Code Region Based Auto-Tuning
gEnabIed Compilers °

"l‘u'

a'l

LCLLIE > ‘8 M. James Kalyanst

§
' 8
\" {499/ Xiang Wang
¥ 4 Ahmed Eltantawys$

HUAWEI ALBERTA Yaoqing Gao$

Motivation

Tuning
Oblivious
Compiler

Developer

W &

HUAWEI Xi5ERT

Motivation

Auto-Tuner

Tuning

Oblivious ‘éﬁ*mry \
Compiler

HUAWEI Xi5ERT

Up to 19.6% speedup over standard optimization
and 11.5% over coarse grained tuning

High-Level

Tuning Enabled Compiler Auto-Tuner

Recording | Applying

Tuning Tuning - ————————— SD?‘?\@? <
Opport. Config.

Tuning
OpportunitieS L c ccccccccccccccceea—-

W &

HUAWEI Xi5ERT

What is a code region?

Tuning Parameters

* Optimization pass selection/order
* Loop Unroll/peel count

* Machine scheduling policy

* Support for more additional tuning parameters was limited by
development time

Pass Pass Loop 1 Loop 2 Policy 2

IModule 1 2

Basic Block 1
Pass Pass

Policy 2
Basic Block 2

1 3
Module 2 su =

HUAWEI Xi5ERT

How to enable auto-tuning on code regions?

Code Region Auto-Tuning

(for the diagrammatically inclined)

-«

LLVM Tuning Auto-Tuner
: Configuration e
Auto-Tuning Support xml Input/Output Drivers
Recording Applying Manager Search
Tuning Tuning
Opport. Config. — XML
X Manager Measure
‘» XML Manager
A : ﬁB = Profiler _P_fT_Jro e
' ' Data
' v
@ Tuning SRR
i1 <code_region type="loop"> odgeixegion | _ . eeeeeceeee=
Opportunities cnameswhile.body</nane> | Identification
Xr'nl <file_name>main.cpp</file_name>
‘eeeeeee P <func_name>example_loop_region</func_name>

<start_line>16</start_line>

<end_line>19</end_line>

</code_region>

. &

HUAWEI

UNIVERSITY OF

ALBERTA

The tuned binary is compiled
and profiled, the performance
is given as feedback to the
search driver

Note: the dotted lines are
executed once per tuning run

Methodology

* We Dbuilt our tuning mechanism using:

e OpenTuner
e LLVM 4.0

e Search algorithms: OpenTuner’s built-in AUC Bandit meta-technique
cycling between:

 Differential Evolution, Random Nelder-Mead, Greedy Hill Climbing

* Results are shown on the industry benchmarks: CoreMark, HPCG,
and Livermore Loops, running on an x86 CPU

W &

HUAWEI Xi5ERT

10

http://opentuner.org/
https://www.eembc.org/coremark/
http://www.hpcg-benchmark.org/
https://www.netlib.org/benchmark/livermorec

Experimental Results (CoreMark)

Best Speedup
Description Cr urse Scope Fine 3cope
Over Coarse Over -02
Phase Ordering of optimization passes All modules Per modye 1.115x 1.196x
ordering (LLVM IR)
Loop Factor to unroll/peel loops by All loops Per lo¢ 1.036x 1.106x
unrolling/p (LLVM IR)
eeling
Machine Scheduling rule for instructions All basic blocks Per basic 1.001x 1.003x
scheduling (x86 machine IR) bloc
policy

Results for CoreMarK Onas

Y &

UNIVERSITY OF 11
HUAWEI 4] BERTA

Potential Speedup Expected Speedup

Experimental Results (others)

» HPCG

* 5% speedup over coarse grained while tuning loops

e Livermore Loops
e 2% speedup over coarse grained while tuning loops

W &

HUAWEI Xi5ERT

13

Related Work

* Code Region Oblivious Auto-Tuning
 Compiler as a black box

e Compiler Auto-Tuning Survey (2018)
* GCC flag tuning with CK-autotuning framework

* Isolated Code Region Based Auto-Tuning
* Predicting Unroll Factors Using Supervised Classification

* Code Region Based Auto-Tuning
* Region-Aware Multi-Objective Auto-Tuner for Parallel Programs (2017)

* Code region based thread count tuning for parallelization

W &

HUAWEI Xi5ERT

14

https://arxiv.org/abs/1801.04405
https://github.com/ctuning/ck-autotuning
http://groups.csail.mit.edu/commit/papers/05/stephensonm_supervised.pdf
https://ieeexplore.ieee.org/document/8026085

A new host of challenges

* RNN/RL approach for predicting compiler configurations

Future Work: Predictive Tuning Challenges

* Predict configurations for code regions of arbitrary type
* Features to describe any code region (while minimizing noise)

* Feature extraction (encompass code region and program info)
e Label vectors of variable size (pass sequences)
e Stage based tuning is remaining issue

¢ ICN

uuuuuuuuuuuu 16
HUAWEI 4] BERTA

Summary

* Problem:

* Current compiler auto-tuning methods are missing out on performance
peaks

* Approach:
* Enabled code region based (fine grained) tuning within the compiler

* Results:
* Observed speedup over standard optimization and coarse grained tuning

¢ ICN

HUAWEI Xi5ERT

17

