - MPI
 - Uniform-Global-Shared Data Access
 - OpenMP
 - Partitioned-Global-Shared Data Access
 - Co-Array Fortran
 - Uniform-Global-Shared + Partitioned Data Access
 - UPC, Global Arrays, X10
Parallel Programming Models in Python

- Single Threaded
 - Data Parallel, e.g. HPF

- Multiple Processes
 - Partitioned-Local Data Access
 - MPI (mpi4py)
 - Uniform-Global-Shared Data Access
 - OpenMP (within a C extension – no direct Cython support yet)
 - Partitioned-Global-Shared Data Access
 - Co-Array Fortran
 - Uniform-Global-Shared + Partitioned Data Access
 - UPC, Global Arrays (as of 5.0.x), X10

- Others: PyZMQ, IPython, PiCloud, and more
High Performance Fortran

- Single-threaded view of computation
- Data parallelism and parallel loops
- User-specified data distributions for arrays
- Compiler transforms HPF program to SPMD program
 - Communication optimization critical to performance
- Programmer may not be conscious of communication implications of parallel program

```
HPF$ Independent
DO I = 1,N
  A(I,J) = B(J,I)
END

HPF$ Independent
DO J = 1,N
  A(I,J) = B(I,J)
END
```

```
s=s+1
A(1:100) = B(0:99)+B(2:101)
```

```
HPF$ Independent
DO I = 1,100
  A(I) = B(I-1)+B(I+1)
END Do
```
Message Passing Interface

- Most widely used parallel programming model today
- Bindings for Fortran, C, C++, MATLAB
- P parallel processes, each with local data
 - MPI-1: Send/receive messages for inter-process communication
 - MPI-2: One-sided get/put data access from/to local data at remote process
- Explicit control of all inter-processor communication
 - Advantage: Programmer is conscious of communication overheads and attempts to minimize it
 - Drawback: Program development/debugging is tedious due to the partitioned-local view of the data
OpenMP

- Uniform-Global view of shared data
- Available for Fortran, C, C++
- Work-sharing constructs (parallel loops and sections) and global-shared data view ease program development
- Disadvantage: Data locality issues obscured by programming model
Co-Array Fortran

- Partitioned, but global-shared data view
- SPMD programming model with local and shared variables
- Shared variables have additional co-array dimension(s), mapped to process space; each process can directly access array elements in the space of other processes
 - \(A(I, J) = A(I, J)[me-1] + A(I, J)[me+1] \)
- Compiler optimization of communication critical to performance, but all non-local access is explicit
Unified Parallel C (UPC)

- SPMD programming model with global shared view for arrays as well as pointer-based data structures
- Compiler optimizations critical for controlling inter-processor communication overhead
 - Very challenging problem since local vs. remote access is not explicit in syntax (unlike Co-Array Fortran)
 - Linearization of multidimensional arrays makes compiler optimization of communication very difficult
- Performance study with NAS benchmarks (PPoPP 2005, Mellor-Crummey et. al.) compared CAF and UPC
 - Co-Array Fortran had significantly better scalability
 - Linearization of multi-dimensional arrays in UPC was a significant source of overhead
Global Arrays vs. Other Models

▶ Advantages:
 - Inter-operates with MPI
 - Use more convenient global-shared view for multi-dimensional arrays, but can use MPI model wherever needed
 - Data-locality and granularity control is explicit with GA’s get-compute-put model, unlike the non-transparent communication overheads with other models (except MPI)
 - Library-based approach: does not rely upon smart compiler optimizations to achieve high performance

▶ Disadvantage:
 - Only useable for array data structures
Performance vs. Abstraction and Generality

- Domain Specific Systems
- CAF
- MPI
- OpenMP
- Autoparallelized C/Fortran90

Scalability vs. Abstraction vs. Generality

“Holy Grail”
Performance vs. Abstraction and Generality

- Domain Specific Systems
- GA
- CAF
- GA+Python?
- "Holy Grail"
- GA+Python?
- OpenMP
- Autoparallelized C/Fortran90

Scalability vs. Abstraction-M vs. Generality

SciPy 2011 Tutorial – July 12

Proudly Operated by Battelle Since 1965
Distributed Data vs Shared Memory

- **Distributed Data**
 - Data is explicitly associated with each processor, accessing data requires specifying the location of the data on the processor and the processor itself.
 - Data locality is explicit but data access is complicated. Distributed computing is typically implemented with message passing (e.g. MPI).
 - To copy element from P5 to P0 using MPI
 - P0 posts `comm.recv(obj, 5)`
 - P5 posts `comm.send(buf[27], 5)`
Shared Memory

- Data is in a globally accessible address space, any processor can access data by specifying its location using a global index.
- Data is mapped out in a natural manner (usually corresponding to the original problem) and access is easy. Information on data locality is obscured and leads to loss of performance.
Global Arrays

- Distributed dense arrays that can be accessed through a shared memory-like style
- Single, shared data structure/global indexing
 - e.g., \texttt{ga.get(a, (3, 2))}
 - rather than \texttt{buf[6]} on process 1
One-sided Communication

Message Passing:
Message requires cooperation on both sides. The processor sending the message (P1) and the processor receiving the message (P0) must both participate.

