
High Performance Computing in Python using
NumPy and the Global Arrays Toolkit

Jeff Daily1

P. Saddayappan2, Bruce Palmer1, Manojkumar Krishnan1,
Sriram Krishnamoorthy1, Abhinav Vishnu1, Daniel Chavarría1,
Patrick Nichols1

1Pacific Northwest National Laboratory
2Ohio State University

SciPy 2011 Tutorial – July 12 2

Outline of the Tutorial

!   Parallel Programming Models
!   Performance vs. Abstraction vs. Generality
!   Distributed Data vs. Shared Memory
!   One-sided communication vs. Message Passing

!   Overview of the Global Arrays Programming Model
!   Intermediate GA Programming Concepts and Samples
!   Advanced GA Programming Concepts and Samples
!   Global Arrays in NumPy (GAiN)

SciPy 2011 Tutorial – July 12 3

Parallel Programming Models
!   Single Threaded

!   Data Parallel, e.g. HPF
!   Multiple Processes

!   Partitioned-Local Data Access
!   MPI

!   Uniform-Global-Shared Data Access
!   OpenMP

!   Partitioned-Global-Shared Data Access
!   Co-Array Fortran

!   Uniform-Global-Shared + Partitioned Data Access
!   UPC, Global Arrays, X10

SciPy 2011 Tutorial – July 12 4

Parallel Programming Models in Python
!   Single Threaded

!   Data Parallel, e.g. HPF
!   Multiple Processes

!   Partitioned-Local Data Access
!   MPI (mpi4py)

!   Uniform-Global-Shared Data Access
!   OpenMP (within a C extension – no direct Cython support yet)

!   Partitioned-Global-Shared Data Access
!   Co-Array Fortran

!   Uniform-Global-Shared + Partitioned Data Access
!   UPC, Global Arrays (as of 5.0.x), X10

!   Others: PyZMQ, IPython, PiCloud, and more

4

SciPy 2011 Tutorial – July 12 5

High Performance Fortran

!   Single-threaded view of computation
!   Data parallelism and parallel loops
!   User-specified data distributions for arrays
!   Compiler transforms HPF program to SPMD program

!   Communication optimization critical to performance
!   Programmer may not be conscious of communication implications of

parallel program
s=s+1
A(1:100) = B(0:99)+B(2:101)
HPF$ Independent
Do I = 1,100
 A(I) = B(I-1)+B(I+1)
End Do

HPF$ Independent
DO I = 1,N
HPF$ Independent
 DO J = 1,N
 A(I,J) = B(J,I)
 END
END

HPF$ Independent
DO I = 1,N
HPF$ Independent
 DO J = 1,N
 A(I,J) = B(I,J)
 END
END

SciPy 2011 Tutorial – July 12 6

Message Passing Interface

!   Most widely used parallel programming model
today

!   Bindings for Fortran, C, C++, MATLAB
!   P parallel processes, each with local data

!   MPI-1: Send/receive messages for inter-
process communication

!   MPI-2: One-sided get/put data access from/to
local data at remote process

!   Explicit control of all inter-processor
communication
!   Advantage: Programmer is conscious of

communication overheads and attempts to
minimize it

!   Drawback: Program development/debugging
is tedious due to the partitioned-local view of
the data

Private Data

P0 P1 Pk

Messages

SciPy 2011 Tutorial – July 12 7

OpenMP

!   Uniform-Global view of shared data
!   Available for Fortran, C, C++
!   Work-sharing constructs (parallel loops and

sections) and global-shared data view ease
program development

!   Disadvantage: Data locality issues obscured
by programming model

Private Data

P0 P1 Pk

Shared Data

SciPy 2011 Tutorial – July 12 8

Co-Array Fortran

!   Partitioned, but global-shared data view
!   SPMD programming model with local and

shared variables
!   Shared variables have additional co-array

dimension(s), mapped to process space;
each process can directly access array
elements in the space of other processes
!   A(I,J) = A(I,J)[me-1] + A(I,J)[me+1]

!   Compiler optimization of communication
critical to performance, but all non-local
access is explicit

Private Data

Co-Arrays

P0 P1 Pk

SciPy 2011 Tutorial – July 12 9

Unified Parallel C (UPC)

!   SPMD programming model with global shared view for
arrays as well as pointer-based data structures

!   Compiler optimizations critical for controlling inter-
processor communication overhead
!   Very challenging problem since local vs. remote

access is not explicit in syntax (unlike Co-Array
Fortran)

!   Linearization of multidimensional arrays makes
compiler optimization of communication very
difficult

!   Performance study with NAS benchmarks (PPoPP
2005, Mellor-Crummey et. al.) compared CAF and
UPC
!   Co-Array Fortran had significantly better scalability
!   Linearization of multi-dimensional arrays in UPC

was a significant source of overhead

Private Data

P0 P1 Pk

Shared Data

SciPy 2011 Tutorial – July 12 10

Global Arrays vs. Other Models

!   Advantages:
!   Inter-operates with MPI

!   Use more convenient global-shared view for multi-dimensional
arrays, but can use MPI model wherever needed

!   Data-locality and granularity control is explicit with GA’s get-
compute-put model, unlike the non-transparent
communication overheads with other models (except MPI)

!   Library-based approach: does not rely upon smart compiler
optimizations to achieve high performance

!   Disadvantage:
!   Only useable for array data structures

SciPy 2011 Tutorial – July 12 11

Performance vs. Abstraction and Generality

Domain
Specific
Systems

CAF
OpenMP

Autoparallelized
C/Fortran90

GA

MPI

Generality

Sc
al

ab
ili

ty

“Holy Grail”

SciPy 2011 Tutorial – July 12 12

Performance vs. Abstraction and Generality

12

Domain
Specific
Systems

CAF

Autoparallelized
C/Fortran90

GA

MPI

Generality

Sc
al

ab
ili

ty

“Holy Grail”
GA+Python?

