Power Aware and Temperature Restraint Modeling for Maximizing Performance and Reliability Laxmikant Kale, Akhil Langer, and Osman Sarood

> Parallel Programming Laboratory (PPL) University of Illinois Urbana Champaign (UIUC)

Yelp Dataset Challenge

- Currently working at Yelp
- Academic dataset from Phoenix, Las Vegas, Madison, Waterloo and Edinburgh!
 - 1,125,458 Reviews
 - 42,153 Businesses
 - 252,898 Users
- Your academic project, research and/or visualizations submitted by December 31, 2014
- <u>yelp.com/dataset_challenge</u>

Agenda

- Applying thermal restraint to
 - Remove hot spots and reduce cooling energy consumption
 - Improve reliability and hence performance
- Operation under strict power budget
 - Maximizing throughput of the entire data center having multiple jobs
- End Goal: Combining thermal and power constraints to optimize performance in faulty environment

Hot spots

Hardware, infrastructure people: Help!

HPC Cluster Temperature Map, Building 50B room 1275, LBNL

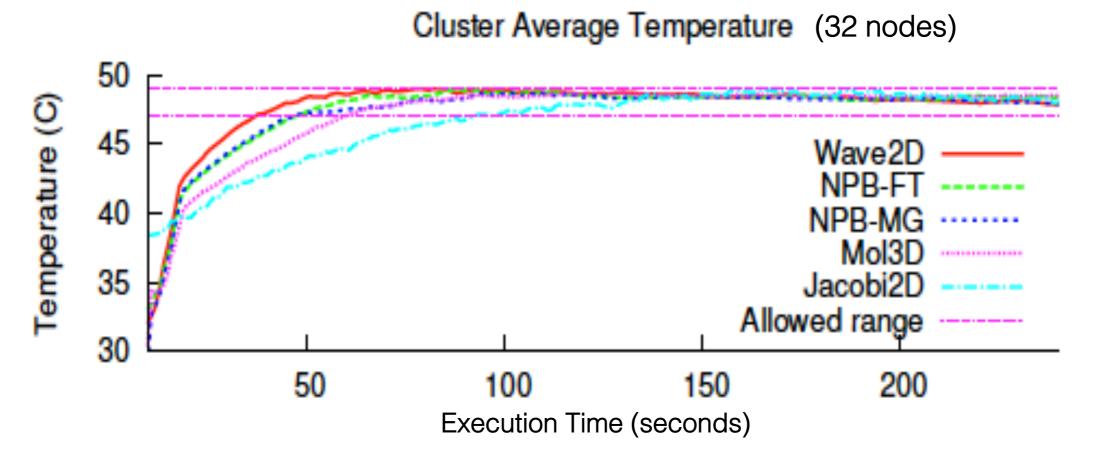
1. Dale Sartor, General Recommendations for High Performance Computing Data Center Energy Management Dashboard Display (IPDPSW 2013)

Cool' Load Balancer

- Uses Dynamic Voltage and Frequency Scaling (DVFS)
- Specify temperature range and sampling interval
- Runtime system periodically checks processor temperatures
- Scale down/up frequency (by one level) if temperature exceeds/below maximum threshold at each decision time
- Transfer tasks from slow processors to faster ones
- Using Charm++ adaptive runtime system
- For details see SC'11 proceedings*

Average Core Temperatures in Check

CRAC set-point = 25.6C Temperature range: 47C-49C



- Avg. core temperature within 2 C range
- Execution time penalty minimized using Charm++ load balancing
- Cooling energy savings of up to 63% with 11% delay in execution time (Mol3d: molecular dynamics application)

* O. Sarood, P. Miller, E. Totoni, L. Kale. `Cool' Load Balancing for HPC Data Centers, IEEE TC 2012

Fault tolerance in present day supercomputers

- Earlier studies point to per socket Mean Time Between Failures (MTBF) of 5 years - 50 years
- More than 20% of computing resources are wasted due to failures and recovery in a large HPC center¹
- Exascale machine with 200,000 sockets is predicted to waste more than 89% time in failure/ recovery²

^{1.} Ricardo Bianchini et. al., System Resilience at Extreme Scale, White paper

^{2.} Kurt Ferreira et. al., Evaluating the Viability of Process Replication Reliability for Exascale Systems, Supercomputing'11 7

Fault Tolerance: What's new?