One-sided Communication:
Once message is initiated on sending processor (P1) the sending processor can continue computation. Receiving processor (P0) is not involved. Data is copied directly from switch into memory on P0.
Remote Data Access in GA vs MPI

Message Passing:

identify size and location of data blocks

loop over processors:
 if (me = P_N) then
 pack data in local message buffer
 send block of data to message buffer on P0
 else if (me = P0) then
 receive block of data from P_N in message buffer
 unpack data from message buffer to local buffer
 endif
end loop

copy local data on P0 to local buffer

Global Arrays:

buf=ga.get(g_a, lo=None, hi=None, buffer=None)

Global Array handle
Global upper and lower indices of data patch
Local ndarray buffer

P0
P1
P2
P3
Global Arrays (cont.)

- Shared data model in context of distributed dense arrays
- **Much** simpler than message-passing for many applications
- Complete environment for parallel code development
- Compatible with MPI
- Data locality control similar to distributed memory/message passing model
- Extensible
- Scalable
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
 - Downloading, Building GA using `configure && make`
 - 10 Basic GA Commands
 - GA Models for Computation
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAiN)
Source Code and More Information

- Version 5.0.3 available, trunk to become 5.1
- Homepage at http://www.emsl.pnl.gov/docs/global/
- Platforms
 - IBM SP, BlueGene
 - Cray XT, XE6 (Gemini)
 - Linux Cluster with Ethernet, Myrinet, Infiniband, or Quadrics
 - Solaris
 - Fujitsu
 - Hitachi
 - NEC
 - HP
 - Windows
Writing and Running GA programs

- Topics to cover so that we can all start programming!
 - Installing GA
 - Writing GA programs
 - Running GA programs
Writing and Running GA programs (cont.)

- **GA Webpage**
 - http://www.emsl.pnl.gov/docs/global/
 - GA papers, APIs, user manual, etc.
 - Google: Global Arrays

- **GA API Documentation**
 - GA Webpage, click on “User Interface”
 - http://www.emsl.pnl.gov/docs/global/userinterface.html

- **GA Support/Help/Announcements**
 - hpctools@googlegroups.com
Global Arrays and MPI are completely interoperable. Code can contain calls to both libraries.

- **Application programming language interface**
 - Fortran 77
 - C
 - C++
 - Python
 - Babel

- **distributed arrays layer**
 - memory management
 - index translation

- **execution layer**
 - task scheduling
 - load balancing
 - data movement

- **Global operations**
 - Portable 1-sided communication
 - put, get, locks, etc

- **system specific interfaces**
 - LAPI, GM/Myrinet, threads, VIA,..
Installing GA

► GA 5.0 uses autotools (configure && make && make install) for building
 ■ Traditional configure env vars CC, CFLAGS, CPPFLAGS, LIBS, etc
 ■ Specify the underlying network communication protocol
 ● Only required on clusters with a high performance network
 ● e.g. Infiniband: configure --with-openib
 ● Best guess: configure --enable-autodetect
 ■ GA requires MPI for basic start-up and process management
 ● MPI is the default, searches for MPI compilers e.g. mpicc, mpif90

► Various make targets
 ■ make to build GA libraries
 ■ make install to install libraries
 ■ make checkprogs to build C/Fortran tests and examples
 ■ make check MPIEXEC=“mpiexec -np 4” to run test suite

► VPATH builds: one source tree, many build trees i.e. configurations
 tar -xzf ga-5-0-3.tgz; cd ga-5-0-3
 mkdir bld; cd bld; ..;/configure; make
Installing GA for Python

- GA requires MPI for basic start-up and process management
 - MPI is the default: `configure`
 - MPI compilers are searched for by default e.g. `mpicc`
- Need to enable shared libraries: `--enable-shared`
- **Build it:** `make && make python`
 - Installs GA libs/headers, runs `setup.py build` and install
- Python bindings always built from top-level source tree
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
 - Downloading, Building GA using `configure && make`
 - 10 Basic GA Commands
 - GA Models for Computation
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAiN)
GA Basic Operations

- GA programming model is very simple
- Most parallel programs can be written with these basic calls
 - `ga.initialize`, `ga.terminate`
 - `ga.nnodes`, `ga.nodeid`
 - `ga.create(...)`, `ga.destroy(...)`
 - `ga.put(...)`, `ga.get(...)`, `ga.acc(...)`
 - `ga.sync`
- We cover these and more in the next slides
GA Initialization/Termination

- For Python, there is only `import ga`
- To set maximum limit for GA memory, use `ga.set_memory_limit(limit)`
- For Python, GA termination happens during `atexit()`
Where to Find the Tutorial Code

- From the top level GA source directory
 - ./python/tutorial
- Don’t look at the answers!
 - e.g. matrix.answer.py instead of matrix.py
- Some programs serve as a sample, some as a problem
 - hello.py, hello2.py already work
 - matrix.py, transpose.py require fixing by you
Running First GA Program – Hello World