OpenMP

SciPy 2011 Tutorial – July 12 13

Distributed Data vs Shared Memory

!   Distributed Data
!   Data is explicitly associated with

each processor, accessing data
requires specifying the location of the
data on the processor and the
processor itself.

!   Data locality is explicit but data
access is complicated. Distributed
computing is typically implemented
with message passing (e.g. MPI)

!   To copy element from P5 to P0 using
MPI
!   P0 posts comm.recv(obj, 5)
!   P5 posts comm.send(buf[27], 5)

(0xf5670,P0)
(0xf32674,P5)

P0 P1 P2

SciPy 2011 Tutorial – July 12 14

Distributed Data vs Shared Memory (cont.)

!   Shared Memory
!   Data is in a globally

accessible address space,
any processor can access
data by specifying its location
using a global index

!   Data is mapped out in a
natural manner (usually
corresponding to the original
problem) and access is easy.
Information on data locality is
obscured and leads to loss of
performance.

(0,0)

(150,200)

(47,95)

(106,171)

SciPy 2011 Tutorial – July 12 15

!   Distributed dense arrays that
can be accessed through a
shared memory-like style

!   single, shared data structure/
global indexing
!   e.g., ga.get(a, (3,2))

rather than buf[6] on process 1

Global Arrays

Physically distributed data

Global Address Space

0 2 4 6

1 3 5 7

SciPy 2011 Tutorial – July 12 16

One-sided Communication

message passing
MPI

P1 P0
receive send

P1 P0
put

one-sided communication
SHMEM, ARMCI, MPI-2-1S

Message Passing:
Message requires cooperation
on both sides. The processor
sending the message (P1) and
the processor receiving the
message (P0) must both
participate.

One-sided Communication:
Once message is initiated on
sending processor (P1) the
sending processor can
continue computation.
Receiving processor (P0) is
not involved. Data is copied
directly from switch into
memory on P0.

SciPy 2011 Tutorial – July 12 17

Remote Data Access in GA vs MPI

Message Passing:

identify size and location of data
blocks

loop over processors:
if (me = P_N) then

pack data in local message
buffer
send block of data to
message buffer on P0

else if (me = P0) then
receive block of data from
P_N in message buffer
unpack data from message
buffer to local buffer

endif
end loop

copy local data on P0 to local buffer

Global Arrays:

buf=ga.get(g_a, lo=None, hi=None, buffer=None)

Global Array
handle

Global upper
and lower
indices of data
patch

Local ndarray
buffer

P0

P1

P2

P3

SciPy 2011 Tutorial – July 12 18

Global Arrays (cont.)

!   Shared data model in context of distributed dense arrays
!   Much simpler than message-passing for many

applications
!   Complete environment for parallel code development
!   Compatible with MPI
!   Data locality control similar to distributed memory/

message passing model
!   Extensible
!   Scalable

SciPy 2011 Tutorial – July 12 19

Outline of the Tutorial

!   Parallel Programming Models
!   Overview of the Global Arrays Programming Model

!   Downloading, Building GA using configure && make
!   10 Basic GA Commands
!   GA Models for Computation

!   Intermediate GA Programming Concepts and Samples
!   Advanced GA Programming Concepts and Samples
!   Global Arrays in NumPy (GAiN)

SciPy 2011 Tutorial – July 12 20

Source Code and More Information

!   Version 5.0.3 available, trunk to become 5.1
!   Homepage at http://www.emsl.pnl.gov/docs/global/
!   Platforms

!   IBM SP, BlueGene
!   Cray XT, XE6 (Gemini)
!   Linux Cluster with Ethernet, Myrinet, Infiniband, or Quadrics
!   Solaris
!   Fujitsu
!   Hitachi
!   NEC
!   HP
!   Windows

SciPy 2011 Tutorial – July 12 21

Writing and Running GA programs

!   Topics to cover so that we can all start programming!
!   Installing GA
!   Writing GA programs
!   Running GA programs

SciPy 2011 Tutorial – July 12 22

Writing and Running GA programs (cont.)

!   GA Webpage
!   http://www.emsl.pnl.gov/docs/global/
!   GA papers, APIs, user manual, etc.
!   Google: Global Arrays

!   GA API Documentation
!   GA Webpage, click on “User Interface”
!   http://www.emsl.pnl.gov/docs/global/userinterface.html

!   GA Support/Help/Announcements
!   hpctools@googlegroups.com

SciPy 2011 Tutorial – July 12 23

Global Arrays
and MPI are
completely
interoperable.
Code can
contain calls
to both
libraries.

Structure of GA

MPI
Global

operations

ARMCI
portable 1-sided communication

put, get, locks, etc

distributed arrays layer
memory management,

index translation

system specific interfaces
LAPI, GM/Myrinet, threads, VIA,..

