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Behavioral Emulation
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Background & Goal

= Project conducted by researchers from CHREC*
o As part of Center for Compressible Multiphase Turbulence (CCMT)

» CCMT supported by DOE, National Nuclear Security Admin

o Advanced Simulation and Computing Program (PSAPP Program)
a Infirst year of 5-year support 3.

= CMT poses a grand-challenge proble |

o Significant importance in many environmental, industrial, & national
security applications

o Objective is for CMT simulation code to run on Exascale systems for
fundamental breakthroughs

Project Goal: Study Exascale before existence of
Exascale to provide advanced visibility for CMT studies

CHRELDL ” NSF Center for High-Performance Reconfigurable Computing UF [FL.ORIDA .R

NsF Centerfor ion Performance - Predlictive Science Academic Alliance Program 3 e BVM



How to Study Exascale Systems?

2 How may we study Exascale w/o Exascale?

Analytical studies — systems too complicated

Software simulation — simulations too slow at scale
Behavioral emulation — to be defined herein

Functional emulation — systems too massive and complex
Prototype device — future technology, does not exist
Prototype system — future technology, does not exist

a Many pros and cons with various methods

We believe behavioral emulation is foundation in terms of
balance (accuracy, timeliness, scale, versatility)

CHREC UF [FLORIDA ¢
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Related Works

= System (macro-scale) simulators
= ROSS: C. D. Carothers et al., 2013, 2002
= SST MACRO: C. L. Janssen et al., 2010
= FASE: Grobelny, Bueno, Troxel, George, and Vetter, 2007
= BIGSIM: G. Zheng, G. Kakulapati, L. V. Kale, 2004
» [SE: George, Fogarty, Markwell, and Miars, 1999.
= PARSIM: A. Symons, V. L. Narasimhan,1995.
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Behavioral Emulation (BE) ........

Object (BEO)
Component-based simulation Emuation pane
o Fundamental constructs called Behavioral Emulation Objects (BEOs) T e o
o Characterize & represent Exascale application, devices, nodes, & systems i L
as fabrics of interconnected Architecture BEOs & Application BEOs ———
Multi-scale simulation
o Hierarchical method based upon experimentation and exploration Tokens ol
Apps Arch BEO Models

= Models abstracted from Meso-scale

Macro Level  Skeleton-apps  System BEO fabrics * Testbed experimentation in support
= Notional Exascale system exploration

* Models abstracted from Micro-scale
Meso Level Mini-apps Node BEO fabrics » Testbed experimentation in support
* Notional Exascale node exploration

= Architectural studies
Testbed experimentation as foundation

» Notional Exascale device exploration

Micro Level Kernels Device BEO fabrics

Multi-objective simulation
o Performance, power, reliability, and other environmental factors

UNIVERSITY of
CHREC UF [FLORIDA
NSF Center for High-Performance 6 Vﬂgin@Tech BYU I
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BEOs & Behavioral Emulation Flow

5: Notional systems

exploration —
Existing Systems
Apps & Kernels Future-gen Systems & Architectures
& Notional
skeleton apps Architectures system
(macro-scale) (macro-scale)
mini-apps / \\ node
(meso-scale) % (meso-scale)
kernels < 2a. Application BEOs Architecture BEOs — device
(micro-scale) 4a AppBEOs ArchBEOs 4b  (micro-scale)
init. (c.levice).;
Ca = 208
can:_';'m. :) :‘1 by, scatter (B,B;,comﬂigrp)’; . .
& — i’ Eli— nggi}iioduct,A,B*) ; SImUIatlonl
o == O 1] Emulation
Al l.' Platform
S 3: Behavioral simulation (SW) or )
emulation (HW) experimentation 1: Testbed benchmarking
& experimentation
2a: AppBEO modeling 2b: ArchBEO modeling
4a: AppBEO 4b: ArchBEO
calibration, & validation calibration, & validation
UNIVERSITY of
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Example: AppBEO for Matrix Multiply