- Requires MPI
 - Needs a process manager
 - Also certain collective operations

- import ga
 - C’s GA_Initialize() called
 - C’s GA_Terminate() registered with atexit()

- Single Program, Multiple Data

```python
# file: hello.py
import mpi4py.MPI # initialize Message Passing Interface
import ga # initialize Global Arrays
print “Hello World!”
```

To Run:

```bash
mpiexec -np 4 python tutorial/hello.py
```

```
Hello World!
Hello World!
Hello World!
Hello World!
```
Parallel Environment - Process Information

- **Parallel Environment:**
 - how many processes are working together \((\text{size})\)
 - what their IDs are (ranges from 0 to \(\text{size}-1\))

- To return the process ID of the current process:
 - \(\text{nodeid} = \text{ga.nodeid}()\)

- To determine the number of computing processes:
 - \(\text{nnodes} = \text{ga.nnodes}()\)
Hello World with Process Information

$ mpiexec -np 4 python hello2.py
hello from 0 out of 4
hello from 2 out of 4
hello from 3 out of 4
hello from 1 out of 4

file: hello.py
import mpi4py.MPI # initialize Message Passing Interface
import ga # initialize Global Arrays
print "Hello from %s of %s" % (ga.nodeid(), ga.nnodes())

To Run:
mpiexec -np 4 python tutorial/hello2.py
GA Data Types

► C/Python Data types
 ■ C_INT - int
 ■ C_LONG - long
 ■ C_LONGLONG - long long
 ■ C_FLOAT - float
 ■ C_DBL - double
 ■ C_SCPL - single complex
 ■ C_DCPL - double complex

► Fortran Data types (don’t use these for Python)
 ■ F_INT - integer (4/8 bytes)
 ■ F_REAL - real
 ■ F_DBL - double precision
 ■ F_SCPL - single complex
 ■ F_DCPL - double complex
Creating Arrays

To *create* an array with a regular distribution:

```py
g_a = ga.create(type, dims, name="", chunk=None, pgroup=-1)
```

- **string** name - a unique character string [input]
- **integer** type - GA data type [input]
- **integer** dims() - array dimensions [input]
- **integer** chunk() - minimum size that dimensions should be chunked into [input]
- **integer** g_a - array handle for future references [output]

```py
g_a = ga.create(ga.C_DBL, [5000,5000], "Array_A")
if not g_a:
    ga.error("Could not create global array A", g_a)
```
Creating Arrays with Irregular Distributions

To *create* an array with an irregular distribution:

\[g_a = ga.create_irreg(int \text{ gtype}, \text{ dims}, \text{ block}, \text{ map}, \text{ name}="", \text{ pgroup}=-1) \]

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>name - a unique character string</td>
<td>name</td>
</tr>
<tr>
<td>integer</td>
<td>type - GA datatype</td>
<td>type</td>
</tr>
<tr>
<td>integer</td>
<td>dims - array dimensions</td>
<td>dims</td>
</tr>
<tr>
<td>integer</td>
<td>nblock(*) - no. of blocks each dimension is divided into</td>
<td>nblock</td>
</tr>
<tr>
<td>integer</td>
<td>map(*) - starting index for each block</td>
<td>map</td>
</tr>
<tr>
<td>integer</td>
<td>g_a - integer handle for future references</td>
<td>g_a</td>
</tr>
</tbody>
</table>

![Grid Diagram](Image)
Irregular Distributions Explained

Example of irregular distribution:

- The distribution is specified as a Cartesian product of distributions for each dimension. The array indices start at 0.

- The figure demonstrates distribution of an 8x10 array on 6 (or more) processors
 - `block=[3,2]`
 - `map = [0,2,6,0,5]; len(map) = 5`

- The distribution is nonuniform because, P1 and P4 get 20 elements each and processors P0,P2,P3, and P5 only 10 elements each.

```
block = [3,2]
map = [0,2,6,0,5]
g_a = ga.create_irreg(ga.C_DBL, [8,10], "Array A", block, map)
if not g_a:
    ga.error("Could not create global array A", g_a)
```
Duplicating and Destroying Arrays

To *duplicate* an array:

\[
g_b = \text{ga.duplicate}(g_a, \text{name}="")
\]

Creates a new array by applying all properties of given array to the new array.

Global arrays can be *destroyed* by calling the function:

\[
\text{ga.destroy}(g_a)
\]

```python
g_a = \text{ga.create}(\text{ga.C_INT, [200,300]})
g_b = \text{ga.duplicate}(g_a)
\text{ga.destroy}(g_a)
```
Put/Get

Put copies data from a local array to a global array section:

\[
g_a\text{.put}(g_a, \text{buffer}, \text{lo}=\text{None}, \text{hi}=\text{None})
\]

- integer `g_a` — global array handle [input]
- integer `lo`, `hi` — limits on data block to be moved [input]
- double/complex/integer `buf` — local buffer [input]

Get copies data from a global array section to a local array:

\[
\text{buffer} = g_a\text{.get}(g_a, \text{lo}=\text{None}, \text{hi}=\text{None}, \text{buffer}=\text{None})
\]