Fortran 77 C C++ Babel

F90

Python

Java Application
programming
language interface

execution layer
task scheduling,
load balancing,
data movement

SciPy 2011 Tutorial – July 12 24

Installing GA
!   GA 5.0 uses autotools (configure && make && make install) for building

!   Traditional configure env vars CC, CFLAGS, CPPFLAGS, LIBS, etc
!   Specify the underlying network communication protocol

!   Only required on clusters with a high performance network
!   e.g. Infiniband: configure --with-openib
!   Best guess: configure --enable-autodetect

!   GA requires MPI for basic start-up and process management
!   MPI is the default, searches for MPI compilers e.g. mpicc, mpif90

!   Various make targets
!   make to build GA libraries
!   make install to install libraries
!   make checkprogs to build C/Fortran tests and examples
!   make check MPIEXEC=“mpiexec -np 4” to run test suite

!   VPATH builds: one source tree, many build trees i.e. configurations
tar –xzf ga-5-0-3.tgz; cd ga-5-0-3
mkdir bld; cd bld; ../configure; make

SciPy 2011 Tutorial – July 12 25

Installing GA for Python
!   GA requires MPI for basic start-up and process management

!   MPI is the default: configure
!   MPI compilers are searched for by default e.g. mpicc

!   Need to enable shared libraries: --enable-shared
!   Build it: make && make python

!   Installs GA libs/headers, runs setup.py build and install
!   Python bindings always built from top-level source tree

SciPy 2011 Tutorial – July 12 26

Outline of the Tutorial

!   Parallel Programming Models
!   Overview of the Global Arrays Programming Model

!   Downloading, Building GA using configure && make
!   10 Basic GA Commands
!   GA Models for Computation

!   Intermediate GA Programming Concepts and Samples
!   Advanced GA Programming Concepts and Samples
!   Global Arrays in NumPy (GAiN)

SciPy 2011 Tutorial – July 12 27

GA Basic Operations

!   GA programming model is very simple
!   Most parallel programs can be written with these basic calls

!   ga.initialize, ga.terminate()
!   ga.nnodes(), ga.nodeid()
!   ga.create(…), ga.destroy(…)
!   ga.put(…), ga.get(…), ga.acc(…)
!   ga.sync()

!   We cover these and more in the next slides

SciPy 2011 Tutorial – July 12 28

GA Initialization/Termination

!   For Python, there is only import ga
!   To set maximum limit for GA memory, use

 ga.set_memory_limit(limit)
!   For Python, GA termination happens during atexit()

SciPy 2011 Tutorial – July 12 29

Where to Find the Tutorial Code

!   From the top level GA source directory
!   ./python/tutorial

!   Don’t look at the answers!
!   e.g. matrix.answer.py instead of matrix.py

!   Some programs serve as a sample, some as a problem
!   hello.py, hello2.py already work
!   matrix.py, transpose.py require fixing by you

SciPy 2011 Tutorial – July 12 30

Running First GA Program – Hello World

!   Requires MPI
!   Needs a process manager
!   Also certain collective operations

!   import ga
!   C’s GA_Initialize() called
!   C’s GA_Terminate() registered with atexit()

!   Single Program, Multiple Data

file: hello.py
import mpi4py.MPI # initialize Message Passing Interface
import ga # initialize Global Arrays
print “Hello World!”

To Run:
mpiexec –np 4 python tutorial/hello.py

$ mpiexec -np 4 python hello.py
Hello World!
Hello World!
Hello World!
Hello World!

SciPy 2011 Tutorial – July 12 31

Parallel Environment - Process Information
!   Parallel Environment:

!   how many processes are working together (size)
!   what their IDs are (ranges from 0 to size-1)

!   To return the process ID of the current process:
!   nodeid = ga.nodeid()

!   To determine the number of computing processes:
!   nnodes = ga.nnodes()

SciPy 2011 Tutorial – July 12 32

Hello World with Process Information

file: hello.py
import mpi4py.MPI # initialize Message Passing Interface
import ga # initialize Global Arrays
print “Hello from %s of %s” % (ga.nodeid(),ga.nnodes())

To Run:
mpiexec –np 4 python tutorial/hello2.py

$ mpiexec -np 4 python hello2.py
hello from 0 out of 4
hello from 2 out of 4
hello from 3 out of 4
hello from 1 out of 4

SciPy 2011 Tutorial – July 12 33

GA Data Types
!   C/Python Data types

!   C_INT - int
!   C_LONG - long
!   C_LONGLONG - long long
!   C_FLOAT - float
!   C_DBL - double
!   C_SCPL - single complex
!   C_DCPL - double complex

!   Fortran Data types (don’t use these for Python)
!   F_INT - integer (4/8 bytes)
!   F_REAL - real
!   F_DBL - double precision
!   F_SCPL - single complex
!   F_DCPL - double complex

SciPy 2011 Tutorial – July 12 34

Creating Arrays
To create an array with a regular distribution:
g_a = ga.create(type, dims, name="", chunk=None,pgroup=-1)

string name - a unique character string [input]
integer type - GA data type [input]
integer dims() - array dimensions [input]
integer chunk() - minimum size that dimensions

 should be chunked into [input]
integer g_a - array handle for future references [output]

g_a = ga.create(ga.C_DBL, [5000,5000], “Array_A”)
if not g_a:a

 ga.error(“Could not create global array A”, g_a)

SciPy 2011 Tutorial – July 12 35

Creating Arrays with Irregular Distributions
To create an array with an irregular distribution:
g_a = ga.create_irreg(int gtype, dims, block, map,
 name="", pgroup=-1)

string name - a unique character string [input]
integer type - GA datatype [input]
integer dims - array dimensions [input]
integer nblock(*) - no. of blocks each dimension is divided into [input]
integer map(*) - starting index for each block [input]
integer g_a - integer handle for future references [output]

SciPy 2011 Tutorial – July 12 36

block = [3,2]

map = [0,2,6,0,5]

g_a = ga.create_irreg(ga.C_DBL, [8,10], “Array A”, block, map)
if not g_a:

 ga.error(“Could not create global array A”,g_a)

Irregular Distributions Explained
!   Example of irregular distribution:

!   The distribution is specified as a Cartesian product of
distributions for each dimension. The array indices start
at 0.
!   The figure demonstrates distribution of an 8x10 array

on 6 (or more) processors
!   block=[3,2]
!  map = [0,2,6,0,5]; len(map) = 5

!   The distribution is nonuniform because, P1 and P4
get 20 elements each and processors P0,P2,P3, and
P5 only 10 elements each.

