
Large Scale Frequent Pattern Mining using MPI
One-Sided Model

Abhinav Vishnu1 and Khushbu Agarwal2
#1,2 Advanced Computing, Mathematics and Data Division,

Pacific Northwest National Laboratory,
902 Battelle Blvd, Richland, WA 99352

Abstract—In this paper, we propose a work-stealing runtime
— Library for Work Stealing (LibWS) — using MPI one-sided
model for designing scalable FP-Growth — de facto frequent pat-
tern mining algorithm — on large scale systems. LibWS provides
locality efficient and highly scalable work-stealing techniques
for load balancing on a variety of data distributions. We also
propose a novel communication algorithm for FP-growth data
exchange phase, which reduces the communication complexity
from state-of-the-art Θ(p) to Θ(f + p

f
), for p processes and f

frequent attributed-ids. FP-Growth is implemented using LibWS
and evaluated on several work distributions and support counts.
An experimental evaluation of the FP-Growth on LibWS using
4096 processes on an InfiniBand Cluster demonstrates excellent
efficiency for several work distributions (91% efficiency for
Power-law and 93% for Poisson). The proposed distributed FP-
Tree merging algorithm provides 38x communication speedup on
4096 cores.

I. INTRODUCTION

Machine Learning and Data Mining (MLDM) algorithms
are becoming increasingly important for data analysis due
to the exorbitant volume of data being generated today.
Frequent Pattern Mining (FPM) is an important area of
data mining, which is concerned with finding frequently co-
occurring attributes in a dataset. The intention of FPM is to
discover strong association rules between the attributes. FPM
has been applied to many tasks such as associations, corre-
lation, clusters, and classifiers. Many algorithms have been
proposed in the literature to scale FPM, such as Apriori [1],
FP-Growth [2], Eclat [3] and GenMax [4]. The FP-growth
algorithm has achieved significant attention in the community,
since it requires only two passes on the dataset. It also provides
a significant compression of the original dataset using an FP-
Tree structure — a modified prefix-tree.

The increasing data size and availability of distributed mem-
ory on supercomputers has resulted in several implementations
of parallel FP-Growth algorithm [5], [6], [7]. While these
approaches are efficient for balanced work-distributions and
small scale, little attention has been given to the load balancing
and communication bottlenecks of parallel FPM algorithms.
The data distribution of many real world datasets is non-
uniform (such as Poisson and power-law [8]). A skew in the
data-distribution can degrade the parallel efficiency signifi-
cantly. Functional programming paradigms such as MapRe-
duce [9] address this problem using a master-slave model.
However, these models incur significant data movement, due

to I/O to the mappers and reducers.
Among parallel FP-Growth implementations, Pramudiono

et al. have presented one of the first implementations of FP-
Growth on a cluster [10]. However, the authors have not
addressed the issue of communication complexity and load
balancing in their approach. Fang et al. have proposed and
implemented FP-Growth for GPUs [5]. However, the focus of
our research is large scale distributed memory systems, which
may not have GPUs. Li et al. have proposed a parallel FP-
Growth implementation using the Mapreduce framework [6].
However, their approach is customized to query recommenda-
tion, while our focus is optimizing the complete FP-Growth
algorithm. Buehrer et al. have proposed a scalable in-memory
implementation of parallel FP-Growth algorithm [7]. In their
approach, they concluded that communication and load bal-
ancing are the primary bottlenecks in parallel FP-Growth
algorithm. However, they did not propose any solutions.

A. Contributions

In this paper, we address the limitations stated above and
make the following contributions:
• A design of locality efficient work-stealing runtime (li-

brary for work-stealing - LibWS) using novel MPI-
Remote Memory Access (MPI-RMA) features. We design
a parallel FP-Growth algorithm using LibWS, which
provides load-balancing on multiple data distributions
among the processes. We consider several methods for
stealing work across different processes such as steal-
size selection, victim selection and scalable termination.
We implement LibWS using MPI3-RMA, which makes it
a scalable and performance portable solution. While we
demonstrate LibWS with FP-Growth, it can be readily
used for other MLDM and scientific algorithms.

• A communication efficient merging of distributed FP-
Trees: specifically the proposed algorithm reduces the
communication complexity to Θ(f + p

f), while the state-
of-the-art algorithm requires Θ(p) communication, for p
processes and f frequent attribute-ids.

• An implementation and evaluation of FP-Growth on
LibWS using 100 million samples with several work
distributions, support counts and number of cores. An
experimental evaluation using 4096 processes on an
InfiniBand cluster demonstrates an excellent efficiency
of FP-Growth on LibWS for several work distributions

(91% efficiency for Power-law and 93% for Poisson). The
proposed distributed FP-Tree merging algorithm provides
38x communication speedup on 4096 cores. We plan to
integrate the proposed software with Machine Learning
Toolkit for Extreme Scale (MaTEx) [11], [12] and make
it available for public use.

The rest of the paper is organized as follows: Section II
provides a background of the proposed work. Section III
provides the preliminaries for scaling the FP-Growth algorithm
on large scale systems. Section IV presents LibWS runtime
based on MPI-RMA for work-stealing specifically designed
for FP-Growth algorithm. Section V presents an algorithm
for reducing the communication complexity of merging dis-
tributed FP-Trees. Section VI presents an empirical evaluation,
section VII shows the related work, with section IX presenting
the conclusions of the proposed work.

II. BACKGROUND

A. FP-Growth Algorithm

The FP-Growth algorithm is a frequent pattern mining
algorithm, which requires precisely two-passes on the entire
dataset. The first pass is used to compute a list of frequently
occurring attribute-ids. The output of the first pass is an array
sorted in non-decreasing order of frequent attribute-ids, and
other associated data structures. These data structures are used
in the second pass to build an FP-Tree — a modified prefix
tree.

In the FP-Tree creation step, each sample is sorted in a
non-increasing order of frequently occurring attribute-ids. The
sorted sample is then inserted in the existing FP-Tree. The
output of the algorithm is the final FP-Tree, which can be
used for further data analysis.