- integer `g_a` — global array handle [input]
- integer `lo`, `hi` — limits on data block to be moved [input]
- double/complex/integer `buf` — local buffer [output]
Example of *put* operation:

- local buffer must be either 1D contiguous or same shape as lo/hi patch
- Here: local array sliced to 9x9 patch, put to 18x12 global array

```python
buf = numpy.arange(15*15).reshape(15,15)
ga.put(g_a, buf[:9,:9], (9,0), (18,9))
```
Sync

- **Sync** is a collective operation
- It acts as a barrier, which synchronizes all the processes and ensures that all the Global Array operations are complete at the call
- `ga.sync()`
Locality Information

Discover array elements held by each processor
lo, hi = ga.distribution(g_a, proc=-1)

integer g_a array handle [input]
integer proc processor ID [input]
integer lo(ndim) lower index [output]
integer hi(ndim) upper index [output]

Follows Python half-open convention – lo is inclusive, hi is exclusive

```python
def print_distribution(g_a):
    for i in range(ga.nnodes()):
        print "Printing g_a info for processor", i
        lo, hi = ga.distribution(g_a, i)
        print "%s lo=%s hi=%s" % (i, lo, hi)
```
Example: 1-D Transpose (transp1D.py)

You now know enough for your first *real* application!
Example: Matrix Multiply (matrix.py)

You now know enough for your second *real* application!
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
 - Downloading and Building GA using `configure && make`
 - 10 Basic GA Commands
 - GA Models for Computation
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAIaN)
GA Model of Computations: Get/Put

- Shared memory view for distributed dense arrays
- Get-Local/Compute/Put-Global model of computation
- MPI-Compatible
- Data locality and granularity control similar to message passing model
Access-Local/Compute/Release-Global model of computation

No communication!

Be aware that other processes may be trying to get/put the same data
Data Locality in GA

What data does a processor own?

\[\text{lo, hi} = \text{ga.distribution}(g_a, \text{iproc}=-1) \]

Where is the data?

\[\text{data} = \text{ga.access}(g_a, \text{lo}=\text{None}, \text{hi}=\text{None}, \text{proc}=-1) \]

Use this information to organize calculation so that maximum use is made of locally held data
Data Locality in GA (cont.)

- Global Arrays support abstraction of a distributed array object
- Object is represented by an integer handle
- A process can access its portion of the data in the global array
- To do this, the following steps need to be taken:
 - Find the distribution of an array, i.e. which part of the data the calling process owns
 - Access the data
 - Operate on the data: read/write
 - Release the access to the data
Locality Information

To determine the process ID that owns the element defined by the array subscripts:

```python
gp = ga.locate(g_a, subscript)
```

<table>
<thead>
<tr>
<th>integer</th>
<th>g_a</th>
<th>array handle</th>
<th>[input]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>subscript(ndim)</td>
<td>element subscript</td>
<td>[input]</td>
</tr>
<tr>
<td>integer</td>
<td>owner</td>
<td>process id</td>
<td>[output]</td>
</tr>
</tbody>
</table>

```

owner=5
```
Locality Information (cont.)

To return a list of process IDs that own the patch:

```python
map, procs = ga.locate_region(g_a, lo, hi)
```

<table>
<thead>
<tr>
<th>np</th>
<th>Number of processors that own a portion of block</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_a</td>
<td>Global array handle</td>
<td>Input</td>
</tr>
<tr>
<td>ndim</td>
<td>Number of dimensions of the global array</td>
<td>Input</td>
</tr>
<tr>
<td>lo(ndim)</td>
<td>Array of starting indices for array section</td>
<td>Input</td>
</tr>
<tr>
<td>hi(ndim)</td>
<td>Array of ending indices for array section</td>
<td>Input</td>
</tr>
<tr>
<td>map(2ndim,)</td>
<td>Array with mapping information</td>
<td>Output</td>
</tr>
<tr>
<td>procs(np)</td>
<td>List of processes that own a part of array section</td>
<td>Output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

procs = \{0, 1, 2, 4, 5, 6\}
map = \{lo_{01}, lo_{02}, hi_{01}, hi_{02},
 lo_{11}, lo_{12}, hi_{11}, hi_{12},
 lo_{21}, lo_{22}, hi_{21}, hi_{22},
 lo_{41}, lo_{42}, hi_{41}, hi_{42},
 lo_{51}, lo_{52}, hi_{51}, hi_{52},
 lo_{61}, lo_{62}, hi_{61}, hi_{62}\}
Access and Release

To provide direct access to local data in the specified patch of the array owned by the calling process:

```python
buffer = ga.access(g_a, lo=None, hi=None, proc=-1)
```

Processes can access the local position of the global array

- Process “0” can access the specified patch of its local position of the array
- Avoids memory copy
- Defaults to entire local array
- **Returns None if no local data**

If not modified:

```python
ga.release(g_a, lo=None, hi=None)
```

If modified:

```python
ga.release_update(g_a, lo=None, hi=None)
```
Example: 1-D Transpose (transp1D.py)