2 P5 P2

4 P4 P1

2 P3 P0
5 5

SciPy 2011 Tutorial – July 12 37

Duplicating and Destroying Arrays
To duplicate an array:
g_b = ga.duplicate(g_a, name=“”)
Creates a new array by applying all properties of given array

to the new array.

Global arrays can be destroyed by calling the function:
ga.destroy(g_a)

g_a = ga_create(ga.C_INT, [200,300])

g_b = ga_duplicate(g_a)

ga.destroy(g_a)

SciPy 2011 Tutorial – July 12 38

Put/Get
Put copies data from a local array to a global array section:
ga.put(g_a, buffer, lo=None, hi=None)
integer g_a global array handle [input]
integer lo(),hi() limits on data block to be moved [input]
double/complex/integer buf local buffer [input]

Get copies data from a global array section to a local array:
buffer = ga.get(g_a, lo=None, hi=None, buffer=None)

integer g_a global array handle [input]
integer lo(),hi() limits on data block to be moved [input]
double/complex/integer buf local buffer [output]

SciPy 2011 Tutorial – July 12 39

Put/Get (cont.)

!   Example of put operation:
!   local buffer must be either 1D

contiguous or same shape as lo/hi
patch

!   Here: local array sliced to 9x9
patch, put to 18x12 global array

buf = numpy.arange(15*15).reshape(15,15)

ga.put(g_a, buf[:9,:9], (9,0), (18,9))

lo

hi

global

local

SciPy 2011 Tutorial – July 12 40

Sync

!   Sync is a collective operation
!   It acts as a barrier, which synchronizes all the processes

and ensures that all the Global Array operations are
complete at the call

!   ga.sync()

sync

SciPy 2011 Tutorial – July 12 41

Locality Information

Discover array elements held by each processor
lo,hi = ga.distribution(g_a, proc=-1)

integer g_a array handle [input]
integer proc processor ID [input]
integer lo(ndim) lower index [output]
integer hi(ndim) upper index [output]

Follows Python half-open convention – lo is inclusive, hi is exclusive

def print_distribution(g_a):
 for i in range(ga.nnodes()):
 print “Printing g_a info for processor”, i
 lo,hi = ga.distribution(g_a, i)
 print “%s lo=%s hi=%s” % (i,lo,hi)

SciPy 2011 Tutorial – July 12 42

Example: 1-D Transpose (transp1D.py)

You now know enough for your first real application!

SciPy 2011 Tutorial – July 12 43

Example: Matrix Multiply (matrix.py)

local buffers on the
processor

global arrays
representing
matrices

•

•

=

=

nga_get!nga_put!

dgemm!

You now know enough for your second real application!

SciPy 2011 Tutorial – July 12 44

Outline of the Tutorial

!   Parallel Programming Models
!   Overview of the Global Arrays Programming Model

!   Downloading and Building GA using configure && make
!   10 Basic GA Commands
!   GA Models for Computation

!   Intermediate GA Programming Concepts and Samples
!   Advanced GA Programming Concepts and Samples
!   Global Arrays in NumPy (GAiN)

SciPy 2011 Tutorial – July 12 45

GA Model of Computations: Get/Put

local memory

Shared Object

copy to local m
em

ory

get
compute/update

local memory

Shared Object

 c
op

y
to

 sh
ar

ed
 o

bj
ec

t

local memory

put

!   Shared memory view for distributed dense arrays
!   Get-Local/Compute/Put-Global model of computation
!   MPI-Compatible
!   Data locality and granularity control similar to message passing model

SciPy 2011 Tutorial – July 12 46

GA Model of Computations: Access/Release

local memory

Shared Object

access local m
em

ory

access
compute/update

local memory

Shared Object

local memory

release

!   Access-Local/Compute/Release-Global model of computation
!   No communication!
!   Be aware that other processes may be trying to get/put the same data

SciPy 2011 Tutorial – July 12 47

Data Locality in GA

What data does a processor own?

 lo,hi = ga.distribution(g_a, iproc=-1)

Where is the data?

 data = ga.access(g_a, lo=None, hi=None, proc=-1)

Use this information to organize calculation so that
maximum use is made of locally held data

SciPy 2011 Tutorial – July 12 48

Data Locality in GA (cont.)
!   Global Arrays support abstraction of a distributed array object
!   Object is represented by an integer handle
!   A process can access its portion of the data in the global array
!   To do this, the following steps need to be taken:

!   Find the distribution of an array, i.e. which part of the data the
calling process owns

!   Access the data
!   Operate on the data: read/write
!   Release the access to the data

0 1

3 4

SciPy 2011 Tutorial – July 12 49

Locality Information

!   To determine the process ID that owns the element
defined by the array subscripts:
proc = ga.locate(g_a, subscript)

integer g_a array handle [input]
Integer subscript(ndim) element subscript [input]
integer owner process id [output]

0 4 8

1 5 9

2 6 10

3 7 11

owner=5

SciPy 2011 Tutorial – July 12 50

Locality Information (cont.)
!   To return a list of process IDs that own the patch:

map,procs = ga.locate_region(g_a, lo, hi)

integer np - number of processors that own a portion of block [output]
integer g_a - global array handle [input]
integer ndim - number of dimensions of the global array
integer lo(ndim) - array of starting indices for array section [input]
integer hi(ndim) - array of ending indices for array section [input]
integer map(2*ndim,*)- array with mapping information [output]
integer procs(np) - list of processes that own a part of array section [output]