Sample Output sample
1 a, c, d, f, g, i,m, p a, c, f,m, p
2 c, a, b, l, f,m, o a, c, f, b,m
3 j, o, b, f, h f, b
4 c, k, s, b, p c, b, p
5 k, a a
6 a, c, e, f, l,m, n, p a, c, f,m, p

TABLE I
A DATASET WITH 6 SAMPLES, 16 UNIQUE ATTRIBUTED-IDS (A -
P), (SUPPORT COUNT=50%: THE ATTRIBUTE-ID SHOULD OCCUR

IN AT LEAST 50% SAMPLES OF THE DATASET). THE OUTPUT
SAMPLE IS SORTED IN NON-DECREASING FREQUENCY OF

ATTRIBUTE-IDS

Table I shows an example of a dataset with six samples,
a support count of 50% and sorted samples with frequent
attribute-ids. The associated FP-Tree is created as shown in
the Figure 1.

B. Message Passing Interface (MPI)

MPI supports mailbox style communication using
MPI_Send and MPI_Recv primitives (several non-blocking
and other variants are also supported by MPI). MPI also
supports collective communication — primitives which allow
processes in a group to synchronize/exchange data. Examples

a	

c	

f	

m

b

p

m

f	

b

p

c	

b

Root	

3

3 1

2
2

2 2

1 1

1 1 4

Fig. 1. FP-Tree example, each edge is marked with the number of occurrences
of an attribute-id. Note that most frequent attribute-ids occur near the root,
while least frequent attribute-ids occur near the leaves

of collective communication are MPI_Bcast (single-root
broadcast), MPI_Barrier (control synchronization) and
MPI_Allreduce (reduction with the final result available
on all processes in the group). An interested reader is
encouraged to read MPI specification further [13], [14].
Several high performance MPI implementations are available
on modern interconnects such as InfiniBand, Cray Gemini
and IBM Blue Gene systems [15], [16], [17], [18], [19], [20],
[21].

1) One-sided Semantics: MPI-Remote Memory Access
(RMA): MPI One-sided model allows a process to expose
an area of memory for reading/update by other processes
in a group. MPI uses a window and optional attributes for
exchanging available address spaces. It is natural to con-
sider MPI-RMA to be an extension of CPU load/store in
distributed memory. MPI-RMA provides several one-sided
primitives such as MPI_Get, MPI_Put, which allow a
process to read and write data from other processes’ memory
asynchronously. MPI3-RMA provides atomic operations such
as MPI_Fetch_and_Op, which are critical in designing
LibWS. MPI-RMA supports two synchronization semantics
— active and passive. In active semantics, each process par-
ticipates during the data synchronization. In passive semantics,
the target process is not involved in synchronization. For true
asynchrony in data movement and work stealing, we leverage
the passive semantics in designing and implementing LibWS.

III. PARALLEL FP-GROWTH DESIGN: PRELIMINARIES

A. Definitions

A dataset has one or more samples, and each sample has one
or more attributes. Each attribute is identified by an attribute-
id. An example of a dataset, samples and attribute-ids is shown
in Table I. (For example, we say that the first sample’s 4th
attribute has an attribute-id f). An attribute-id is considered
frequent if its presence in the dataset exceeds a user-defined
support count. An attribute-id is present at most once in each
sample. Table II shows the parameters we use for modeling
the space and time complexity of the proposed solution.

B. Data Layout

Many real-world datasets are sparse in nature. Hence, we
use a compressed sparse row (CSR) representation of the

dataset.

Parameter Symbol
1 total process count p
2 Dataset D
3 number of frequent attribute-ids α
4 maximum attribute-id β
5 number of samples in the dataset n
6 Total occurrences of frequent attributes in pi fi

TABLE II
PARAMETERS FOR MODELING TIME AND SPACE COMPLEXITY OF THE

PROPOSED APPROACH

C. Finding Frequent Ones

The first step in the FP-Growth algorithm is calculating
the frequency count of each attribute-id in the dataset. Each
process calculates the frequency on its local portion of the par-
titioned dataset. To get the global frequency of each attribute-
id, we use an MPI_Allreduce at the end of this step.
Initially, the space complexity of this step is Θ(β), since we
need to track each attribute-id. After the MPI_Allreduce
step, the infrequent attribute-ids are eliminated, which reduces
the space complexity to Θ(α).

D. Speculative Elimination

We observe that with increasing support count, the proba-
bility that a sample has any frequent attribute-id decreases.
Recall, that each sample needs to be sorted in the non-
decreasing order of occurrence frequency of its attribute-ids
(Output sample column in Table I). Considering an approxi-
mately equal distribution of frequent attribute-ids to samples,
the probability that an attribute in a sample is frequent is
fi
|D|/p . When support count is high, fi � |D|. Hence, we
can avoid a memory copy of the sample to the FP-Tree, using
this probability.

Specifically, we iterate over the dataset, assuming that
finding a frequent attribute-id in a sample is unlikely. When
this assumption is a true-positive, we save a memory copy.
In case, the assumption is a false-positive, we simply copy
the remaining sample to the FP-Tree and merge it. Hence, we
never miss a frequent attribute-id, which keeps the accuracy
of the FP-Growth algorithm intact. Figure 2 shows this with
an example.

Fig. 2. Speculative Elimination: Reduces Memory Copy and Data Sorting

E. FP-Tree Merging Algorithm

The proposed merging approach is primarily based on the
FP-Growth algorithm described by Buehrer et al. [7]. In their
approach, they consider pruning of various FP-Tree branches
by distributing the frequent attribute-ids to the processes.

