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Yelp Dataset Challenge 
•  Currently working at Yelp 

•  Academic dataset from Phoenix, Las Vegas, Madison, Waterloo and 
Edinburgh! 

•  1,125,458 Reviews 

•  42,153 Businesses 

•  252,898 Users 

•  Your academic project, research and/or visualizations submitted by 
December 31, 2014 

•  yelp.com/dataset_challenge 



Agenda 
•  Applying thermal restraint to 

•  Remove hot spots and reduce cooling energy consumption 

•  Improve reliability and hence performance 

•  Operation under strict power budget 

•  Maximizing throughput of the entire data center having 
multiple jobs 

•  End Goal: Combining thermal and power constraints to 
optimize performance in faulty environment 
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Hot spots 

1.  Dale Sartor, General Recommendations for High Performance Computing Data Center Energy Management 
Dashboard Display (IPDPSW 2013) 

HPC Cluster Temperature Map, Building 50B room 1275, LBNL 

Should we help ourselves? 
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Hardware, infrastructure people: Help! 



`Cool’	  Load	  Balancer	  

•  Uses	  Dynamic	  Voltage	  and	  Frequency	  Scaling	  (DVFS)	  
•  Specify	  temperature	  range	  and	  sampling	  interval	  
•  RunBme	  system	  periodically	  checks	  processor	  
temperatures	  

•  Scale	  down/up	  frequency	  (by	  one	  level)	  if	  
temperature	  exceeds/below	  maximum	  threshold	  at	  
each	  decision	  Bme	  

•  Transfer	  tasks	  from	  slow	  processors	  to	  faster	  ones	  
•  Using	  Charm++	  adapBve	  runBme	  system	  
•  For	  details	  see	  SC’11	  proceedings*	  

5	  * O. Sarood, L. Kale. A `Cool’ Load Balancer for Parallel Applications, Supercomputing’11 (SC’11) 



Average	  Core	  Temperatures	  in	  Check	  

•  Avg.	  core	  temperature	  within	  2	  C	  range	  
•  ExecuBon	  Bme	  penalty	  minimized	  using	  Charm++	  load	  balancing	  
•  Cooling	  energy	  savings	  of	  up	  to	  63%	  with	  11%	  delay	  in	  execuBon	  
Bme	  (Mol3d:	  molecular	  dynamics	  applicaBon)	   6	  

CRAC	  set-‐point	  =	  25.6C	  	  	  	  	  Temperature	  range:	  47C-‐49C	  

Execution Time (seconds) 

(32 nodes) 

* O. Sarood, P. Miller, E. Totoni, L. Kale. `Cool’ Load Balancing for HPC Data Centers, IEEE TC 2012 



Fault tolerance in present 
day supercomputers 

•  Earlier studies point to per socket Mean Time 
Between Failures (MTBF) of 5 years - 50 years 

•  More than 20% of computing resources are wasted 
due to failures and recovery in a large HPC center1 

•  Exascale machine with 200,000 sockets is 
predicted to waste more than 89% time in failure/
recovery2 

1.  Ricardo Bianchini et. al., System Resilience at Extreme Scale, White paper 
2.  Kurt Ferreira et. al., Evaluating the Viability of Process Replication Reliability for Exascale Systems, Supercomputing’11 7 



Fault Tolerance: What’s 
new? 

•  Most earlier software research focusses on 
improving fault tolerance protocol (dealing 
efficiently with faults) 

•  Our work focusses on increasing the MTBF 
(reducing the occurrence of faults) 

•  Our work can be combined with most fault 
tolerance protocol 
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CPU Temperature and MTBF 

•  10 degree rule: MTBF halves (failure rate doubles) for 
every 10C increase in temperature1 

•  MTBF (m) can be modeled as: 

   
 where ‘A’, ‘b’ are constants and ’T’ is processor 
temperature 

•  A single failure can cause the entire machine to fail, 
hence MTBF for the entire machine (M) is defined as: 

1. Wu-Chun Feng, Making a Case for Efficient Supercomputing, New York, NY, USA 
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Improving MTBF and Its 
Cost 

•  Temperature restraint comes along DVFS induced slowdown! 

•  Restraining temperature to 56C, 54C, and 52C for Wave2D (5 
point stencil) application using `Cool’ Load Balancer 

Timing penalty calculated based on the run where all processors run at maximum frequency 

Threshold (C) MTBF (days) Timing Penalty (%) 

56 36 0.5 

54 40 1.5 

52 43 4 

How helpful is the improvement in MTBF considering its cost? 
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Performance Model 

•  Execution time (T): sum of useful work, check 
pointing time, recovery time and restart time 

•  Temperature restraint: 

•  increases MTBF which in turn decreases check 
pointing, recovery, and restart times 

•  increases time taken by useful work 
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* O. Sarood, E. Meneses, L. Kale. A `Cool’ Way of Improving the Reliability of HPC Machines, Supercomputing’13 (SC’13) 



Reduction in Execution Time 
•  Inverted-U curve points towards a tradeoff between 

timing penalty and improvement in MTBF  

•  ‘Sweet’ spot dependent on application 
characteristics  

Reduction in time calculated compared to baseline case with no temperature control 

Times improvement in 
MTBF over baseline 
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Improvement in Machine  
Efficiency 

•  Our scheme improves utilization beyond 20K sockets compared to baseline 

•  For 340K socket machine: 

•  Baseline: Efficiency < 1% (un operational) 

•  Our scheme: Efficiency ~ 21% 

Machine Efficiency: Ratio of time 
spent doing useful work when 
running a single application 
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What’s the Problem? 
Exascale in  

20MW! 

Power consumption for Top500 
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Data	  Center	  Power	  
How is data center power need calculated?   