- Most earlier software research focusses on improving fault tolerance protocol (*dealing efficiently with faults*)
- Our work focusses on increasing the MTBF (*reducing the occurrence of faults*)
- Our work can be combined with most fault tolerance protocol

CPU Temperature and MTBF

- 10 degree rule: MTBF halves (failure rate doubles) for every 10C increase in temperature¹
- MTBF (*m*) can be modeled as:

$$m = A * e^{-b * T}$$

where 'A', 'b' are constants and 'T is processor temperature

• A single failure can cause the entire machine to fail, hence MTBF for the entire machine (*M*) is defined as:

$$M = \frac{1}{\sum_{n=1}^{N} \frac{1}{m_n}}$$

^{1.} Wu-Chun Feng, Making a Case for Efficient Supercomputing, New York, NY, USA

Improving MTBF and Its Cost

- Temperature restraint comes along DVFS induced slowdown!
- Restraining temperature to 56C, 54C, and 52C for Wave2D (5 point stencil) application using `Cool' Load Balancer

How helpful is the improvement in MTBF considering its cost?

Threshold (C)	MTBF (days)	Timing Penalty (%)
56	36	0.5
54	40	1.5
52	43	4

Timing penalty calculated based on the run where all processors run at maximum frequency

Performance Model

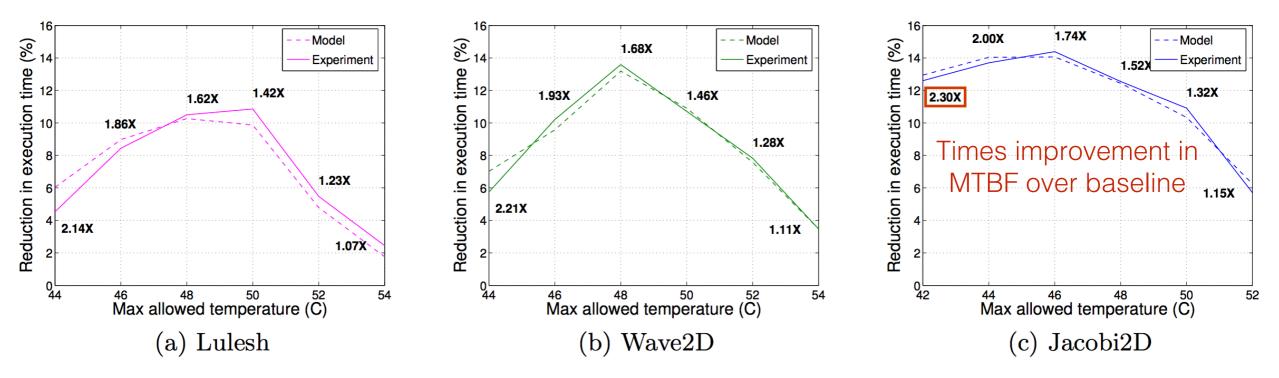
 $T = T_{Solve} + T_{Checkpoint} + T_{Recover} + T_{Restart}$

- Execution time (T): sum of useful work, check pointing time, recovery time and restart time
- Temperature restraint:
 - increases MTBF which in turn decreases check pointing, recovery, and restart times
 - increases time taken by useful work

* O. Sarood, E. Meneses, L. Kale. A `Cool' Way of Improving the Reliability of HPC Machines, Supercomputing'13 (SC'13)

Reduction in Execution Time

- Inverted-U curve points towards a tradeoff between timing penalty and improvement in MTBF
- 'Sweet' spot dependent on application characteristics