We explain this with an example as shown in Figure 3. Here
we consider three processes, such that the individual processes
are responsible for attribute-ids c, b and p, respectively. As
an example, one process (corresponding to left-most FP-Tree)
is able to prune several branches which do not have the
frequent attribute-id c. Specifically, an FP-Tree branch can be
pruned, if a process does not own the frequent attribute-id
corresponding to root of that branch. This reduces the space-
complexity incurred by each process, without loss of accuracy
(since every branch is present at least on one process). During
mining, any queries corresponding to the frequent attribute-id
are forwarded to the associated process.

a	

c	

f	

m

b

p

m

f	

b

p

c	

b

Root	

3

3 1

2
2

2 2

1 1

1 1 4

a	

c	

f	

m

b

p

m

f	

b

p

c	

b

Root	

3

3 1

2
2

2 2

1 1

1 1 4

a	

c	

f	

m

b

p

m

f	

b

p

c	

b

Root	

3

3 1

2
2

2 2

1 1

1 1 4

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

Fig. 3. An example of FP-Tree pruning, as suggested by Buehrer et al. [7]. An
an example, a process which owns the center tree can eliminate the branches
which do not contain b.

However, their approach uses a pointer-based FP-Tree rep-
resentation. To alleviate this limitation, we first present a
merging algorithm based on a compact-array representation of
the FP-Trees, which can take better advantage of the memory
hierarchy [22]. A compact-array representation eliminates the
need for tree serialization and deserialization — required
during the merge of distributed FP-Trees.

Algorithm 1 shows the steps in merging two samples
(either of these samples may be an existing FP-Tree). In
brief, the merging of two samples is conducted by comparing
the attribute-ids at each index. In case, one of the sample
size is zero (s1 == 0 or s2 == 0), the other sample
is returned as output. If the attribute-ids match (t1[i1] ==
t2[i2]), their frequencies are added to resulting FP-Tree. Oth-
erwise, relative ranks of the attribute-ids are computed using
a FindRelRank function (relative rank is non-decreasing
order of attribute-id frequency in the dataset) and the subtree
under the higher frequency attribute-id is appended to the
resulting tree. If one sample size is smaller than the other,
the remaining sample is simply copied to the output FP-Tree
(while(i1 < s1) or while(i2 < s2)).

Algorithm 1: FP-Tree Merge
Input: first sample t1, first sample size s1, second

sample t2, second sample size s2, resulting
tree r

Procedure LFPMERGE(t1, s1, t2, s2, r)
if s1 == 0 then

r ← t2,return(s2);
end
if s2 == 0 then

r ← t1,return(s1);
end
i1← 0, i2← 0, i← 0;
while (i1 < s1) & (i2 < s2) do

if t1[i1] == t2[i2] then
r[i].l← t1[i1].l;
r[i].f ← t1[i1].f + t2[i2].f ;
i1← i1 + 1, i2← i2 + 1, i← i+ 1;

else
FindRelRank (t1[i1], t2[i2], r1, r2);
mergeNodes← AppendSubTree
(t1, i1, r1, t2, i2, r2, r);
i← i+mergeNodes;

end
end
while (i1 < s1) do

r[i].l← t1[i1].l;
r[i].f ← t1[i1].f ;
i1← i1 + 1, i← i+ 1;

end
while (i2 < s2) do

r[i].l← t2[i1].l;
r[i].f ← t2[i2].f ;
i2← i2 + 1, i← i+ 1 ;

end
return(i);

Procedure FindRelRank(t1i1, t2i2, r1, r2)
r1← rank[t1i1];
r2← rank[t2i2];

IV. LIBWS AND FP-GROWTH IMPLEMENTATION

Several languages/libraries such as X10 [23], Chapel [24],
Co-Array Fortran [25], and Active Pebbles [26] provide a
framework for work-stealing. At the same time, Hadoop and
SPARK [27] provide functional programming constructs for
designing fault tolerant MLDM algorithms [27].

However, with recent proposition of MPI3-RMA, it is pos-
sible to design and implement a work-stealing runtime which
provides scalable, and portable performance as indicated by
Hoefler et al. [28]. In addition, with the recently proposed
algorithms for fault tolerant MPI-RMA [29], it is natural to
consider MPI-RMA as the choice for designing LibWS.

There are several advantages of using MPI3-RMA as the
back-end for designing and implementing LibWS. MPI is an
industry standard with strong support from industry vendors —

a primary reason for expecting portable performance. Using
a library instead of a language for work-stealing can result
in better performance in practice, as recently observed with
UPC++ [30].

A. LibWS Requirements

An ideal work-stealing runtime should scale well for an
arbitrary work distribution such as random, balanced or power-
law. Another important characteristic of the runtime should
be to maximize locality — it should complete as much local
work as possible (work first), before helping other processes
with their computation. It should have scalable termination
mechanism and victim (process where the work is stolen
from) selection, while providing asynchronous movement of
work, without an explicit involvement of the victim for data
movement. The last step is critical, since the victim is involved
in its own computation. We consider each of these design
elements in implmenting LibWS.

B. Initial Conditions

Algorithm 2 shows the steps in setting up the initial
conditions. In LibWS, each each process is classified as a
thief or victim. Specifically, Wavg ∈ Θ(|D|p), where Wavg

represents average work and |D| represents the size of the
dataset. However, the work computed by each process is
∈ Θ(fpi). In essence, Wpi ∈ Θ(fpi), where (fpi) depends up
on the property of the dataset and/or data distribution itself.
Hence, each process can be classified as a thief or a victim:
pi ∈ V ⇐⇒ Wpi ≥ Wavg, otherwise pi ∈ T . where V and
T , represent victim and thief processes set, respectively.

In LibWS, Wpi is locally calculated (section III-C) and
Wavg is calculated using MPI_Allreduce. For a process
pi ∈ V , the work indices are exchanged and cached using
MPI_Allgather. The contribution from the thieves is zero.
At the completion of this step, each process has the set of
victims, and an associated hashmap of work indices — the
start and end indices of work exposed by the victim. After
the MPI_Allgather step, the space requirement for the
hashmap is O(|V|).