0 4 8

1 5 9

2 6 10

3 7 11

procs = {0,1,2,4,5,6}
map = {lo01,lo02,hi01,hi02,
 lo11,lo12,hi11,hi12,
 lo21,lo22’hi21,hi22,
 lo41,lo42,hi41,hi42,
 lo51,lo52,hi51,hi52’
 lo61’lo62,hi61,hi62}

SciPy 2011 Tutorial – July 12 51

Access and Release
To provide direct access to local data in the specified patch of the array

owned by the calling process:
buffer = ga.access(g_a, lo=None, hi=None, proc=-1)
Processes can access the local position of the global array

!   Process “0” can access the specified patch of its local
position of the array

!   Avoids memory copy
!   Defaults to entire local array
!   Returns None if no local data

If not modified:
ga.release(g_a, lo=None, hi=None)
If modified:
ga.release_update(g_a, lo=None, hi=None)

0 1 2

3 4 5

6 7 8

Access:
gives an

ndarray to
this local

patch

SciPy 2011 Tutorial – July 12 52

Example: 1-D Transpose (transp1D.py)

Can you do this again but use ga.access() somewhere?

SciPy 2011 Tutorial – July 12 53

Example: Matrix Multiply (matrix.py)

local buffers on the
processor

global arrays
representing
matrices

•

•

=

=

nga_get!nga_put!

dgemm!

Can you do this again but use ga.access() somewhere?

SciPy 2011 Tutorial – July 12 54

global

local

Atomic Accumulate

Accumulate combines the data from the local array with data in the
global array section:

ga.acc(g_a, buffer, lo=None, hi=None, alpha=None)

integer g_a array handle [input]
integer lo(), hi() limits on data block to be moved [input]
double/complex/int buffer local buffer [input]
double/complex/int alpha arbitrary scale factor [input]

g_a(i,j) = g_a(i,j)+alpha*buf(k,l)

SciPy 2011 Tutorial – July 12 55

Global Operations

buffer = ga.brdcst(buffer, root)
Sends vector from root process to all other processes.

buffer = ga.gop(x, op)
Combines buffers from all processes using “op”.
Op can be “+”, “*”, “max”, “min”, “absmax”, “absmin”
Alternatively:
ga.gop_add(…), ga.gop_multiply(…), ga.gop_max(…),
ga.gop_min(…), ga.gop_absmax(…), ga.gop_absmin(…)

SciPy 2011 Tutorial – July 12 56

Basic Array Operations

!   Whole Arrays or Array Patches:
!   To set all the elements in the array to zero:

!   ga.zero(g_a, lo=None, hi=None)
!   To assign a single value to all the elements in array:

!   ga.fill(g_a, val, lo=None, hi=None)
!   To scale all the elements in the array by factor val:

!   ga.scale(g_a, val, lo=None, hi=None)

SciPy 2011 Tutorial – July 12 57

Example: Calculating PI (pi.py)

You know enough of the API to try the next example!

SciPy 2011 Tutorial – July 12 58

Outline of the Tutorial

!   Parallel Programming Models
!   Overview of the Global Arrays Programming Model
!   Intermediate GA Programming Concepts and Samples
!   Advanced GA Programming Concepts and Samples
!   Global Arrays in NumPy (GAiN)

SciPy 2011 Tutorial – July 12 59

Copy
!   Whole Arrays:

!   To copy data between two arrays:
!   ga.copy(g_a, g_b)

!   Arrays must be same size and dimension
!   Distribution may be different
!   See “copy.py” for sample g_a = ga.create(ga.C_INT, [4,25],

 chunk=[4,-1])

g_b = ga.create(ga.C_INT, [4,25],
 chunk=[-1,25])

fill GA’s with values

ga.copy(g_a, g_b)

0 1 2

3 4 5

6 7 8

“g_a”

0 1 2

3 4 5

6 7 8

“g_b”

Global Arrays g_a and g_b distributed on a 3x3 process grid

SciPy 2011 Tutorial – July 12 60

Copy Patches
!   Patch Operations:

!   The copy patch operation:
!   ga.copy(g_a, g_b,
 alo=None, ahi=None,
 blo=None, bhi=None, trans=False)

!   Number of elements must match

0 1 2

3 4 5

6 7 8

“g_a”

0 1 2

3 4 5

6 7 8

“g_b”

SciPy 2011 Tutorial – July 12 61

Scatter/Gather

!   Scatter puts array elements into a global array:
!   ga.scatter(g_a, values, subsarray)

!   Scatter accumulate puts array elements into a global array:
!   ga.scatter_acc(g_a, values, subsarray, alpha=None)

!   Gather gets the array elements from a global array into a local array:
!   values = ga.gather(g_a, subsarray, values=None)

integer g_a array handle [input]
double/comple/int values array of values [input/output]
integer n number of values [input]
integer subsarray coordinates within global array [input]

“values” is a 1D vector
“subsarray” can be either 2D of shape=(N,ndim) or flattened 1D version thereof

SciPy 2011 Tutorial – July 12 62

Scatter/Gather (cont.)

0 1 2 3 4 5 6 7 8 9
0
1
2 5
3 3 7
4
5
6 2
7
8 8
9

!   Example of scatter operation:
!   Scatter the 5 elements into a 10x10 global array

!   Element 1 v[0] = 5 subsArray[0][0] = 2
 subsArray[0][1] = 3

!   Element 2 v[1] = 3 subsArray[1][0] = 3
 subsArray[1][1] = 4

!   Element 3 v[2] = 8 subsArray[2][0] = 8
 subsArray[2][1] = 5

!   Element 4 v[3] = 7 subsArray[3][0] = 3
 subsArray[3][1] = 7

!   Element 5 v[4] = 2 subsArray[4][0] = 6
 subsArray[4][1] = 3

!   After the scatter operation, the five elements
would be scattered into the global array as shown
in the figure.