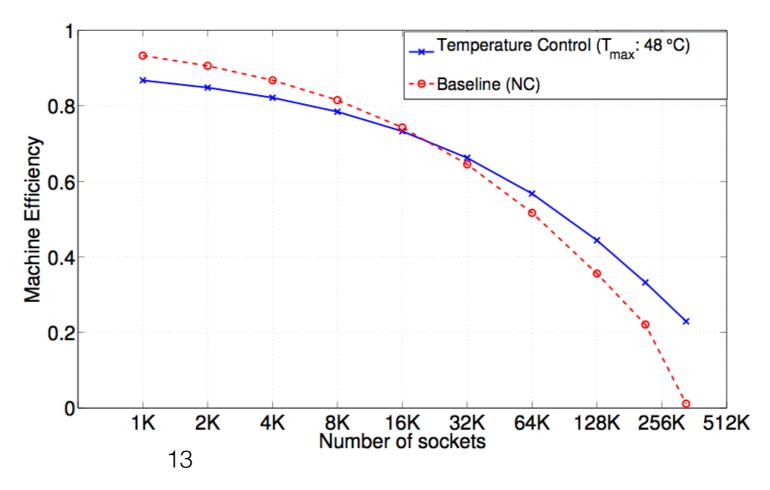


Reduction in time calculated compared to baseline case with no temperature control

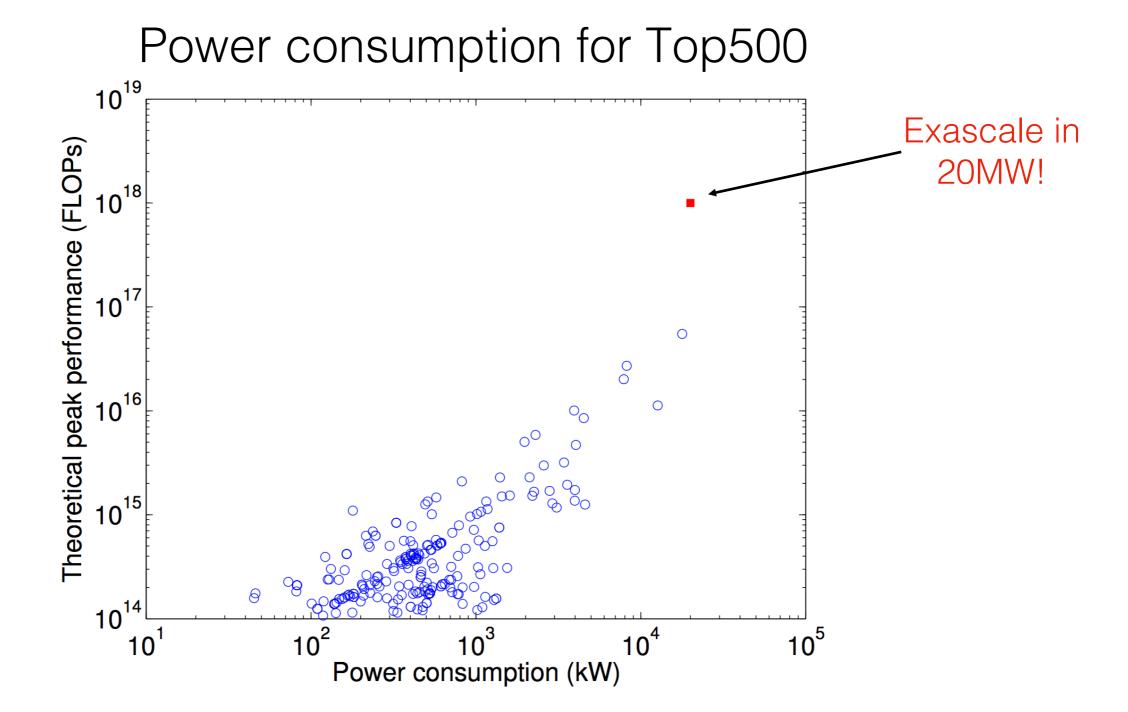
Improvement in Machine Efficiency

- Our scheme improves utilization beyond 20K sockets compared to baseline
- For 340K socket machine:
 - Baseline: Efficiency < 1% (un operational)
 - Our scheme: Efficiency ~ 21%

Machine Efficiency: Ratio of time spent doing useful work when running a single application



What's the Problem?



