
†§ M. James Kalyan§†

Xiang Wang§

Ahmed Eltantawy§

Yaoqing Gao§

Code Region Based Auto-Tuning 
Enabled Compilers



Motivation

2

Developer

Binary



Motivation

3

Auto-Tuner

Binary



Approach

4

Auto-Tuner Tuning Aware 

Compiler

Binary

Up to 19.6% speedup over standard optimization
and 11.5% over coarse grained tuning



High-Level

5



Code Region Tuning

• Any segment of IR that can be 
independently optimized
• Loops
• Modules
• Basic Blocks

6

Code Region Based 
Auto-Tuning

What is a code region?



Module 1

Tuning Parameters
• Optimization pass selection/order
• Loop Unroll/peel count
• Machine scheduling policy 
• Support for more additional tuning parameters was limited by 

development time

7

Pass 
1

Pass 
2

Loop 1 Loop 2Loop 2Loop 2Loop 2Loop 1
Basic Block 1

Policy 1Policy 2

Module 2
Pass 

1
Pass 

3 Basic Block 2
Policy 1Policy 2



Code Region Auto-Tuning 

• Prerequisites:
• Identify the code regions of a given source and the 

possible optimizations on those code regions
• Auto-tune: automatically make optimization 

decisions about the code regions
• Apply the optimization decisions when compiling

8

This is what we call enabling the 
compiler for auto-tuning, which is 
a necessary step for code region 
based auto-tuning

How to enable auto-tuning on code regions?



Code Region Auto-Tuning
(for the diagrammatically inclined)

9

We penetrate LLVM’s pass 
analysis to record tuning 
opportunities (identify code 
regions)

The code regions are 
identified uniquely
The auto-tuner’s search 
algorithms make decisions 
about what optimizations to 
apply (auto-tuning)

These decisions are recorded 
as a tuning configuration in an 
xml format

The tuning configuration is read 
by the compiler and the correct 
optimizations are overridden

The tuned binary is compiled 
and profiled, the performance 
is given as feedback to the 
search driver

Note: the dotted lines are 
executed once per tuning run



Methodology

• We built our tuning mechanism using:
• OpenTuner
• LLVM 4.0

• Search algorithms: OpenTuner’s built-in AUC Bandit meta-technique 
cycling between:
• Differential Evolution, Random Nelder-Mead, Greedy Hill Climbing

• Results are shown on the industry benchmarks: CoreMark, HPCG, 
and Livermore Loops, running on an x86 CPU

10

http://opentuner.org/
https://www.eembc.org/coremark/
http://www.hpcg-benchmark.org/
https://www.netlib.org/benchmark/livermorec


Experimental Results (CoreMark)

11

Results for CoreMark on x86

Name Description Coarse Scope Fine Scope
Best Speedup

Over Coarse Over –O2
Phase

ordering
Ordering of optimization passes 

(LLVM IR)
All modules Per module 1.115x 1.196x

Loop 
unrolling/p

eeling

Factor to unroll/peel loops by
(LLVM IR)

All loops Per loop 1.036x 1.106x

Machine
scheduling 

policy

Scheduling rule for instructions 
(x86 machine IR)

All basic blocks Per basic 
block

1.001x 1.003x



Experimental Results (CoreMark)

12

Coarse

Fine

Iteration time = 
time(configuration choice)
+ time(compile)
+ time(runtime) ≈ 45s

Coarse

Fine

Loop Auto-Tuning
Module Auto-Tuning

Potential Speedup
-O2

Expected Speedup



Experimental Results (others)

• HPCG
• 5% speedup over coarse grained while tuning loops

• Livermore Loops
• 2% speedup over coarse grained while tuning loops

13



Related Work

• Code Region Oblivious Auto-Tuning
• Compiler as a black box
• Compiler Auto-Tuning Survey (2018)
• GCC flag tuning with CK-autotuning framework

• Isolated Code Region Based Auto-Tuning
• Predicting Unroll Factors Using Supervised Classification

• Code Region Based Auto-Tuning
• Region-Aware Multi-Objective Auto-Tuner for Parallel Programs (2017)
• Code region based thread count tuning for parallelization

14

https://arxiv.org/abs/1801.04405
https://github.com/ctuning/ck-autotuning
http://groups.csail.mit.edu/commit/papers/05/stephensonm_supervised.pdf
https://ieeexplore.ieee.org/document/8026085


Limitations/Future Work

• Have not identified/implemented many code regions or fine 
grained optimizations
• Support more code region types and optimizations

• Optimizations disrupt the IR—can lose track of CRIDs
• Auto-tuning stages

• Iterative compiler auto-tuning is time-expensive and must be done 
per program
• RNN/RL approach for predicting compiler configurations

15

A new host of challenges



Future Work: Predictive Tuning Challenges

• Predict configurations for code regions of arbitrary type
• Features to describe any code region (while minimizing noise)

• Feature extraction (encompass code region and program info)
• Label vectors of variable size (pass sequences)
• Stage based tuning is remaining issue

16



Summary

• Problem:
• Current compiler auto-tuning methods are missing out on performance 

peaks

• Approach:
• Enabled code region based (fine grained) tuning within the compiler

• Results:
• Observed speedup over standard optimization and coarse grained tuning

17


