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Abstract Machine Model ’/;”\I A
For Emerging Node Architectures
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¢ The number of cores on a chip

will be on the order of 1000s

Maintaining cache coherence
is NOT scalable

= Expect coherence domains

Flat and infinitely fast on-chip
interconnect is NO longer

practical
= Expect complex NOCs

Processing elements within a
node are NOT equidistant.

= Expect non-uniformity

Download the CAL AMM doc from http://www.cal-design.org/




Motivation ,—\] A
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Evaluation Infrastructure ;\q ;
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¢ Software simulation slow for large-scale chips and systems
= Also does not evaluate cycle time

¢+ Hardware emulation requires a large development effort
= Offers limited internal visibility for statistics
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Building an SoC from IP Logic Blocks rm ‘i'ﬁ
It's Legos with a some extra integration and verification cost
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Design Priorities f\q ?

BERKELEY LAB

¢ Primary goal is re-configurability
= Provide a powerful collection of parameters
= Make creating new modules and replacing existing ones easy

¢ Fast verification of hardware and software models

¢ Provide standardized connection interface

¢ Invite community to participate and contribute
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Example Instantiation :} i
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class MyOpenSOC extends Module {
val myCPUs = Vec.fill(5) {Module(new CPU())}
val myHMC = Module(new HMC())
val myTenGbE = Module(new TenGbE())
val myPCIe = Module(new PCIe())
val NumNodes =

val OpenSoCFabric = Module(new MyOpenSoCFabric (NumNodes))

for (i <- until 4) {

myCPUs(1).10.AXIPort <> MyOpenSoCFabric.io.AXI (i)
}
myHMC.io.AXIPort <> MyOpenSoCFabric.io.AXI(5)
myTenGbE.io0.AXIPort <> MyOpenSoCFabric.i0.AXI(0)
myPCIe.io.AXIPort <> MyOpenSoCFabric.io.AXI(7/)

}
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What is Chisel?

¢ Constructing Hardware In a
Scala Embedded Language

¢ An open-source hardware
construction language
developed at the ASPIRE Lab
at UC Berkeley

¢ Hierarchical + Object Oriented
+ Functional Construction

¢ Generates both software and
hardware

= Easy functional verification
with software model (C++)

= Use hardware (Verilog) in
FPGAs or ASICs

import Chisel.

class GCD extends Module {

val io = new Bundle {
val a = UInt(INPUT, 16)
val b = UInt(INPUT, 16)
val e = Bool(INPUT)
val z = UInt(OUTPUT, 16)
val v = Bool(OUTPUT)
}
val x = Reg(UInt())
val yv = Reg(UInt())
when (x>y) { X :=x -y
unless (x > y) {y :=y - X
when (io.e) { x := io.a; y :
io.z := x
io.v := y === UInt(0)

}

object Example {

def main(args: Array[String]):

chiselMain(args,

() => Module(new GCD()))

_ A
rerrorrr ‘lll

|~

Sy

io.b }

Unit = {
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Why Chisel? fﬁl\,ﬁ;
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¢ For thousand-core chips,
neither software or hardware
models suffice alone

¢ Chisel provides both models on
from the same codebase st

¢ Provides hierarchical design
for easy parameterization and
module replacement
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Software models too slow and
do not regard hardware
complexity

Hardware RTL too labor
intensive and collecting

internal statistics can be
difficult
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Fabric Internal Block Diagram
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Class Hierarchy Diagram ’2\| A
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Existing NoC Generators ;\q t
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¢+ A few examples such as:
= Arteris (FlexNoC)
= ARM (CoreLink and CoreSight)
= Orchestra (SoC generator)
= Academic tools (Verilog for FPGA)

¢ Our project will be open source
= Functionality can be extended by users
= Both software and hardware models
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Current Status ;\q $

¢ All major architectural components are complete and tested
= Each with individual testers

¢ Initial network is simple mesh network
= Dimension ordered routing
=  Wormhole buffered flow control

¢ Currently debugging network functionality and adding features
= |mplementing and testing Virtual Channels

= |Implementing and testing different topologies (Flattened Butterfly,
Torus, etc.)

¢ Developing more sophisticated testbenches to ensure robustness

16
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Future Work f\q .

¢ Continue to add network features
= Adaptive routing
=  Additional topologies
=  And so much more!

¢+ Expand to support circuit-switched networks
=  Enables optical networking studies

¢+ Validate against Booksim
= Booksim has been validated against RTL implementations

¢ Complete AXI Interface
= Enable integration with ARM-based cores

¢ Integrate into multi-core SystemC based software models
=  |nclude HMC, DRAM, and NVRAM memory endpoints

¢ Use ASIC flow to incorporate power and area calculations into software
model




Questions? /\] A

¢ For more information, please visit:
= http://www.opensocfabric.org