C. Victim Selection

Once the initial conditions are setup, each process pi
uses a work-first policy for completing as much local work
as possible, before stealing any work from victims. A few
possibilities for victim selection are presented below:

1) Work-Size Sorted: In this policy, each thief sorts the
victims in the non-increasing order of contributed work-size.
This approach is intuitive, since thieves initiate work-stealing
on the victims in the sorted order, as soon as they have
completed their local work. A potential problem with this
approach is that the victims may become a bottleneck, since
thieves select the victim in a well-defined order. Specifically,
considering a power-law distribution of fi, a few victims
may suffer from severe network contention at the end-points.
Hence, it is important to consider other approaches for victim
selection.

Algorithm 2: Locality Aware Load Balancing Li-
brary and Application to FP-Growth

Procedure SetupInitConditions(pi)
(//Use MPI Allreduce to calculate relative
load, gwork: global work, lwork: local work
and cwork: work contributed to
work-stealing);
gwork ←Allreduce (lwork, p);

(// λpi is an array with two indices: λpi [0] is
start-index and λpi [1] is the end-index of the
samples owned by pi that are candidates for
work-stealing); if gwork

p > lwork then

(// Local work is less than average
=⇒ ∈ T)
cwork ← 0, λpi [0]← 0, λpi [1]← 0;

else
(// Local work is greater than average
=⇒ ∈ V);
cwork ← lwork − gwork

p ;
λpi [0]← gwork

p , λpi [1]← lwork;
end

(//Use MPI Allgather to find global victims)
V ← Allgather (cwork, p);
Sort (V);
while (lwork) do

(// Merge the local work in existing tree,
each process completes local work before
entering work stealing);
LFPMERGE(. . .);

end

(// Add yourself to the victim set for
facilitating terminating condition);
V ← V ∪ pi;

Procedure CheckTerminate(v, pi)
if |V| == 0 & λpi [0] > λpi [1] then

return(true);
else

(return the first process from victim set)
v ← V0;
return(false);

end

2) Locality Aware: Locality aware work-stealing has a
significant potential in alleviating the network contention at the
victims. In locality aware work stealing, victims co-located on
the same node are first searched for work. Remaining victims
are selected using the work-size sorted approach presented
above.

3) Random: Random work-stealing has proven to be a
successful policy for several computation kernels. Random
work stealing has the potential to alleviate network bottle-
necks, since the victims are not selected in any particular
order. However, it may increase the number of network
requests, especially when the work exposed by the victims
diminishes. We implement random work stealing in LibWS
using srand(time(NULL)) as the key.

D. Work-size Selection

Work-size — unit of stolen work — selection has the po-
tential to reduce the overall communication time, and address
the degree of load-imbalance. In LibWS, we consider several
approaches for selecting a work-size. They are presented
below:

1) Fixed: Let wpi represent the unit of stolen work. A fixed
value of wpi is helpful in detecting termination, and gives a
fair chance to each thief for stealing work from victims. A
larger value of wpi can result in starvation for other thieves,
as they may generate many futile requests (aborted steals)
for stealing work. Similarly, a smaller wpi can significantly
increase the number of network requests. In LibWS, we
consider two parameters — communication overhead and the
average amount of work to be completed by each process —
for work-size selection. They are presented below.

2) Communication Overhead Driven: Communication
overhead, typically modeled using LogGP[31] is an important
factor for consideration in work-stealing. A careful analysis of
the communication overhead is required to reduce the overall
cost of communication to computation. Let tpi represent
the overall time spent by process pi in work-stealing and
building FP-Tree. Then tLFP (d)pi

— FP-Tree merge time with
d[1]− d[0] (Algorithm 3) — is expected to be tavg · d[1]−d[0][r[1]−r[0] ,
where tavg is the average time taken for inserting a sample in
an existing FP-Tree. The communication time is the sum of
(l+ (r[1]− r[0]) ·G) (row-pointer) and (l+ (d[1]− d[0]) ·G)
(dataset), using the logGP model (ignoring the time for w).
An acceptable ratio of communication to computation can be
decided by the user. Specifically, in LibWS, we use 0.1 to
be the acceptable overhead, which is then used to select the
work-size.

3) Wavg Bounded Work Unit: For balanced datasets, each
process completes Wavg amount of work. An ideal runtime
should strive to ensure that each process completes Wavg ,
irrespective of the work distribution. In this technique for
work-size selection, pi ∈ T steals as much work as possible,
such that its overall work is approximately Wavg . Depending
up on the work-distribution this objective may require many
steals. As an example, for power-law distribution — most
processes are thieves, and few are victims — this objective
can be achieved by a few steal attempts. For more balanced
workloads, this may take a significant number of work steals.

An advantage of this approach is that it has the potential to
reduce the overall time spent in communication. The primary
downside of this approach is at the ramp-down phase (when
there is little work left in the system), where the number

of aborted steals may increase. The other problem with this
approach is that it assumes that the cost of inserting a sample
in existing FP-Tree is constant. However, the cost of insertion
is dependent up on the size of existing FP-Tree (algorithm 1).
Hence, this approach is necessary, but insufficient in address-
ing the load-imbalance issue effectively.

E. Scalable Termination

In work stealing, each process must determine when to
abort stealing more work from victims. Specifically, in FP-
Growth algorithm,Wavg can be used as an indicator to stealing
more work. For correctness, each process must enter control
synchronization (such as MPI_Barrier), after ensuring that
the locally exposed work for load-balancing is complete. In
LibWS, each process adds itself in the victim set to guarantee
this property. While this approach is simple, it does not nec-
essarily provide the best load-balancing. As presented earlier,
the cost of insertion in an FP-Tree is not constant, hence
this approach may be sub-optimal. An alternative approach is
to exhaust the victim set, as shown in CheckTerminate
(Algorithm 3). This approach provides a method for max-
imizing load-balancing, especially for large datasets, where
the cost of insertion in FP-Tree cannot be predicted statically.
However, this approach can result in significant aborted steals
— especially when victim set if large.