SciPy 2011 Tutorial – July 12 63

Read and Increment
!   Read_inc remotely updates a particular element in an integer global

array and returns the original value:
!   val = ga.read_inc(g_a, subscript, inc=1)
!   Applies to integer arrays only
!   Can be used as a global counter for dynamic load balancing

integer g_a [input]
integer subscript(ndim), inc [input]

Create task counter
g_counter = ga.create(ga.C_INT, [1])
ga.zero(g_counter)
:
itask = ga.read_inc(g_counter, [0])
... Translate itask into task …

Global Lock
(access to data

is serialized)

NGA_Read_inc
(Read and Increment)

Global Array

SciPy 2011 Tutorial – July 12 64

Outline of the Tutorial

!   Parallel Programming Models
!   Overview of the Global Arrays Programming Model
!   Intermediate GA Programming Concepts and Samples
!   Advanced GA Programming Concepts and Samples
!   Global Arrays in NumPy (GAiN)

SciPy 2011 Tutorial – July 12 65

Non-blocking Operations
!   The non-blocking APIs are derived from the blocking interface by adding a

handle argument that identifies an instance of the non-blocking request.
!   handle = ga.nbput(g_a, buffer, lo=None, hi=None)

!   buffer,handle = ga.nbget(g_a, lo=None, hi=None,
numpy.ndarray buffer=None)

!   handle = ga.nbacc(g_a, buffer, lo=None, hi=None,
alpha=None)

!   ga.nbwait(handle)

SciPy 2011 Tutorial – July 12 66

Matrix Multiply (a better version)

local buffers on the
processor

more scalable!
(less memory,
higher parallelism) •

•

=

=

get atomic accumulate

dgemm

SciPy 2011 Tutorial – July 12 67

SRUMMA Matrix Multiplication

A B C=A.B

Computation

Comm.
(Overlap)

patch matrix multiplication

=

SciPy 2011 Tutorial – July 12 68

SRUMMA Matrix Multiplication:
Improvement over PBLAS/ScaLAPACK

SciPy 2011 Tutorial – July 12 69

Example: SRUMMA Matrix Multiplication

A B C=A.B

Computation

Comm.
(Overlap)

patch matrix multiplication

=

Alright, give the next example a try: srumma.py

SciPy 2011 Tutorial – July 12 70

Example: SRUMMA Using ga.read_inc()

A B C=A.B

Computation

Comm.
(Overlap)

patch matrix multiplication

=

Can you modify srumma.py to use ga.read_inc()?

SciPy 2011 Tutorial – July 12 71

Cluster Information
!   Example:
!   2 nodes with 4 processors each. Say, there are 7

processes created.
!   ga.cluster_nnodes returns 2
!   ga.cluster_nodeid returns 0 or 1
!   ga.cluster_nprocs(inode) returns 4 or 3
!   ga.cluster_procid(inode,iproc) returns a processor ID

SciPy 2011 Tutorial – July 12 72

Cluster Information (cont.)
!   To return the total number of nodes that the program is running

on:
!   nnodes = ga.cluster_nnodes()

!   To return the node ID of the process:
!   nodeid = ga.cluster_nodeid()

N0 N1

SciPy 2011 Tutorial – July 12 73

Cluster Information (cont.)
!   To return the number of processors available on node inode:

!   nprocs = ga.cluster_nprocs(inode)
!   To return the processor ID associated with node inode and the

local processor ID iproc:
!   procid = ga.cluster_procid(inode, iproc)

0(0) 1(1)

2(2) 3(3)

4(0) 5(1)

6(2) 7(3)

SciPy 2011 Tutorial – July 12 74

Accessing Processor Memory
Node

R8 R9 R10 R11

P8 P9 P10 P11

SMP Memory

if ga.nodeid() == 8:
 ga.access(g_a, proc=10)

SciPy 2011 Tutorial – July 12 75

Example: access.py
Node

R
8

R
9

R
10

R
11

P8 P9 P10 P11

Using the cluster functions, have
the master (zeroth) process on
each cluster to sum the values of a
global array.

!   Example:
!   2 nodes with 4 processors each. Say, there are 7

processes created.
!   ga.cluster_nnodes returns 2
!   ga.cluster_nodeid returns 0 or 1
!   ga.cluster_nprocs(inode) returns 4 or 3
!   ga.cluster_procid(inode,iproc) returns a

processor ID

SciPy 2011 Tutorial – July 12 76

Processor Groups

world group

group A group B

group C

SciPy 2011 Tutorial – July 12 77

Processor Groups
!   To create a new processor group:

!   pgroup = ga.pgroup_create(list)
!   To assign a processor groups:

!   g_a = ga.create(type, dims, name, chunk, pgroup=-1)
!   To set the default processor group

!   ga.pgroup_set_default(p_handle)
!   To access information about the processor group:

!   nnodes = ga.pgroup_nnodes(p_handle)
!   nodeid = ga.pgroup_nodeid(p_handle)

integer g_a - global array handle [input]
integer p_handle - processor group handle [output]
integer list(size) - list of processor IDs in group [input]
integer size - number of processors in group [input]

SciPy 2011 Tutorial – July 12 78

Processor Groups (cont.)
!   To determine the handle for a standard group at any point

in the program:
!   p_handle = ga.pgroup_get_default()
!   p_handle = ga.pgroup_get_mirror()
!   p_handle = ga.pgroup_get_world()

SciPy 2011 Tutorial – July 12 79

Default Processor Group

create subgroup p_a, run a parallel task
p_a = ga.pgroup_create(list)
ga.pgroup_set_default(p_a)
parallel_task()
ga.pgroup_set_default(ga.pgroup_get_world())

def parallel_task():
 p_b = ga.pgroup_create(new_list)
 ga.pgroup_set_default(p_b)
 parallel_subtask()

Take a shot at groups.py!