Data Center Power

How is data center power need calculated?

using Thermal Design Power (TDP) of nodes

However, TDP is hardly reached!!

Solution

- Constrain power consumption of nodes
- Overprovisioning* Use more nodes than conventional data center for the same power budget

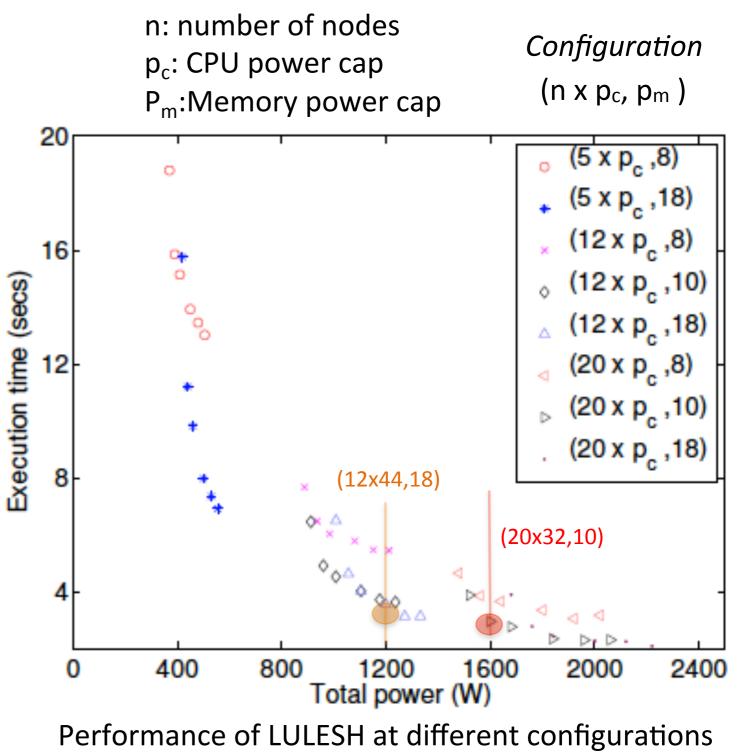
Constraining CPU/Memory Power

Intel Sandy Bridge

- Running Average Power Limit (RAPL) library
 - measure and set CPU/memory power

Application Performance with Power

- Application performance does not improve proportionately with increase in power cap
- Better to run on larger number of nodes each capped at lower power levels



