Sy

A
recreeo)| |

BERKELEY LAB

OpenSoC Fabric:
On-Chip Network Generator

Using Chisel to Generate a Parameterizable
On-Chip Interconnect Fabric

Farzad Fatollahi-Fard, David Donofrio, George Michelogiannakis, John Shalf

MODSIM 2014 Presentation — 2014 Aug 13

Abstract Machine Model ’/;”\I A
For Emerging Node Architectures

Latency
Optimized
Core
(Fat Cores)

Coherence
Domain

¢ The number of cores on a chip

will be on the order of 1000s

Maintaining cache coherence
is NOT scalable

= Expect coherence domains

Flat and infinitely fast on-chip
interconnect is NO longer

practical
= Expect complex NOCs

Processing elements within a
node are NOT equidistant.

= Expect non-uniformity

Download the CAL AMM doc from http://www.cal-design.org/

Motivation ,—\] A

Straw-man Exascale Processor
Shekhar Borkar, IPDPS 2013
Simplest Core First level of hierarchy Next level of hierarchy

npoan rooon
| ST o010

Shared Cache Next level cache

Logic
| V. V. V. BEALE AOD D
600K Transistors ’
LT 1-T iooon

Processor

Technology [om, 2018 i

Computations alone consume 34 MW for Exascale a1

Impact of NoCs ‘[::>| §
i

Application Performance Power

Clock
distrib

. ution
10%

N

swaptions fluidanimate barnes blkscholes strmcluster ocean canneal svm

IMEM
and 10-port
DMEM RF

An analysis of on-chip interconnection networks for o o
large-scale chip multiprocessors 20% 10%

. , A 5-GHz Mesh Interconnect for a Teraflops Processor.
ACM Transactions on computer architecture and code IEEE Micro. 2007

optimization (TACO), April 2010
e

Sy

. ' A
Evaluation Infrastructure ;\q ;

BERKELEY LAB

¢ Software simulation slow for large-scale chips and systems
= Also does not evaluate cycle time

¢+ Hardware emulation requires a large development effort
= Offers limited internal visibility for statistics

==2=10 MIPS simulator =s=100 MIPS simulator =l=1000 MIPS simulator
1000

900

SW full-system
800 functional
700 simulators

600
500
400
300
200
100

Slowdown relative to real system

1 2 4 8 16 32 64 128 256 512 1024
Size of simulated system (# processors)

S5 A complexity-effective architecture for accelerating full-system multiprocessor simulations using FPGAs. FPGA 2008
—— 90 90ZzZzZzZzZ90909090 0 0mm00 00000000 00—

oy

Building an SoC from IP Logic Blocks rm ‘i'ﬁ
It's Legos with a some extra integration and verification cost

Processor Core (ARM, Tensilica, MIPS deriv) o0 oD \[“ oo] () [zl ()
With extra “options” like DP FPU, ECC ~ \‘L—-)

- . EE } 0o 0o \ oo \—
OpenSoC Fabric (on-chip network) D
(currently proprietary ARM or Arteris) E E E L

| i D
DDR memory controller DR E an 50
(Denali/Cadence, SiCreations 3 \ \I D
+ Phy & Programmable PLL '
IR v

PCle Gen3 Root complex
Integrated FLASH Controller I/0

10GigE or IB DDR 4x Channel

Sy

Design Priorities f\q ?

BERKELEY LAB

¢ Primary goal is re-configurability
= Provide a powerful collection of parameters
= Make creating new modules and replacing existing ones easy

¢ Fast verification of hardware and software models

¢ Provide standardized connection interface

¢ Invite community to participate and contribute

Abstract Block Diagram r/)nr\| ’fm‘

-\? 5

OpenSoC
Fabric

5’%

. . — A
Example Instantiation :} i

BERKELEY LAB

class MyOpenSOC extends Module {
val myCPUs = Vec.fill(5) {Module(new CPU())}
val myHMC = Module(new HMC())
val myTenGbE = Module(new TenGbE())
val myPCIe = Module(new PCIe())
val NumNodes =

val OpenSoCFabric = Module(new MyOpenSoCFabric (NumNodes))

for (i <- until 4) {

myCPUs(1).10.AXIPort <> MyOpenSoCFabric.io.AXI (i)
}
myHMC.io.AXIPort <> MyOpenSoCFabric.io.AXI(5)
myTenGbE.io0.AXIPort <> MyOpenSoCFabric.i0.AXI(0)
myPCIe.io.AXIPort <> MyOpenSoCFabric.io.AXI(7/)

}
9

What is Chisel?