Mimic application behavior
o Pseudo-code like sequence of high-level instructions with custom API

if (node==0) {
init (device);
mem init (A);
mem init (B);
broadcast (A,comm grp);
barrier ();
scatter (B,B*,comm grp);
compute (dot product,A,B*);
gather (result,comm grp);

} else {
recv (A,node 0);
barrier ();

recv (B,B*,node 0);

}

<

Script generat

AppBEO script for
VisualSim

AppBEO script for
SMP simulator

T,

BE '
compute (dot product,A,B*); tool Apﬁwg SCFllF::t for
send (result,node 0); muiator
High-level AppBEO script showcasing '&g’
parallel matrix multiply (C=BxA) v
FPGA memory
initialization file
CHREC UF [FLORIDA &
NSF Center for High-Performance 8
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Fundamental Design of an Arch BEO

Arch BEO: Abstract model (surrogate) of an architecture object
* Basic primitive in BE approach to studies of Exascale systems

Architecture Behavioral Emulation Plane
Emulation Object (BEO) - Mimic appropriate behavior of BEO
Interact with other BEOs via tokens to
Emulation Plane support emulation studies
Computation =~ Communi- Management Plane
model cation mode! Measure, collect, and/or calculate metrics
Power Reliability and statistics
model model Support architectural exploration
Management Plane Metrics
Measugesrgﬁgﬁrgit;;?;':ction, - Performance fagtors (execution time,
speedup, latencies, throughputs, etc.)

- Environmental factors (power, energy,
iE cooling, temperature)
Dependability factors (reliability, availability,
Tokens toftrom redundancy, overhead)
CHREC UF [FLORIDA ?)
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Example: ProcBEO for TILE-Gx36*

Pseudo-code for ProcBEO

2 Mimic behavior of TILE-GX36 device

if (init) {

o Read and decode AppBEO instructions clock=clock+t init]
- if (mem init){..}
o | Resolve computes (determine performance) if (compute dot product) {..}
i f (scatter) {..}
o Update local clock .
o Assign communication instructions to CommBEO
T Time (ns) Iteratively refine &
8 487.47 celebrate model
16 917.48
Model i
32 1,781.68 Q Predicted
64 3,509.27 — _ » execution time = f() » execution
128 6.965.78 Train interpolation model time
256 13,877.84 S
512 27,703.63 ’;‘ifgr S
1024 55,401.93 . . . ?
Radial Basis Function Table Lookup threshold?
TILE-Gx36 training data
(testbed benchmarking) -for K-Nearest Neighbor Kriging Tl T
dot-product parameters: 100 5.455.77
300 16,255.47
Test data| 700 37,915.54

Interpolation techniques

(different than training data)

CHREC

NSF Center for High-Performance

Reconfigurable Computing
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Example: CommBEO for iMesh

2 Mimic Tilera iMesh network behavior

o Topology, routing policy, arbitration, etc.

Time (ns) Throughput (Mbps)

Neighbors 20.5 3,117.355
Side-to-Side 245 2,608.717
Corners 30 2,129.44

iMesh one-way latencies and throughput

Direction Time (ns)

X-X 1
y-y 1
X-y 1

Switching time

TILE-Gx36 iMesh benchmarking data

Pseudo-code for CommBEO

if (input buffer!=empty) {
read event;
if (output buffer !=full)

forward(x dir, y dir);

}

Topology: 2D mesh
Routing policy: dim-order
Routing policy: cut-through

X-dir latency: testbed data
Y-dir latency: testbed data

Arbitration: round-robin

Network configuration parameters

for TILE-Gx36 iMesh

CHREC

NSF Center for High-Performance
Reconfigurable Computing
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Exascale Simulation/Emulation Platforms