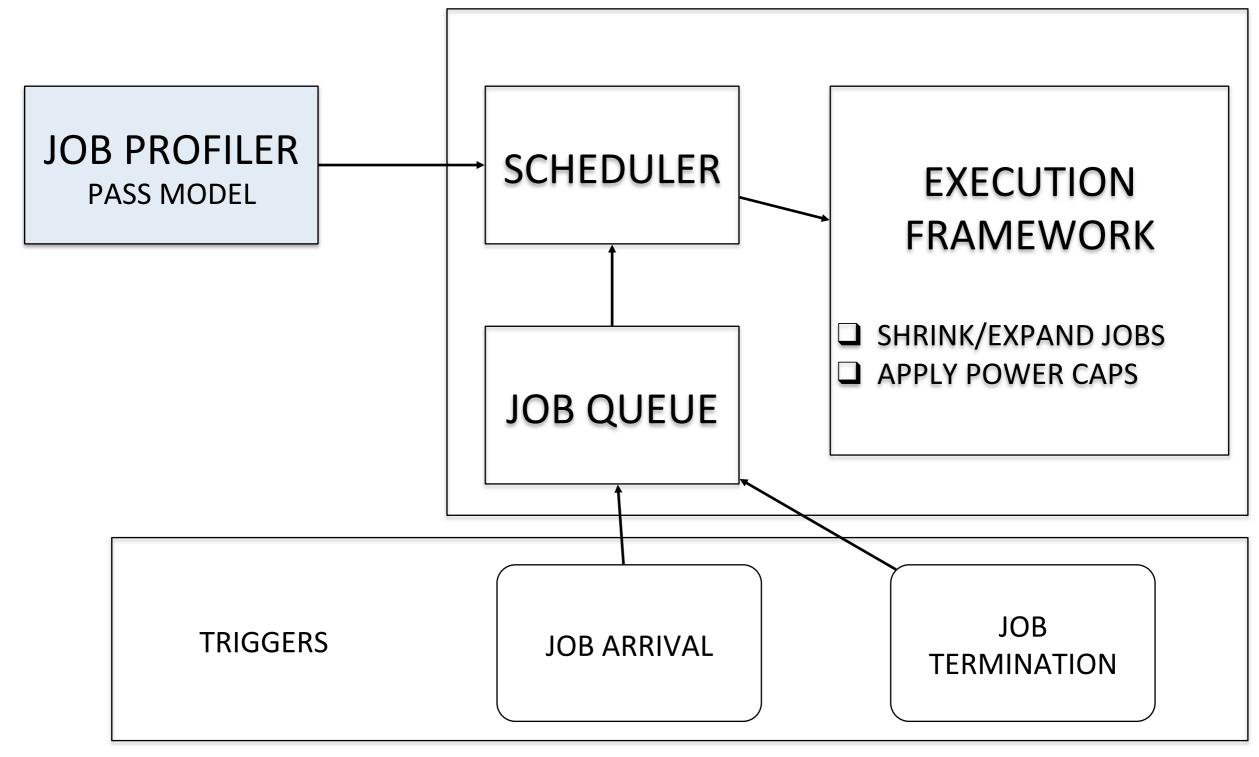
Problem Statement

Maximizing Data Center Performance Under Strict Power Budget

Data center capabilities and job features

- Power capping ability
- Overprovisioning
- Job moldability (Optional)
- Job malleability (Optional)
 - Charm++
 - Dynamic MPI

Power Aware Resource Manager (PARM)



JOB PROFILER

 Measure job performance at various scales and CPU power levels

- Power Aware Strong Scaling (PASS) Model
 - Predict job performance at any (n, p)
 - n: number of nodes
 - p: CPU power level

Power Aware Strong Scaling (PASS) Model*

Time vs Scale

Downey's strong scaling

 $t = F(n, A\sigma)$

- □ n: number of nodes
- □ A: Average Parallelism
- σ : duration of parallelism A

$$f) = \begin{cases} \frac{W_{cpu}}{f} + T_{mem}, & \text{for } f < f_h \\ T_h, & \text{for } f \ge f_h \end{cases}$$

Frequency vs Power

- □ p_{core}: core power
- □ g_i: cost level I cache access
- □ L_i: #level I accesses
- \Box g_m: cost of mem access
- □ M: #mem accesses

 \square p_{base}: idle power

□ W_{cpu}: CPU work \Box T_h: minimum exec time

t(

 $\Box T_{mem}: memory work \qquad p = p_{core} + \sum_{i=1}^{s} g_i L_i + g_m M + p_{base}$

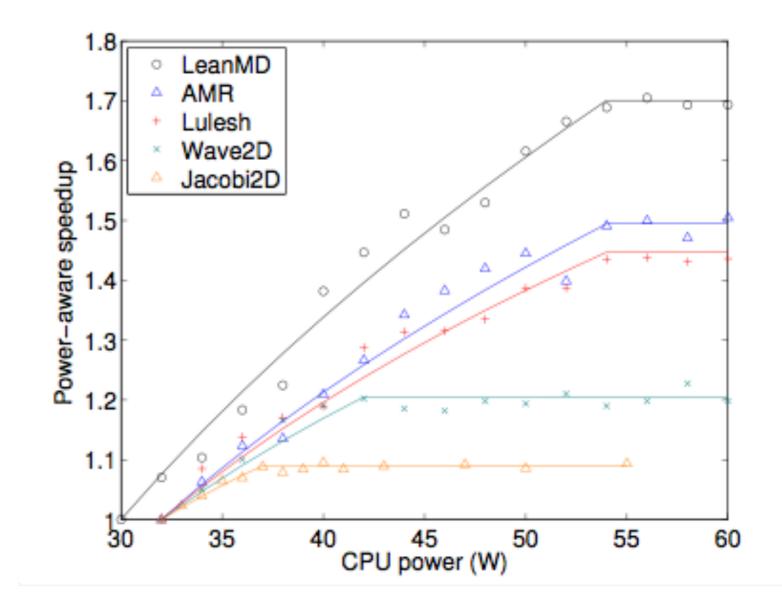
Time as a function of power and number of nodes