SciPy 2011 Tutorial – July 12 80

Creating Arrays with Ghost Cells

!   To create arrays with ghost cells:
!   For arrays with regular distribution:
g_a = ga.create_ghosts(type, dims, width,

name=“”, chunk=None, pgroup=-1)
!   For arrays with irregular distribution:
g_a = ga.create_ghosts_irreg(type, dims, width,

block, map, name=“”, pgroup=-1)

 integer width(ndim) - iterable of ghost cell widths [input]

Code

SciPy 2011 Tutorial – July 12 81

Ghost Cells

normal global array
global array with ghost cells

Operations:

 ga.create_ghosts - creates array with ghosts cells
 ga.update_ghosts - updates with data from adjacent processors
 ga.access_ghosts - provides access to “local” ghost cell elements
 ga.nbget_ghost_dir - nonblocking call to update ghosts cells

SciPy 2011 Tutorial – July 12 82

Ghost Cell Update

Automatically update ghost
cells with appropriate data
from neighboring
processors. A multiprotocol
implementation has been
used to optimize the
update operation to match
platform characteristics.

SciPy 2011 Tutorial – July 12 83

Periodic Interfaces
!   Periodic interfaces to the one-sided operations

have been added to Global Arrays in version 3.1
to support computational fluid dynamics
problems on multidimensional grids.

!   They provide an index translation layer that
allows users to request blocks using put, get,
and accumulate operations that possibly extend
beyond the boundaries of a global array.

!   The references that are outside of the
boundaries are wrapped around inside the
global array.

!   Current version of GA supports three periodic
operations:
!   periodic get
!   periodic put
!   periodic acc

ga.periodic_get(g_a,lo=None,hi=None,buf=None)

global

local

SciPy 2011 Tutorial – July 12 84

Periodic Get/Put/Accumulate
!   ndarray = ga.periodic_get(g_a, lo=None, hi=None, buffer=None)

!   ga.periodic_put(g_a, buffer, lo=None, hi=None)

!   ga.periodic_acc(g_a, buffer, lo=None, hi=None, alpha=None)

SciPy 2011 Tutorial – July 12 85

Lock and Mutex
!   Lock works together with mutex.
!   Simple synchronization mechanism to protect a critical

section
!   To enter a critical section, typically, one needs to:

!   Create mutexes
!   Lock on a mutex
!   Do the exclusive operation in the critical section
!   Unlock the mutex
!   Destroy mutexes

!   The create mutex function is:
!   bool ga.create_mutexes(number)

number - number of mutexes in mutex array [input]

SciPy 2011 Tutorial – July 12 86

Lock and Mutex (cont.)

Lock Unlock

SciPy 2011 Tutorial – July 12 87

Lock and Mutex (cont.)
!   The destroy mutex functions are:

!   bool ga.destroy_mutexes()
!   The lock and unlock functions are:

!   ga.lock(mutex)
!   ga.unlock(mutex)

integer mutex [input] ! mutex id

SciPy 2011 Tutorial – July 12 88

Fence
!   Fence blocks the calling process until all the data transfers corresponding to

the Global Array operations initiated by this process complete
!   For example, since ga.put() might return before the data reaches final

destination, ga.init_fence() and ga.fence() allow process to wait
until the data transfer is fully completed
ga_init_fence()

ga_put(g_a, ...)

ga_fence()
!   The initialize fence function is:

!   ga.init_fence()
!   The fence function is:

!   ga.fence()

SciPy 2011 Tutorial – July 12 89

Synchronization Control in Collective
Operations
!   To eliminate redundant synchronization points:

ga.mask_sync(prior_sync_mask, post_sync_mask)

logical first - mask (0/1) for prior internal synchronization [input]
logical last - mask (0/1) for post internal synchronization [input]

ga.mask_sync(False,True)
ga.duplicate(g_a, g_b)
ga.zero(g_b)

duplicate

sync

sync

zero

sync

sync

duplicate

sync

zero

sync

sync

SciPy 2011 Tutorial – July 12 90

Linear Algebra
!   To add two arrays:

ga.add(g_a, g_b, g_c, alpha=None, beta=None,
 alo=None, ahi=None, blo=None, bhi=None,
 clo=None, chi=None)

!   To multiply arrays:
gemm(ta, tb, m, n, k, alpha, g_a, g_b, beta, g_c)

integer g_a, g_b, g_c - array handles [input]
float/complex/int alpha - scale factor [input]
float/complex/int beta - scale factor [input]
bool transa, transb [input]
integer m, n, k [input]

SciPy 2011 Tutorial – July 12 91

Linear Algebra (cont.)
!   To compute the element-wise dot product of two arrays:

!   Python has only one function: ga.dot(g_a, g_b)
!   This is not NumPy’s dot i.e. not matrix multiply

ga.dot(g_a, g_b,
 alo=None, ahi=None,
 blo=None, bhi=None,
 ta=False, tb=False)

SciPy 2011 Tutorial – July 12 92

Linear Algebra (cont.)