— o ———— — — — — a Commercially available,

flexible, ease of use

Q For small-scale devices,
nodes, and systems

Emulation
Platform

BEOs representing Exascale Q Emulation platform to be
devices, nodes, or systems developed in software

mapped to emulation platform Q Higher performance than

BEO method independent of simulators, but insufficient
platform types for Exascale

simulation tool (e.g., VisualSim) Q Even the proposed BEO approach to

emulation is challenging for studying
Exascale systems
v Exascale, multiscale, multiobjective

Parallel simulation tool on

Discrete-event modeling & :
conventional (many-core) computer I

Software-defined hardware on

reco”ggurabGle supercomputer | QO Reconfigurable hardware to provide
(€.g,, Novo-G) performance and scalability required
| for study of extreme-scale systems
CHREC UF [FL.ORIDA ?)
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Novo-G Reconfigurable Supercomputer

Developed and deployed at CHREC

o Most powerful reconfigurable computer in
academic world

o 2012 Alexander Schwarzkopf Prize for
Technology Innovation @ NSF

App acceleration

o In key science domains: bioinformatics,
finance, image & video processing

Hardware emulation

o Behavioral emulation of future-gen
systems, up to Exascale

2014 upgrade

o 32 GIDEL ProceV (Stratix V D8)

o 4x4x2 3D-torus or 5D-hypercube

o 6 Rx-Tx links per FPGA

o 4x 10 Gbps per link

Novo-G Annual Growth

2009: 24 GIiDEL ProcStar Il cards (96 top-end
Stratix-1ll FPGAs), each with 4.25GB SDRAM

2010: 24 more ProcStar lll cards (96 more Stratix-Il|
FPGAs), each with 4.25GB SDRAM

2011: 24 ProcStar IV cards (96 top-end Stratix-I\V
FPGAs), each with 8.50GB SDRAM

2012: 24 more ProcStar IV cards (96 more Stratix-IV
FPGAs), each with 8.50GB SDRAM

2014: 32 ProceV cards (32 top-end Stratix-V FPGASs),
with high-speed 4x4x2 torus

UNIVERSITY of
CHREQLC Funded by U of Florida w/ generous help from Altera and GiDEL UF FLORIDA ¢

NSF Center for High-Performance 13
Reconfigurable Computing

vmﬁw BYU “too




Conclusions & Questions

What is the major contribution of your research?

o A novel approach for behavioral simulation & emulation of large
systems and applications up to Exascale
= At multiple scales & for multiple objectives

0 Use of reconfigurable hardware (FPGASs) to provide performance and
scalability required for study of extreme-scale systems

What is bigger picture for your research area? (ident. synergistic
projects, complementary projects in technical sense, etc.)

Big picture: DOE’s S100M effort on Exascale arch exploration
o Coarse-grained simulation approach (rapid virtual prototyping, RVP)
0 Provide a first-order approximation for design-space exploration

o Complementary to other (detailed & slow) fine-grained simulation/
emulation efforts

CHREC UF |FLORIDA

NSF Center for High-Performance 14 V%Téch BYU
Reconfigurable Computing v e BRIGHAM YOUNC

A

THEGEORGE
WASHINGTON



What are gaps you identify in the research coverage in your area?

(Looking for synergistic & complementary projects for leveraging & collaboration!)

1) Characterizing processors, networks, apps, et al. at multiple scales (single
device to exascale system) with behavioral objects as surrogates
m DOE Co-design centers; FastForward and DesignForward for vendor roadmaps

to Exascale; parallel coarse-grained and fine-grained simulators

2) Mapping these behavioral objects onto systems of reconfigurable
processors to maximize the number and speed of these objects

3) Adapting synchronization and congestion-modeling techniques to support
simulation experiments with millions of these behavioral objects
m Parallel large-scale network simulators

4) Measuring, managing, and visualizing complex behaviors in performance,
resilience, and energy of systems and apps up to Exascale
m Visualization tools for extreme-scale systems

5) Augmenting initial focus upon performance evaluation of systems and
apps to include evaluation of resilience and energy consumption
m Modeling and simulation tools for resilience and energy consumption

CHREC . UF Fiokith g
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