We address this issue by proposing a novel termination
detection approach. For each victim and work-size selection
approach, a process first completes Wavg amount of work.
After this, it shuffles the victim set and looks for a communi-
cation overhead driven work from a small subset of victims.
Specifically, we use an upper bound to be log (V). This allows
us to balance the remaining-work without actually looking at
the entire victim set.

F. Putting it All Together: Implementation Details

We implement LibWS using MPI-RMA, especially lever-
aging its MPI3 features such as MPI_Fetch_and_Op. We
create three separate windows (winindices) for work-stealing,
(winrow) for row-pointer and (windata) for dataset. Recall,
that passive MPI one-sided semantics require a process to call
MPI_Unlock for ensuring that the data is available locally.
For extracting further performance, we use hints for MPI
windows such as SHARED to improve the performance of
MPI_Get and MPI_Fetch_and_Op primitives.

V. SCALABLE MERGE OF DISTRIBUTED FP-TREES:
HIERARCHICAL RINGS

In the previous section, we proposed LibWS for building
local FP-Tree. In this section, we present the limitations of
existing work in merging distributed FP-Trees and propose a
novel communication method to merge these FP-Trees.

The approach proposed by Buehrer et al. [7] uses a ring
algorithm for merging distributed FP-Trees. This algorithm is
shown in Figure 4. In their approach, they assign a set of
frequent attribute-ids to each process, such that they store the
branches associated with only those attribute-ids (Figure 3).

Algorithm 3: LibWS and FP-Growth Imple-
mentation

Procedure LibWS(a)
SetupInitConditions(pi)
(// setup the initial conditions)
k ←CheckTerminate(v, pi);
while k == false do

(// get the work size) w ←
WorkSize();
(// atomically update the load
balance counter on the victim,
implemented using MPI Fetch Op,
λv[1] cached during
MPI_Allgather, s is the start index
of work steal);
Lock (v, winindices);
s← FetchOp(v, w);
Unlock (v, winindices);
if (s < λv[1]) then

(// Work available, steal equal to
the w or λ[1], whichever is lesser)
w ← Min (w, λv[1]− s);

(// Get the associated row
pointer: r);
Lock (v, winrow);
r ← Get (s, s+ w);
Unlock (v, winrow);

(// Get the associated dataset:
d);
Lock (v, windata);
d← Get (r[0], r[1]);
Unlock (v, windata);

(// Call the LFPMERGE
algorithm);
sizemerged ←LFPMERGE
(d, d[1]− d[0], torig, sizeorig, tmerged);

torig ← tmerged;
sizeorig ← sizemerged;

else
(remove v from V);
V ← V − v;

end
k ←CheckTerminate(v, pi);

end

The other branches are simply pruned, which reduces the
overall space complexity of the solution. During the merge
step, the ring algorithm is used to communicate the local FP-
Trees. When a process receives an FP-Tree, it prunes the tree

p3	

p2	

p7	

p1	

p5	

p0	 p4	

p6	

α1

α2

α0

α0

α1

α0

α1

α2

Fig. 4. An example of merging
distributed FP-Trees with 8 pro-
cesses and 3 frequent attribute-ids.

p3	

p2	

p7	

p1	

p5	

p0	 p4	

p6	

α1

α2

α0

α0

α1

α0

α1

α2

Fig. 5. The first step of proposed
hierarchical rings for merging dis-
tributed FP-Trees.

p3	

p2	

p7	

p1	

p5	

p0	 p4	

p6	

α1

α2

α0

α0

α1

α0

α1

α2

Fig. 6. The second step of pro-
posed hierarchical rings for merg-
ing distributed FP-Trees.

using its attribute-ids as the key. It then merges the pruned
tree in its FP-Tree. Specifically, when α ≥ p, each process
pi is responsible for ≈ α

p attribute-ids. The communication
complexity of such an algorithm is Θ(p). This approach works
efficiently when α ≥ p. However, with strong scaling and/or a
high support count, each process has a diminishing number of
frequent attribute-ids assigned to itself. In many cases, p > α.
In this scenario, each process is responsible for at most one
frequent attribute-id and the original algorithm [7] would still
use a Θ(p) algorithm.

We propose a new method to merge distributed FP-Trees
for this scenario. In this approach, each process is responsible
for exactly one frequent attribute-id. Since p > α, the same
frequent attribute-id is replicated on p

α processes. Hence,
for each process, there is a group of processes, which have
the same frequent attribute-id. Hence, the overall merging
algorithm can be split in two steps: In the first step, a ring of
processes with disjoint attribute-ids exchange their FP-Trees.
In the second step, another ring of processes, which have
identical frequent attribute-id exchange the trees. Since the
ring communication occurs at two levels, we call our approach
hierarchical rings.

Figure 4 shows the original algorithm with an example of
8 processes and 3 frequent attribute-ids. Figures 5 and 6 show
the first and second merge steps, respectively of the proposed
merging algorithm. Further details are presented here:

1) Merge with Disjoint Frequent attribute-ids: The first
step is to create a process ring of the disjoint frequent
attribute-ids and merge their respective FP-Trees. Recall,
that a frequent attribute-id is replicated at most p

α times.
A ring in this step has p

α groups with process ranks from
0 . . . α︸ ︷︷ ︸, α+ 1 . . . 2 · α︸ ︷︷ ︸, . . . , α p

α
. . . p− 1︸ ︷︷ ︸. Let (sd) be the av-

erage size of FP-tree, which is contributed by each process.
Using LogGP model, the communication complexity of this
step is (l + sd ·G) · α ∈ Θ(α)

2) Merge with Identical Frequent attribute-ids: The sec-
ond step is to merge the FP-Trees of the processes,

which have identical frequent attribute-id. The number of
processes in this group is Θ(pα). For each group, fol-
lowing processes are involved in the ring communica-
tion: 0, α, 2 · α . . .︸ ︷︷ ︸, 1, α+ 1 . . .︸ ︷︷ ︸. The FP-Trees are exchanged

using MPI_Isend, MPI_Irecv, and MPI_Waitall
routines to overlap the communication as much as possible.
The expected communication time of this step is (l+sr ·G)· pα ,
where sr is the average communication size during each step.