!   To symmetrize a matrix:
ga.symmetrize(g_a)

!   To transpose a matrix:
ga.transpose(g_a, g_b)

SciPy 2011 Tutorial – July 12 93

Linear Algebra – Array Patches (cont.)
!   To perform matrix multiplication:

ga.matmul_patch(transa, transb,
 alpha, beta,
 g_a, ailo, aihi, ajlo, ajhi,

 g_b, bilo, bihi, bjlo, bjhi,
 g_c, cilo, cihi, cjlo, cjhi)

integer g_a, ailo, aihi, ajlo, ajhi patch of g_a [input]
integer g_b, bilo, bihi, bjlo, bjhi patch of g_b [input]
integer g_c, cilo, cihi, cjlo, cjhi patch of g_c [input]
dbl prec/comp alpha, beta scale factors [input]
character*1 transa, transb transpose flags [input]

SciPy 2011 Tutorial – July 12 94

Block-Cyclic Data Distributions

Normal Data Distribution Block-Cyclic Data Distribution

SciPy 2011 Tutorial – July 12 95

Block-Cyclic Data (cont.)

0,0 0,1
1,0 1,1

0 6 12 18 24 30
1 7 13 19 25 31
2 8 14 20 26 32
3 9 15 21 27 33
4 10 16 22 28 34
5 11 17 23 29 35

Simple Distribution Scalapack Distribution

0 1 0 1 0 1
0
1

0
1
0
1

SciPy 2011 Tutorial – July 12 96

Block-Cyclic Data (cont.)

!   Most operations work exactly the same, data distribution
is transparent to the user

!   Some operations (matrix multiplication, non-blocking put,
get) not implemented

!   Additional operations added to provide access to data
associated with particular sub-blocks

!   You need to use the new interface for creating Global
Arrays to get create block-cyclic data distributions

SciPy 2011 Tutorial – July 12 97

New Interface for Creating Arrays

handle = ga.create_handle()
ga.set_data(g_a, dims, type)
ga.set_array_name(g_a, name)
ga.set_chunk(g_a, chunk)
ga.set_irreg_distr (g_a, map, nblock)
ga.set_ghosts(g_a, width)
ga.set_block_cyclic(g_a, dims)
ga.set_block_cyclic_proc_grid(g_a, dims, proc_grid)
bool ga.allocate(int g_a)

SciPy 2011 Tutorial – July 12 98

Creating Block-Cyclic Arrays
!   Must use new API for creating Global Arrays

ga.set_block_cyclic(g_a, dims)
ga.set_block_cyclic_proc_grid(g_a, block, proc_grid)

integer dims[] - dimensions of blocks
integer proc_grid[] - dimensions of processor grid (note that product of all

 proc_grid dimensions must equal total number of
 processors)

SciPy 2011 Tutorial – July 12 99

Block-Cyclic Methods
!   Methods for accessing data of individual blocks

num_blocks,block_dims = ga.get_block_info(g_a)
blocks = ga.total_blocks(g_a)
ndarray = ga.access_block_segment(g_a, iproc)
ndarray = ga.access_block(g_a, idx)
ndarray = ga.access_block_grid(g_a, subscript)

integer length - total size of blocks held on processor
integer idx - index of block in array (for simple block-cyclic

 distribution
integer subscript[] - location of block in block grid (for Scalapack

 distribution)

SciPy 2011 Tutorial – July 12 100

Interfaces to Third Party Software Packages

!   Scalapack
!   Solve a system of linear equations
!   Compute the inverse of a double precision matrix

SciPy 2011 Tutorial – July 12 101

Example: ufunc.py

!   Can you use ga.access() to generically reimplement a
distributed NumPy unary ufunc?

SciPy 2011 Tutorial – July 12 102

Outline of the Tutorial

!   Parallel Programming Models
!   Overview of the Global Arrays Programming Model
!   Intermediate GA Programming Concepts and Samples
!   Advanced GA Programming Concepts and Samples
!   Global Arrays in NumPy (GAiN)

!   Overview and Using GAiN
!   Differences with NumPy
!   Advanced GAiN and GA/GAiN interoperability

Overview of Global Arrays in NumPy (GAiN)
!   All documented NumPy functions are collective

!   GAiN programs run in SPMD fashion
!   Not all arrays should be distributed

!   GAiN operations should allow mixed NumPy/GAiN inputs
!   Reuse as much of NumPy as possible (obviously)
!   Distributed nature of arrays should be transparent to user
!   Use owner-computes rule to attempt data locality

optimizations

103

GAiN is Not Complete (yet)

104

!   What’s finished:
!   Ufuncs (all)
!   ndarray
!   flatiter
!   numpy dtypes are reused!
!   Various array creation and other functions:

!   zeros, zeros_like, ones, ones_like, empty, empty_like
!   eye, identity, fromfunction, arange, linspace, logspace
!   dot, diag, clip, asarray

!   Everything else doesn’t exist

How to Use GAiN
Change one line in your script:
#import numpy
import ga.gain as numpy

Run using the MPI process manager:
$ mpiexec -np 4 python script.py

Go ahead and write something using NumPy! Do you have
an application already on your computer? Try to use
GAiN as shown above.

105

GA/GAiN Interoperability
!   gain.from_ga(g_a)

!   Won’t ga.destroy(g_a) when garbage collected
!   Allows custom data distributions

!   Block and block cyclic not currently supported by GAiN

Additional Examples to Try
1.  Write a NumPy code, run it serially, then convert it to use

GAiN.
2.  Use process groups with GAiN.
3.  Use process groups and ga.read_inc() with GAiN.
4.  Is GAiN missing something you need?? WRITE IT.

This is it, folks! Thank you!!
jeff.daily@pnnl.gov
hpctools@googlegroups.com
http://www.emsl.pnl.gov/docs/global/