*O. Sarood, A. Langer, A. Gupta, L. Kale. Maximizing Throughput of Overprovisioned HPC Data Centers Under a Strict Power Budget. SC'14

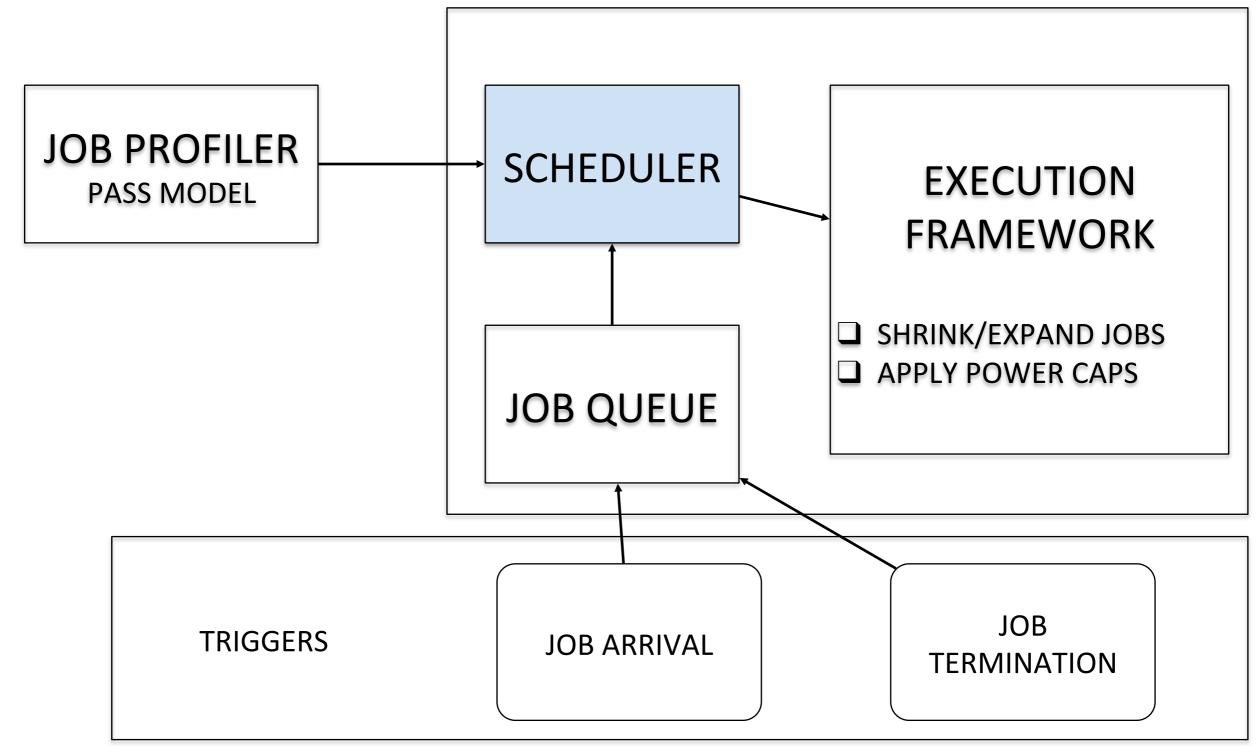
Estimating Performance using PASS

Application	a	b	p_l	p_h	β		
LeanMD	1.65	7.74	30	54	0.40		
\mathbf{AMR}	2.45	6.57	32	54	0.33		
\mathbf{Lulesh}	2.63	8.36	32	54	0.30		
Wave2D	3.00	10.23	32	42	0.16		
Jacobi2D	1.54	10.13	32	37	0.08		