As a result, the combined time complexity of the distributed
FP-Tree merging is Θ(α + p

α). A local minima in the com-
munication time is observed when α←

√
(p).

VI. PERFORMANCE EVALUATION

A. Setup

1) Experimental Testbed: We use PNNL Constance su-
percomputer for performance evaluation. PNNL Constance
consists of 300 Intel Haswell-based nodes in quad form. Each
node features dual-socket Intel Haswell E5-2670v3 (12-core-
per-socket, running at 2.3 GHz) with 64 GB of 2133 MHz
ECC memory, an FDR Infiniband network card, and 480 GB
local solid-state drive disk storage.

2) Datasets: We use the IBM Quest dataset generator
for creating the datasets. The IBM Quest dataset generator
represents the samples in several domains [7], [32], [4], [5],
[33], [10]. This generator allows us to use very large datasets,
while representing a broad category of domains. We generate
up to 100 Million samples, with an average of 20 attributes per
sample. A total of 1000 attribute-ids are used for generating
the dataset.

3) Work Distribution: We use several non-uniform data
distributions to emulate load-imbalance between processes:
balanced, Poisson and power-law. The de facto work distri-
bution is balanced. For Poisson work distribution we use µ
≈ to be the average work completed by each process in the
balanced case. For power-law distribution, we use τ as 1.1.

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

O
ri

g
in

al

O
p

ti
m

iz
ed

O
ri

g
in

al

O
p

ti
m

iz
ed

O
ri

g
in

al

O
p

ti
m

iz
ed

O
ri

g
in

al

O
p

ti
m

iz
ed

E
x

ec
u

ti
o

n
 T

im
e(

m
s)

of cores

512 1,024 2,048 4,096

Dist. Tree Merge Time

FP−Tree Time

Finding Freq Ones

Fig. 7. Impact of Speculative Elimination (1%
Support);strong scaling with 100M samples. Dis-
tributed FP-Trees are merged using Buehrer’s al-
gorithm [7]

 0

 5,000

 10,000

 15,000

 20,000

 25,000

O
ri

g
in

al

O
p

ti
m

iz
ed

O
ri

g
in

al

O
p

ti
m

iz
ed

O
ri

g
in

al

O
p

ti
m

iz
ed

O
ri

g
in

al

O
p

ti
m

iz
ed

E
x

ec
u

ti
o

n
 T

im
e(

m
s)

of cores

512 1,024 2,048 4,096

Dist. Tree Merge Time

FP−Tree Time

Finding Freq Ones

Fig. 8. Impact of Speculative Elimination (3%
Support);strong scaling with 100M samples. Dis-
tributed FP-Trees are merged using Buehrer’s al-
gorithm [7]

 0

 5

 10

 15

 20

 25

 30

 35

 40

1K 4K

R
e

la
ti
v
e

 C
o

m
m

u
n

ic
a

ti
o

n
 S

p
e

e
d

u
p

of cores

0.1% support
1% support
3% support

Fig. 9. Relative Communication Speedup to state-
of-the-art Buehrer’s algorithm [7]

B. Performance with Preliminary Optimizations

Figures 7 and 8 show the performance of the proposed FP-
Growth algorithm on 1% and 3% support, respectively. We use
the balanced work-distribution and compare the performance
of speculative elimination with the default approach.

We observe that the overhead of finding frequent ones
decreases linearly with the number of processes. However, it
is a small fraction in comparison to the FP-Tree build phase.
We can also observe the impact of speculative elimination
which reduces the time for FP-Tree build phase significantly.
Specifically, for 512 processes on 1% support, the speedup
with a simple, yet effective technique is ≈ 1.3x. For 3%
support count, the speedup is better, as expected.

With strong scaling, we observe two trends: the time to build
the local FP-Tree (blue) reduces, and the time for exchanging
the distributed FP-Trees (yellow) increases. As evident from
Figures 7 and 8, communication time is negligible for 512 pro-
cesses, but dominant on 4096 cores. In each of these charts, we
have used the original merging algorithm [7]. This indicates
that the proposed merging algorithm — which reduces the
theoretical time complexity — has a potential to reduce the
communication time. We show the actual performance results
in the later part of the section.

C. LibWS Performance Evaluation with FP-Growth

Table III shows the symbols for victim selection and work-
size selection approaches considered in this paper. There are
ten possible combinations including balanced case.

Approach Symbol Impl. (y/n) Eval (y/n)
3 Random WS Ra y y
4 Locality WS Lo y y
5 Sorted WS So y y
6 Fixed Chunk Fi y y
7 Comm. Overhead Ov y y
8 Wavg Av y y

TABLE III
VICTIM/WORK-SIZE APPROACHES CONSIDERED IN THIS PAPER AND

THEIR IMPLEMENTATIONS: A COMBINATION OF SEVERAL APPROACHES IS
CONSIDERED AS ONE CHOICE. AS AN EXAMPLE, RANDOM

WORK-STEALING AND FIXED CHUNK WOULD BE RA-FI

1) Performance with Power-Law Distribution: Figure 10
shows the performance with power-law load imbalance. A
few processes have significant work, while others have very
amount of work — due to long tail — for LFPMERGE.
We observe that victim selection makes little difference to
performance, since number of victims is small. The work-
size selection makes a significant difference. We observe that
*-Av approaches do very well. We expect this because this
approach utilizes network bandwidth very well. The proposed
termination policy ensures that using an additional few steals
actually alleviates the issue of assuming a constant overhead
of inserting a sample in an FP-Tree. We also observe that
*-Ov approaches are worse, especially because a small mis-
prediction in communication overhead escalates the relative
communication to computation time. The *-Fi approaches are
worst, since their communication overhead is the highest. In
comparison to the balanced case — which is the baseline, we
achieve 87% efficiency on 4096 processes.