Can you do this again but use ga.access() somewhere?
Example: Matrix Multiply (matrix.py)

- global arrays representing matrices
- local buffers on the processor

Can you do this again but use ga.access() somewhere?
Atomic Accumulate

Accumulate combines the data from the local array with data in the global array section:

$$ga.\text{acc}(g_a, \text{buffer}, \text{lo}=\text{None}, \text{hi}=\text{None}, \text{alpha}=\text{None})$$

- **integer** g_a array handle [input]
- **integer** $\text{lo}(), \text{hi}()$ limits on data block to be moved [input]
- **double/complex/int** buffer local buffer [input]
- **double/complex/int** alpha arbitrary scale factor [input]

$$g_a(i,j) = g_a(i,j) + \text{alpha} \times \text{buf}(k,l)$$
buffer = ga.brdcst(buffer, root)
Sends vector from root process to all other processes.

buffer = ga.gop(x, op)
Combines buffers from all processes using “op”.
Op can be “+”, “*”, “max”, “min”, “absmax”, “absmin”
Alternatively:
 ga.gop_add(...), ga.gop_multiply(...), ga.gop_max(...),
 ga.gop_min(...), ga.gop_absmax(...), ga.gop_absmin(...)
Basic Array Operations

- **Whole Arrays or Array Patches:**
 - To set all the elements in the array to zero:
 - `ga.zero(g_a, lo=None, hi=None)`
 - To assign a single value to all the elements in array:
 - `ga.fill(g_a, val, lo=None, hi=None)`
 - To scale all the elements in the array by factor `val`:
 - `ga.scale(g_a, val, lo=None, hi=None)`
Example: Calculating PI (pi.py)

You know enough of the API to try the next example!
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAiN)
Whole Arrays:

- **To copy data between two arrays:**

  ```python
  ga.copy(g_a, g_b)
  ```

- Arrays must be same size and dimension
- Distribution may be different
- See “copy.py” for sample

```
g_a = ga.create(ga.C_INT, [4,25],
                chunk=[4,-1])
g_b = ga.create(ga.C_INT, [4,25],
                chunk=[-1,25])
# fill GA's with values
ga.copy(g_a, g_b)
```

Global Arrays `g_a` and `g_b` distributed on a 3x3 process grid
Copy Patches

- Patch Operations:
 - The copy patch operation:
 - `ga.copy(g_a, g_b,
 alo=None, ahi=None,
 blo=None, bhi=None, trans=False)`
 - Number of elements must match

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
```
Scatter/Gather

- **Scatter** puts array elements into a global array:
  ```python
  ga.scatter(g_a, values, subsarray)
  ```

- **Scatter accumulate** puts array elements into a global array:
  ```python
  ga.scatter_acc(g_a, values, subsarray, alpha=None)
  ```

- **Gather** gets the array elements from a global array into a local array:
  ```python
  values = ga.gather(g_a, subsarray, values=None)
  ```

Parameters

- `g_a`: array handle [input]
- `values`: array of values [input/output]
- `n`: number of values [input]
- `subsarray`: coordinates within global array [input]

“values” is a 1D vector

“subsarray” can be either 2D of shape=(N,ndim) or flattened 1D version thereof.
Example of *scatter* operation:

- Scatter the 5 elements into a 10x10 global array

 - **Element 1**

 \[v[0] = 5 \]
 \[\text{subsArray}[0][0] = 2 \]
 \[\text{subsArray}[0][1] = 3 \]

 - **Element 2**

 \[v[1] = 3 \]
 \[\text{subsArray}[1][0] = 3 \]
 \[\text{subsArray}[1][1] = 4 \]

 - **Element 3**

 \[v[2] = 8 \]
 \[\text{subsArray}[2][0] = 8 \]
 \[\text{subsArray}[2][1] = 5 \]

 - **Element 4**

 \[v[3] = 7 \]
 \[\text{subsArray}[3][0] = 3 \]
 \[\text{subsArray}[3][1] = 7 \]

 - **Element 5**

 \[v[4] = 2 \]
 \[\text{subsArray}[4][0] = 6 \]
 \[\text{subsArray}[4][1] = 3 \]

- After the *scatter* operation, the five elements would be scattered into the global array as shown in the figure.
Read and Increment

- `Read_inc` remotely updates a particular element in an integer global array and returns the original value:
 - `val = ga.read_inc(g_a, subscript, inc=1)`
 - Applies to integer arrays only
 - Can be used as a global counter for dynamic load balancing

```python
integer g_a [input]
integer subscript(ndim), inc [input]
```

```python
# Create task counter
g_counter = ga.create(ga.C_INT, [1])
ga.zero(g_counter)