Model Parameters



Power Aware Resource Manager (PARM)



Scheduler: Integer Linear Program Formulation

Objective Function

$$\sum_{j \in \mathcal{J}} \sum_{n \in N_j} \sum_{p \in P_j} w_j * s_{j,n,p} * x_{j,n,p}$$

Select One Resource Combination Per Job

$$\sum_{n \in N_j} \sum_{p \in P_j} x_{j,n,p} \le 1 \qquad \forall j \in I$$
$$\sum_{n \in N_j} \sum_{p \in P_j} x_{j,n,p} = 1 \qquad \forall j \in \mathcal{I}$$

Bounding total nodes

$$\sum_{j \in \mathcal{J}} \sum_{p \in P_j} \sum_{n \in N_j} n x_{j,n,p} \le \mathbf{N}$$

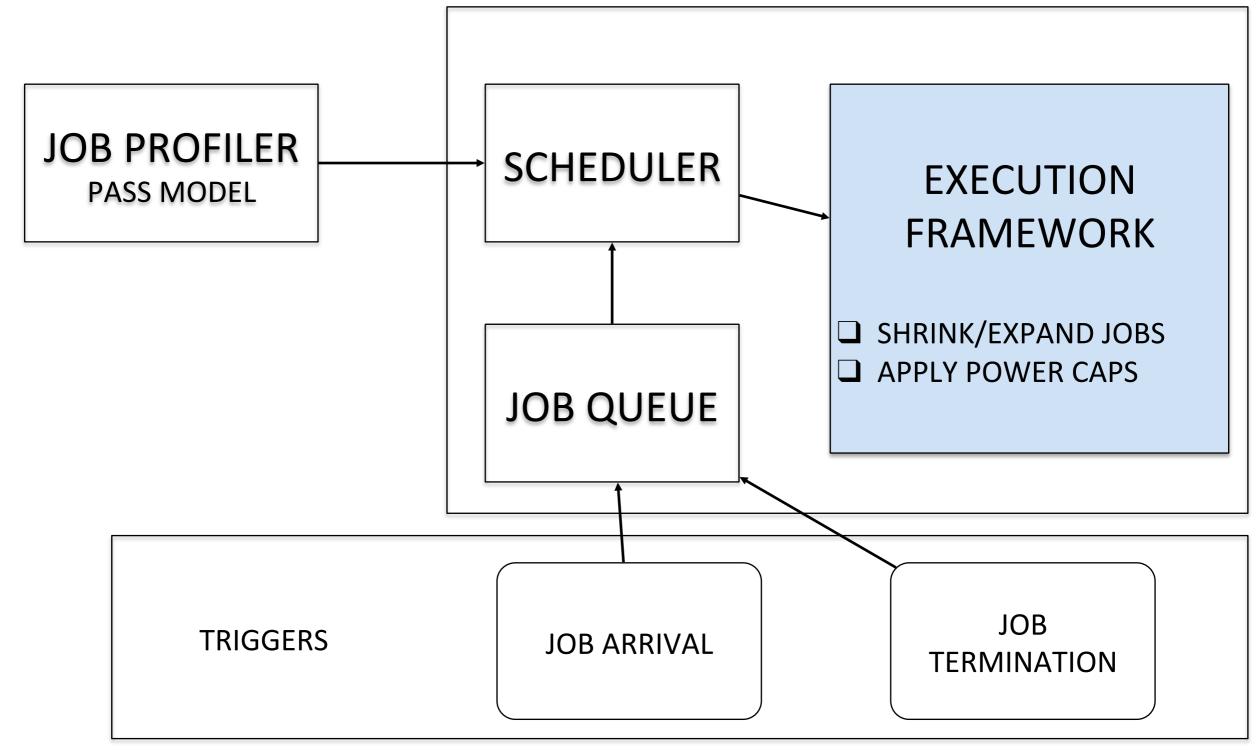
Bounding power consumption

$$\sum_{j \in \mathcal{J}} \sum_{n \in N_j} \sum_{p \in P_j} (n * (p + W_{base})) x_{j,n,p} \le W_{max}$$