2) Performance with Poisson Distribution: Figure 11 shows
the results with Poisson distribution. The number of victims
with Poisson distribution is much higher in comparison to
power-law distribution. Hence, the victim selection makes
a significant difference here. While we expected that Lo-*
approaches would be the best, the results indicate otherwise.
We attribute this to the fact that even with this distribution, the
number of locally available victims are small (zero in many
cases). Hence, this approach reduces to So-* based victim
selection. In fact, Ra-* based approaches are the best, since
they mitigate network contention better than So-* based victim
selection. We also observe that *-Av work-size selection is
the best. This can be explained using the argument presented
for power-law distribution. In comparison to the balanced
baseline, we achieve 91% efficiency for 4096 processes.

D. Impact of Hierarchical Communication Rings

Figure 9 shows the relative communication speedup of
the proposed hierarchical rings algorithm to Buehrer’s algo-
rithm [7]. We observe that with an exception of very low
support count (0.1%), the benefits of the proposed approach
are realized for increasing scale. At 4096 cores, the relative
communication speedup is 38x and 13x for 3% and 1%

support counts, respectively. We expect similar speedups in
communication with increasing scale (and increasing dataset
sizes as well).

VII. RELATED WORK

Several attempts have been made to study the perfor-
mance and provide parallel design and implementations of
the FP-Growth Algorithm. Ghoting et al. have studied the
performance implications of data layout and data re-use in
FP-Growth, GenMax and Apriori algorithm [22]. However,
these algorithms are sequential. Pramudiono et al. have pre-
sented one of the first implementations of FP-Growth on
a cluster [10]. Li et al. have proposed parallel FP-Growth
implementation using Mapreduce framework [6]. However,
their primary target is query recommendation, and it does
not solve the generic problem undertaken by the FP-Growth
algorithm. Buehrer et al. have also proposed scalable design
of FP-Growth algorithm [7]. In that design, Buehere et al.
have presented problems with communication and load bal-
ancing in FP-Growth algorithm. However, no algorithms have
been proposed to improve the load balancing. Our approach
is similar to Buehrer’s approach, with major contributions
to load balance the FP-Tree generation phase, minimizing
space complexity in load balancing and improving the merge
phase significantly in comparison to the previously proposed
approaches.

VIII. ACKNOWLEDGEMENT

The research described in this paper is part of the Analysis
in Motion Initiative at Pacific Northwest National Laboratory.
It was conducted under the Laboratory Directed Research and
Development Program at PNNL, a multi-program national
laboratory operated by Battelle for the U.S. Department of
Energy.

IX. CONCLUSIONS

In this paper, we have proposed a work-stealing runtime
— Library for Work Stealing (LibWS) — using MPI one-
sided model for designing scalable FP-Growth — de facto
frequent pattern mining algorithm — on large scale systems.
LibWS provides locality efficient and highly scalable work-
stealing approaches for load balancing on a variety of data
distributions. We have also proposed a novel communication
algorithm for FP-growth data exchange phase, which reduces
the communication complexity from state-of-the-art Θ(p) to
Θ(f + p

f), for p processes and f frequent attributed-ids.
FP-Growth is implemented using LibWS and evaluated on
several work distributions and support counts. An experimental
evaluation of the FP-Growth on LibWS using 4096 processes
on an InfiniBand Cluster demonstrates excellent efficiency
for several work distributions (91% efficiency for Power-
law and 93% for Poisson). The proposed distributed FP-Tree
merging algorithm provides 38x communication speedup on
4096 cores.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proceedings of the 20th International Conference
on Very Large Data Bases, ser. VLDB ’94, 1994, pp. 487–499.

[2] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” SIGMOD Rec., vol. 29, no. 2, pp. 1–12, May 2000.

[3] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “Parallel algorithms
for discovery of association rules,” Data Min. Knowl. Discov., vol. 1,
no. 4, pp. 343–373, 1997.

[4] K. Gouda and M. J. Zaki, “Genmax: An efficient algorithm for mining
maximal frequent itemsets,” Data Min. Knowl. Discov., vol. 11, no. 3,
pp. 223–242, Nov. 2005.

[5] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo, “Frequent itemset
mining on graphics processors,” in Proceedings of the Fifth International
Workshop on Data Management on New Hardware, ser. DaMoN ’09,
2009, pp. 34–42.

[6] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “Pfp: parallel
fp-growth for query recommendation,” in Proceedings of the 2008 ACM
conference on Recommender systems, ser. RecSys ’08, 2008, pp. 107–
114.

[7] G. Buehrer, S. Parthasarathy, S. Tatikonda, T. Kurc, and J. Saltz,
“Toward terabyte pattern mining: an architecture-conscious solution,”
in Proceedings of the 12th ACM SIGPLAN symposium on Principles
and practice of parallel programming, ser. PPoPP ’07, 2007, pp. 2–12.

[8] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law
distributions in empirical data,” SIAM Rev., vol. 51, no. 4, pp. 661–703,
Nov. 2009. [Online]. Available: http://dx.doi.org/10.1137/070710111

[9] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[10] I. Pramudiono and M. Kitsuregawa, “Parallel fp-growth on pc cluster,”
in Proceedings of the 7th Pacific-Asia conference on Advances in
knowledge discovery and data mining, ser. PAKDD’03, 2003, pp. 467–
473.

[11] MaTEx, “Machine Learning Toolkit for Extreme Scale.” [Online].
Available: http://hpc.pnl.gov/matex

[12] J. Narasimhan, A. Vishnu, L. Holder, and A. Hoisie, “Fast support
vector machines using parallel adaptive shrinking on distributed
systems,” CoRR, vol. abs/1406.5161, 2014. [Online]. Available:
http://arxiv.org/abs/1406.5161

[13] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance,
Portable Implementation of the MPI Message Passing Interface Stan-
dard,” Parallel Computing, vol. 22, no. 6, pp. 789–828, 1996.

[14] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. L. Lusk,
W. Saphir, T. Skjellum, and M. Snir, “MPI-2: Extending the message-
passing interface,” in Euro-Par, Vol. I, 1996, pp. 128–135.