: itask = ga.read_inc(g_counter, [0])
# ... Translate itask into task ...
```
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAiN)
Non-blocking Operations

The non-blocking APIs are derived from the blocking interface by adding a handle argument that identifies an instance of the non-blocking request.

- `handle = ga.nbput(g_a, buffer, lo=None, hi=None)`
- `buffer, handle = ga.nbget(g_a, lo=None, hi=None, numpy.ndarray buffer=None)`
- `handle = ga.nbacc(g_a, buffer, lo=None, hi=None, alpha=None)`
- `ga.nbwait(handle)`
Matrix Multiply (a better version)

more scalable!
(less memory, higher parallelism)

atomic accumulate

get

dgemm

local buffers on the processor
SRUMMA Matrix Multiplication

A

B

C = A \times B

Computation

Comm. (Overlap)

Issue NB Get A and B blocks
do (until last chunk)
issue NB Get to the next blocks
wait for previous issued call
compute A \times B (sequential dgemm)
NB atomic accumulate into “C” matrix
done

Advantages:
- Minimum memory
- Highly parallel
- Overlaps computation and communication
 - latency hiding
- exploits data locality
- patch matrix multiplication (easy to use)
- dynamic load balancing

patch matrix multiplication
SRUMMA Matrix Multiplication: Improvement over PBLAS/ScaLAPACK

Parallel Matrix Multiplication on the HP/Quadrics Cluster at PNNL
Matrix size: 40000x40000
Efficiency 92.9% w.r.t. serial algorithm and 88.2% w.r.t. machine peak on 1849 CPUs

- SRUMMA
- PBLAS/ScaLAPACK pdgemm
- Theoretical Peak
- Perfect Scaling
Example: SRUMMA Matrix Multiplication

Alright, give the next example a try: srumma.py
Example: SRUMMA Using `ga.read_inc()`

Computation

Comm. (Overlap)

Issue NB Get A and B blocks
- do (until last chunk)
 - issue NB Get to the next blocks
 - wait for previous issued call
 - compute A*B (sequential dgemm)
 - NB atomic accumulate into “C” matrix
 - done

Advantages:
- Minimum memory
- Highly parallel
- Overlaps computation and communication
 - latency hiding
- exploits data locality
- patch matrix multiplication (easy to use)
- dynamic load balancing

Can you modify `srumma.py` to use `ga.read_inc()`?
Example:

- 2 nodes with 4 processors each. Say, there are 7 processes created.
 - `ga.cluster_nnodes` returns 2
 - `ga.cluster_nodeid` returns 0 or 1
 - `ga.cluster_nprocs(inode)` returns 4 or 3
 - `ga.cluster_procid(inode, iproc)` returns a processor ID
Cluster Information (cont.)

- To return the total number of nodes that the program is running on:
  ```python
nnodes = ga.cluster_nnodes()
  ```
- To return the node ID of the process:
  ```python
nodeid = ga.cluster_nodeid()
  ```
Cluster Information (cont.)

To return the number of processors available on node inode:

\[
\text{nprocs} = \text{ga.cluster_nprocs}(\text{inode})
\]

To return the processor ID associated with node inode and the local processor ID iproc:

\[
\text{procid} = \text{ga.cluster_procid}(\text{inode}, \text{iproc})
\]
if ga.nodeid() == 8:
 ga.access(g_a, proc=10)
Using the cluster functions, have the master (zeroth) process on each cluster to sum the values of a global array.

Example:
- 2 nodes with 4 processors each. Say, there are 7 processes created.
 - `ga.cluster_nnodes` returns 2
 - `ga.cluster_nodeid` returns 0 or 1
 - `ga.cluster_nprocs(inode)` returns 4 or 3
 - `ga.cluster_procid(inode,iproc)` returns a processor ID
Processor Groups

world group

group A

group B

group C
Processor Groups

- To create a new processor group:
  ```python
  pgroup = ga.pgroup_create(list)
  ```
- To assign a processor group:
  ```python
  g_a = ga.create(type, dims, name, chunk, pgroup=-1)
  ```
- To set the default processor group:
  ```python
  ga.pgroup_set_default(p_handle)
  ```
- To access information about the processor group:
  ```python
  nnodes = ga.pgroup_nnodes(p_handle)
  nodeid = ga.pgroup_nodeid(p_handle)
  ```

integer g_a - global array handle [input]
integer p_handle - processor group handle [output]
integer list(size) - list of processor IDs in group [input]
integer size - number of processors in group [input]
Processor Groups (cont.)

To determine the handle for a standard group at any point in the program:

- `p_handle = ga.pgroup_get_default()`
- `p_handle = ga.pgroup_get_mirror()`
- `p_handle = ga.pgroup_get_world()`
Default Processor Group

```python
# create subgroup p_a, run a parallel task
p_a = ga.pgroup_create(list)
ga.pgroup_set_default(p_a)
parallel_task()
ga.pgroup_set_default(ga.pgroup_get_world())
```

def parallel_task():
 p_b = ga.pgroup_create(new_list)
 ga.pgroup_set_default(p_b)
 parallel_subtask()

Take a shot at groups.py!
Creating Arrays with Ghost Cells

To create arrays with ghost cells:

- For arrays with regular distribution:

  ```python
  g_a = ga.create_ghosts(type, dims, width,
                         name="", chunk=None, pgroup=-1)
  ```

- For arrays with irregular distribution:

  ```python
  g_a = ga.create_ghosts_irreg(type, dims, width,
                                block, map, name="", pgroup=-1)
  ```

integer width(ndim) - iterable of ghost cell widths [input]
Ghost Cells

Operations:

- `ga.create_ghosts` - creates array with ghost cells
- `ga.update_ghosts` - updates with data from adjacent processors
- `ga.access_ghosts` - provides access to “local” ghost cell elements
- `ga.nbget_ghost_dir` - nonblocking call to update ghosts cells
Ghost Cell Update

Automatically update ghost cells with appropriate data from neighboring processors. A multiprotocol implementation has been used to optimize the update operation to match platform characteristics.
Periodic Interfaces

- Periodic interfaces to the one-sided operations have been added to Global Arrays in version 3.1 to support computational fluid dynamics problems on multidimensional grids.
- They provide an index translation layer that allows users to request blocks using put, get, and accumulate operations that possibly extend beyond the boundaries of a global array.
- The references that are outside of the boundaries are wrapped around inside the global array.
- Current version of GA supports three periodic operations:
 - periodic get
 - periodic put
 - periodic acc

```
> ga.periodic_get(g_a,lo=None,hi=None,buf=None)
```
Periodic Get/Put/Accumulate

- ndarray = ga.periodic_get(g_a, lo=None, hi=None, buffer=None)
- ga.periodic_put(g_a, buffer, lo=None, hi=None)
- ga.periodic_acc(g_a, buffer, lo=None, hi=None, alpha=None)
Lock and Mutex

- *Lock* works together with *mutex*.
- Simple synchronization mechanism to protect a critical section
- To enter a critical section, typically, one needs to:
 - Create mutexes
 - Lock on a mutex
 - Do the exclusive operation in the critical section
 - Unlock the mutex
 - Destroy mutexes
- The *create mutex* function is:
  ```cpp
  bool ga.create_mutexes(number)
  ```
 number - number of mutexes in mutex array [input]
Lock and Mutex (cont.)

Lock

Unlock
The **destroy mutex** functions are:
- `bool ga.destroy_mutexes()`

The **lock** and **unlock** functions are:
- `ga.lock(mutex)`
- `ga.unlock(mutex)`

```plaintext
integer mutex [input] ! mutex id
```
Fence

- *Fence* blocks the calling process until all the data transfers corresponding to the Global Array operations initiated by this process complete.

- For example, since `ga.put()` might return before the data reaches final destination, `ga.init_fence()` and `ga.fence()` allow process to wait until the data transfer is fully completed.

  ```python
  ga_init_fence()
  ga_put(g_a, ...)
  ga_fence()
  ```

- The *initialize fence* function is:
  ```
  ga.init_fence()
  ```

- The *fence* function is:
  ```
  ga.fence()
  ```
To eliminate redundant synchronization points:

\[\text{ga.mask_sync(prior_sync_mask, post_sync_mask)} \]

- logical first - mask (0/1) for prior internal synchronization [input]
- logical last - mask (0/1) for post internal synchronization [input]

```
 ga.mask_sync(False,True)
 ga.duplicate(g_a, g_b)
 ga.zero(g_b)
```
Linear Algebra

- To add two arrays:
  ```python
ga.add(g_a, g_b, g_c, alpha=None, beta=None,
       alo=None, ahi=None, blo=None, bhi=None,
       clo=None, chi=None)
  ```

- To multiply arrays:
  ```python
gemm(ta, tb, m, n, k, alpha, g_a, g_b, beta, g_c)
  ```

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameter</th>
<th>Description</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>g_a, g_b, g_c</td>
<td>- array handles</td>
<td>[input]</td>
</tr>
<tr>
<td>float/complex/int</td>
<td>alpha</td>
<td>- scale factor</td>
<td>[input]</td>
</tr>
<tr>
<td>float/complex/int</td>
<td>beta</td>
<td>- scale factor</td>
<td>[input]</td>
</tr>
<tr>
<td>bool</td>
<td>transa, transb</td>
<td></td>
<td>[input]</td>
</tr>
<tr>
<td>integer</td>
<td>m, n, k</td>
<td></td>
<td>[input]</td>
</tr>
</tbody>
</table>
To compute the element-wise dot product of two arrays:
- Python has only one function: \(\text{ga.dot}(g_a, g_b) \)
- This is not NumPy’s dot i.e. not matrix multiply

\[
\text{ga.dot}(g_a, g_b, \\
al_o=\text{None}, a_h=\text{None}, \\
b_l=\text{None}, b_h=\text{None}, \\
t_a=\text{False}, t_b=\text{False})
\]
Linear Algebra (cont.)

To symmetrize a matrix:
```python
gs = symmetrize(g_a)
```

To transpose a matrix:
```python
gs = transpose(g_a, g_b)
```
To perform matrix multiplication:

```python
ga.matmul_patch(transa, transb,
    alpha, beta,
    g_a, ailo, aihi, ajlo, ajhi,
    g_b, bilo, bihi, bjlo, bjhi,
    g_c, cilo, cihi, cjlo, cjhi)
```

- **integer** `g_a`, `ailo`, `aihi`, `ajlo`, `ajhi` | patch of `g_a` | [input]
- **integer** `g_b`, `bilo`, `bihi`, `bjlo`, `bjhi` | patch of `g_b` | [input]
- **integer** `g_c`, `cilo`, `cihi`, `cjlo`, `cjhi` | patch of `g_c` | [input]
- **dbl prec/comp** `alpha`, `beta` | scale factors | [input]
- **character*1** `transa`, `transb` | transpose flags | [input]
Block-Cyclic Data Distributions

Normal Data Distribution

Block-Cyclic Data Distribution
Block-Cyclic Data (cont.)

Simple Distribution

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>7</td>
<td>13</td>
<td>19</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8</td>
<td>14</td>
<td>20</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>10</td>
<td>16</td>
<td>22</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>11</td>
<td>17</td>
<td>23</td>
<td>29</td>
<td>35</td>
</tr>
</tbody>
</table>

Scalapack Distribution

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0,0</td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1,0</td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pacific Northwest NATIONAL LABORATORY

SciPy 2011 Tutorial – July 12

Proudly Operated by Battelle Since 1965
Block-Cyclic Data (cont.)

- Most operations work exactly the same, data distribution is transparent to the user
- Some operations (matrix multiplication, non-blocking put, get) not implemented
- Additional operations added to provide access to data associated with particular sub-blocks
- You need to use the new interface for creating Global Arrays to get create block-cyclic data distributions
New Interface for Creating Arrays

```python
handle = ga.create_handle()
ga.set_data(g_a, dims, type)
ga.set_array_name(g_a, name)
ga.set_chunk(g_a, chunk)
ga.set_irreg_distr(g_a, map, nblock)
ga.set_ghosts(g_a, width)
ga.set_block_cyclic(g_a, dims)
ga.set_block_cyclic_proc_grid(g_a, dims, proc_grid)
bool ga.allocate(int g_a)
```
Creating Block-Cyclic Arrays

- Must use new API for creating Global Arrays

```python
ga.set_block_cyclic(g_a, dims)
ga.set_block_cyclic_proc_grid(g_a, block, proc_grid)
```

- `integer dims[]` - dimensions of blocks
- `integer proc_grid[]` - dimensions of processor grid (note that product of all `proc_grid` dimensions must equal total number of processors)
Block-Cyclic Methods

Methods for accessing data of individual blocks

num_blocks, block_dims = ga.get_block_info(g_a)
blocks = ga.total_blocks(g_a)
ndarray = ga.access_block_segment(g_a, iproc)
ndarray = ga.access_block(g_a, idx)
ndarray = ga.access_block_grid(g_a, subscript)

integer length - total size of blocks held on processor
integer idx - index of block in array (for simple block-cyclic distribution)
integer subscript[] - location of block in block grid (for Scalapack distribution)
Interfaces to Third Party Software Packages

- Scalapack
 - Solve a system of linear equations
 - Compute the inverse of a double precision matrix
Example: ufunc.py

Can you use `ga.access()` to generically reimplement a distributed NumPy unary ufunc?
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAiN)
 - Overview and Using GAiN
 - Differences with NumPy
 - Advanced GAiN and GA/GAiN interoperability
Overview of Global Arrays in NumPy (GAiN)

- All documented NumPy functions are collective
 - GAiN programs run in SPMD fashion
- Not all arrays should be distributed
 - GAiN operations should allow mixed NumPy/GAiN inputs
- Reuse as much of NumPy as possible (obviously)
- Distributed nature of arrays should be transparent to user
- Use owner-computes rule to attempt data locality optimizations
GAiN is Not Complete (yet)

► What’s finished:
 ■ Ufuncs (all)
 ■ ndarray
 ■ flatiter
 ■ *numpy dtypes are reused!*
 ■ Various array creation and other functions:
 ● zeros, zeros_like, ones, ones_like, empty, empty_like
 ● eye, identity, fromfunction, arange, linspace, logspace
 ● dot, diag, clip, asarray

► Everything else doesn’t exist
How to Use GAI\textsc{N}

Change one line in your script:
\begin{verbatim}
#import numpy
import ga.gain as numpy
\end{verbatim}

Run using the MPI process manager:
\begin{verbatim}
$ mpiexec -np 4 python script.py
\end{verbatim}

Go ahead and write something using NumPy! Do you have an application already on your computer? Try to use GAI\textsc{N} as shown above.
GA/GAiN Interoperability

- `gain.from_ga(g_a)`
 - Won’t `ga.destroy(g_a)` when garbage collected
 - Allows custom data distributions
 - Block and block cyclic not currently supported by GAiN
Additional Examples to Try

1. Write a NumPy code, run it serially, then convert it to use GAIIN.
2. Use process groups with GAIIN.
3. Use process groups and `ga.read_inc()` with GAIIN.
4. Is GAIIN missing something you need?? WRITE IT.

This is it, folks! Thank you!!

jeff.daily@pnnl.gov
hpctools@googlegroups.com
http://www.emsl.pnl.gov/docs/global/