¢ Constructing Hardware In a
Scala Embedded Language

¢ An open-source hardware
construction language
developed at the ASPIRE Lab
at UC Berkeley

¢ Hierarchical + Object Oriented
+ Functional Construction

¢ Generates both software and
hardware

= Easy functional verification
with software model (C++)

= Use hardware (Verilog) in
FPGAs or ASICs

import Chisel.

class GCD extends Module {

val io = new Bundle {
val a = UInt(INPUT, 16)
val b = UInt(INPUT, 16)
val e = Bool(INPUT)
val z = UInt(OUTPUT, 16)
val v = Bool(OUTPUT)
}
val x = Reg(UInt())
val yv = Reg(UInt())
when (x>y) { X :=x -y
unless (x > y) {y :=y - X
when (io.e) { x := io.a; y :
io.z := x
io.v := y === UInt(0)

}

object Example {

def main(args: Array[String]):

chiselMain(args,

() => Module(new GCD()))

_ A
rerrorrr ‘lll

|~

Sy

io.b }

Unit = {

ASICs in Chisel)

Freereee ’m

Raven 28nm

Why Chisel? fﬁl\,ﬁ;

BERKELEY LAB

¢ For thousand-core chips,
neither software or hardware
models suffice alone

¢ Chisel provides both models on
from the same codebase st

¢ Provides hierarchical design
for easy parameterization and
module replacement

12

Software models too slow and
do not regard hardware
complexity

Hardware RTL too labor
intensive and collecting

internal statistics can be
difficult

Software Hardware
Compilation Compilation

SystemC

/
> >
FPGA ASIC

AXI

13

Fabric Internal Block Diagram

BERKELEY LAB

Top-Level Network Interface

Parameters
M

Channel
pd
D . .
g InjectionQ
)
-~
=
[0]
=%
Q
3

Channel

InjectionQ

Channel

Channel

Router

Routing
Function

e

Allocator

Arbiter

Switch

Topology
Generator

Channel

EjectionQ

Channel

EjectionQ

Channel

Channel

aoelalu| YIOMIBN

AXI

Class Hierarchy Diagram ’2\| A

rererrer ‘m

Flow of Instantiation BN

[BERKELEY LAS|
Top-Level
Network

Injection/
Ejection Topology
Queues

‘ Router ’
‘ Switch '

Routing
Function

Sy

Existing NoC Generators ;\q t

BERKELEY LAB

¢+ A few examples such as:
= Arteris (FlexNoC)
= ARM (CoreLink and CoreSight)
= Orchestra (SoC generator)
= Academic tools (Verilog for FPGA)

¢ Our project will be open source
= Functionality can be extended by users
= Both software and hardware models

15

Sy

_‘ \
Current Status ;\q $

¢ All major architectural components are complete and tested
= Each with individual testers

¢ Initial network is simple mesh network
= Dimension ordered routing
= Wormhole buffered flow control

¢ Currently debugging network functionality and adding features
= |mplementing and testing Virtual Channels

= |Implementing and testing different topologies (Flattened Butterfly,
Torus, etc.)

¢ Developing more sophisticated testbenches to ensure robustness

16

Sy

Future Work f\q .

¢ Continue to add network features
= Adaptive routing
= Additional topologies
= And so much more!

¢+ Expand to support circuit-switched networks
= Enables optical networking studies

¢+ Validate against Booksim
= Booksim has been validated against RTL implementations

¢ Complete AXI Interface
= Enable integration with ARM-based cores

¢ Integrate into multi-core SystemC based software models
= |nclude HMC, DRAM, and NVRAM memory endpoints

¢ Use ASIC flow to incorporate power and area calculations into software
model

Questions? /\] A

¢ For more information, please visit:
= http://www.opensocfabric.org