[15] A. Vishnu and M. Krishnan, “Efficient On-demand Connection Manage-
ment Protocols with PGAS Models over InfiniBand,” in International
Conference on Cluster, Cloud and Grid Computing, 2010.

[16] A. Vishnu and D. K. P. M. K. Krishnan, “A Hardware-Software
Approach to Network Fault Tolerance wwith InfiniBand Cluster,” in
International Conference on Cluster Computing, 2009, pp. 479–486.

[17] A. Vishnu, B. Benton, and D. K. Panda, “High Performance MPI on
IBM 12x InfiniBand Architecture,” in International Workshop on High-
Level Parallel Programming Models and Supportive Environments, held
in conjunction with IPDPS ’07 (HIPS’07), 2007.

[18] A. Vishnu, A. Mamidala, S. Narravula, and D. K. Panda, “Automatic
Path Migration over InfiniBand: Early Experiences,” in Proceedings
of Third International Workshop on System Management Techniques,
Processes, and Services, held in conjunction with IPDPS’07, March
2007.

[19] J. Dinan, S. Krishnamoorthy, P. Balaji, J. R. Hammond, M. Krishnan,
V. Tipparaju, and A. Vishnu, “Noncollective communicator creation
in mpi,” in Proceedings of the 18th European MPI Users’ Group
Conference on Recent Advances in the Message Passing Interface, ser.
EuroMPI’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 282–291.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2042476.2042508

[20] P. Balaji, R. Gupta, A. Vishnu, and P. Beckman, “Mapping
communication layouts to network hardware characteristics on massive-
scale blue gene systems,” Comput. Sci., vol. 26, no. 3-4, pp. 247–256,
Jun. 2011. [Online]. Available: http://dx.doi.org/10.1007/s00450-011-
0168-y

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

R
a−

F
i

S
o

−
F

i

L
o

−
F

i

R
a−

O
v

S
o

−
O

v

L
o

−
O

v

R
a−

A
v

S
o

−
A

v

L
o

−
A

v

b
al

an
ce

d

R
a−

F
i

S
o

−
F

i

L
o

−
F

i

R
a−

O
v

S
o

−
O

v

L
o

−
O

v

R
a−

A
v

S
o

−
A

v

L
o

−
A

v

b
al

an
ce

d

E
x

ec
u

ti
o

n
 T

im
e(

m
s)

of cores

2,048 4,096

Dist. Tree Merge Time

FP−Tree Time

Finding Freq Ones

Fig. 10. Performance of FP-Growth on LibWS using Power-law
distribution, 1% support count on 100M samples. Hierarchical rings
are used to improve the communication time

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

L
o

−
A

v

L
o

−
F

i

L
o

−
O

v

R
a−

A
v

R
a−

F
i

R
a−

O
v

S
o

−
A

v

S
o

−
F

i

S
o

−
O

v

b
al

an
ce

d

L
o

−
A

v

L
o

−
F

i

L
o

−
O

v

R
a−

A
v

R
a−

F
i

R
a−

O
v

S
o

−
A

v

S
o

−
F

i

S
o

−
O

v

b
al

an
ce

d

E
x

ec
u

ti
o

n
 T

im
e(

m
s)

of cores

2,048 4,096

Dist. Tree Merge Time

FP−Tree Time

Finding Freq Ones

Fig. 11. Performance of FP-Growth on LibWS using Poisson
distribution, 1% support count on 100M samples. Hierarchical rings
are used to improve the communication time

[21] S. Narravula, A. Marnidala, A. Vishnu, K. Vaidyanathan, and D. K.
Panda, “High performance distributed lock management services using
network-based remote atomic operations.” in CCGRID, 2007, pp. 583–
590.

[22] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. D. Nguyen, Y.-
K. Chen, and P. Dubey, “Cache-conscious frequent pattern mining on a
modern processor,” in VLDB, 2005, pp. 577–588.

[23] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An Object-Oriented
Approach to Non-Uniform Cluster Computing,” in OOPSLA ’05: Pro-
ceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. ACM,
2005, pp. 519–538.

[24] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability
and the Chapel Language,” International Journal on High Performance
Computing Applications, vol. 21, no. 3, pp. 291–312, 2007.

[25] R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,”
SIGPLAN Fortran Forum, vol. 17, pp. 1–31, August 1998.

[26] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “Active
pebbles: Parallel programming for data-driven applications,” in Proceed-
ings of the International Conference on Supercomputing, ser. ICS ’11,
2011, pp. 235–244.

[27] SPARK, “Lightning Fast Cluster Computing.”
[28] R. Gerstenberger, M. Besta, and T. Hoefler, “Enabling Highly-Scalable

Remote Memory Access Programming with MPI-3 One Sided,” in
IEEE/ACM International Conference on High Performance Computing,
Networking, Storage and Analysis (SC13), Nov. 2013, pp. 53:1–53:12.

[29] M. Besta and T. Hoefler, “Fault Tolerance for Remote Memory Access
Programming Models,” in Proceedings of the 23rd ACM International
Symposium on High-Performance Parallel and Distributed Computing
(HPDC’14), Jun. 2014.

[30] Y. Zheng, A. Kamil, M. Driscoll, H. Shan, and K. Yelick, “Upc++:
A pgas extension for c++,” in Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, May 2014, pp. 1105–1114.

[31] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman, “Loggp:
Incorporating long messages into the logp model — one step closer
towards a realistic model for parallel computation,” Santa Barbara, CA,
USA, Tech. Rep., 1995.

[32] K.-M. Yu and S.-H. Wu, “An efficient load balancing multi-core frequent
patterns mining algorithm,” in Trust, Security and Privacy in Computing
and Communications (TrustCom), 2011 IEEE 10th International Con-
ference on, Nov 2011, pp. 1408–1412.

[33] G. Buehrer, S. Parthasarathy, and A. Ghoting, “Out-of-core frequent
pattern mining on a commodity pc,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data
mining, ser. KDD ’06, 2006, pp. 86–95.