•  using Thermal Design Power (TDP) of nodes 

However, TDP is hardly reached!! 
 
 
Solution 
•  Constrain power consumption of nodes 
•  Overprovisioning* - Use more nodes than 

conventional data center for the same power 
budget 

15	  * Patki et.al. Exploring Hardware Overprovisioning in Power-Constrained, High Performance Computing (ICS 13) 



Constraining	  CPU/Memory	  Power	  

16	  

Intel Sandy Bridge 
•  Running Average Power Limit (RAPL) library 

•  measure and set CPU/memory power 



ApplicaBon	  Performance	  with	  Power	  
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(20x32,10)	  	  

(12x44,18)	  	  

Configura)on	  	  
(n	  x	  pc,	  pm	  )	  

Performance	  of	  LULESH	  at	  different	  configuraBons	  

n:	  number	  of	  nodes	  
pc:	  CPU	  power	  cap	  
Pm:Memory	  power	  cap	  

• Application performance 
does not improve 
proportionately with increase 
in power cap 

 
• Better to run on larger 

number of nodes each 
capped at lower power 
levels 



Problem	  Statement	  	  

 
Maximizing Data Center Performance Under  Strict 

Power Budget 
 

Data center capabilities and job features 
•  Power capping ability 
•  Overprovisioning 
•  Job moldability (Optional) 
•  Job malleability (Optional) 

•  Charm++ 
•  Dynamic MPI 

18	  



Power	  Aware	  Resource	  Manager	  (PARM)	  
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SCHEDULER	  

JOB	  QUEUE	  

JOB	  PROFILER	  
PASS	  MODEL	   EXECUTION	  

FRAMEWORK	  
	  

❑  SHRINK/EXPAND	  JOBS	  
❑  APPLY	  POWER	  CAPS	  

JOB	  ARRIVAL	   JOB	  
TERMINATION	  

TRIGGERS	  



JOB	  PROFILER	  
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•  Measure job performance at various scales and CPU 
power levels 

 
 
•  Power Aware Strong Scaling (PASS) Model 

•  Predict job performance at any (n, p) 
•  n: number of nodes 
•  p: CPU power level 



Power	  Aware	  Strong	  Scaling	  (PASS)	  Model*	  

Time vs Scale 
Downey’s	  strong	  scaling	  

Time vs Frequency!
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Frequency vs Power!

Time as a function of power and number of nodes !

❑  n: number of nodes 
❑  A: Average Parallelism 
❑   σ : duration of parallelism A 

❑  Wcpu: CPU work 
❑  Tmem: memory work 
❑  Th :   minimum exec time  

❑  pcore: core power 
❑  gi: cost level I cache access 
❑  Li: #level I accesses 
❑  gm: cost of mem access 
❑  M: #mem accesses 
❑  pbase: idle power 

*O. Sarood, A. Langer, A. Gupta, L. Kale. Maximizing Throughput of Overprovisioned HPC Data Centers Under a Strict Power Budget. SC’14 



EsBmaBng	  Performance	  using	  PASS	  
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Model	  Parameters	  



Power	  Aware	  Resource	  Manager	  (PARM)	  
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SCHEDULER	  

JOB	  QUEUE	  

JOB	  PROFILER	  
PASS	  MODEL	   EXECUTION	  

FRAMEWORK	  
	  

❑  SHRINK/EXPAND	  JOBS	  
❑  APPLY	  POWER	  CAPS	  

JOB	  ARRIVAL	   JOB	  
TERMINATION	  

TRIGGERS	  
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Scheduler:	  Integer	  Linear	  Program	  FormulaBon	  



Power	  Aware	  Resource	  Manager	  (PARM)	  
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SCHEDULER	  

JOB	  QUEUE	  

JOB	  PROFILER	  
PASS	  MODEL	   EXECUTION	  

FRAMEWORK	  
	  

❑  SHRINK/EXPAND	  JOBS	  
❑  APPLY	  POWER	  CAPS	  

JOB	  ARRIVAL	   JOB	  
TERMINATION	  

TRIGGERS	  



PARM	  Performance	  Results	  
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Average Completion times!

Description!
•  noMM: without Malleability and Moldability"
•  noSE:  with Moldability but no Malleability"
•  wSE:    with Moldability and Malleability!

Performance!
•  32% improvement with nMM over SLURM 
•  13.9% improvement with noSE over noMM 
•  7.5% improvement with wSE over noSE 
•  1.7X improvement in throughput 

Malleability: changing number of nodes at runtime 
Moldability: assigning number of nodes from within a range (at schedule time) 

Datasets 



Large	  Scale	  ProjecBons	  
Performance	  
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•  baseline: SLURM scheduling"
•  noSE:      with Moldability but no Malleability"
•  wSE:        with Moldability and Malleability 

5.2X speedup with wSE using job logs from Intrepid!*!

*To get diversity in job arrival rates, we multiplied job arrival times by γ"



Heterogeneity	  in	  homogenous	  
CPUs!	  
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*Similar results presented by Barry Rountree earlier (Beyond DVFS: 

A First Look at Performance Under a Hardware-Enforced Power Bound) 

Bad chip, bad cooling,  
or something else? 



Help us! 

Exascale:	  Power,	  Thermal	  and	  
Reliability	  PerspecBve	  
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Power,	  Performance	  and	  our	  work	  
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Current (power unaware) 

Our work 
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*Inspired by Prof. D.K. Panda’s talk from MODSIM 2014 
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Thank You! 
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DistribuBon	  of	  Node	  Power	  ConsumpBon	  

33	  
Pie Chart: Sean Wallace, Measuring Power Consumption on IBM Blue Gene/Q 

Power distribution for BG/Q 
processor on Mira 
❑  76% by CPU/Memory 
❑  No good mechanism for 

controlling other power 
domains 

 
 