Disable Malleability (Optional)

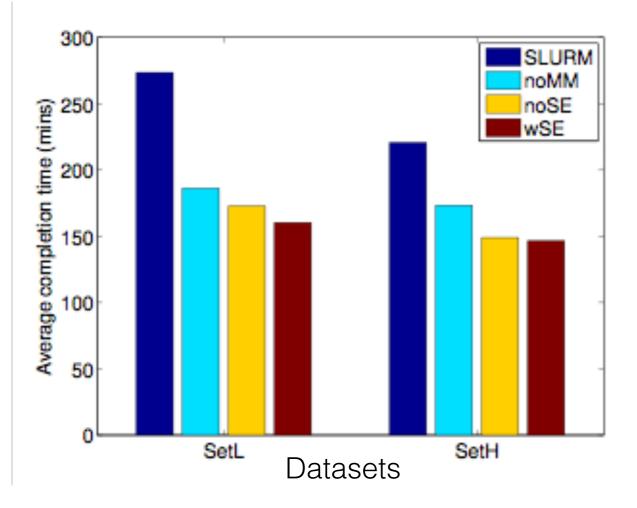
$$\sum_{n \in N_j} \sum_{p \in P_j} n x_{j,n,p} = n_j \qquad \qquad \forall j \in \mathcal{I}$$

Power Aware Resource Manager (PARM)



PARM Performance Results

Average Completion times



Description

- **noMM**: without Malleability and Moldability
- **noSE**: with Moldability but no Malleability
- **wSE**: with Moldability and Malleability

Performance

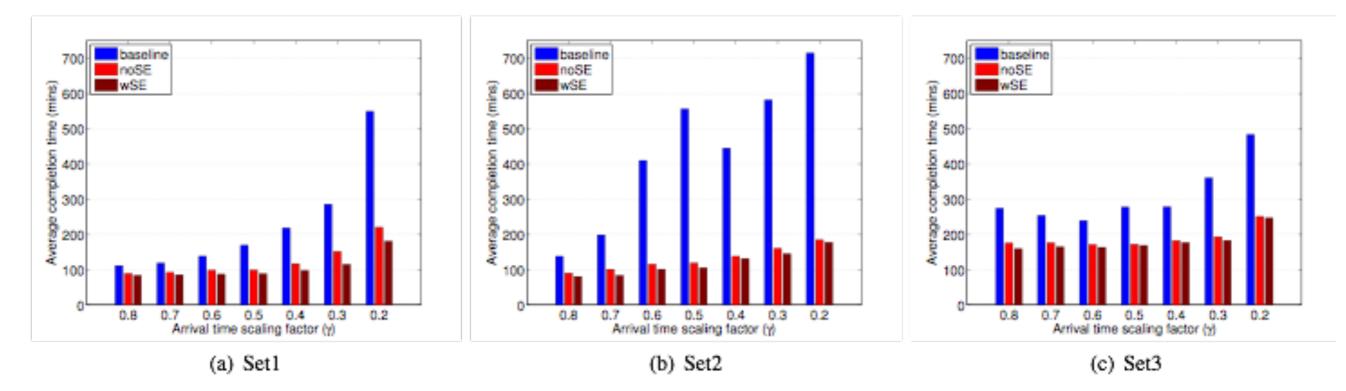
- 32% improvement with nMM over SLURM
- 13.9% improvement with noSE over noMM
- 7.5% improvement with wSE over noSE
- 1.7X improvement in throughput

Malleability: changing number of nodes at runtime Moldability: assigning number of nodes from within a range (at schedule time)

Large Scale Projections Performance

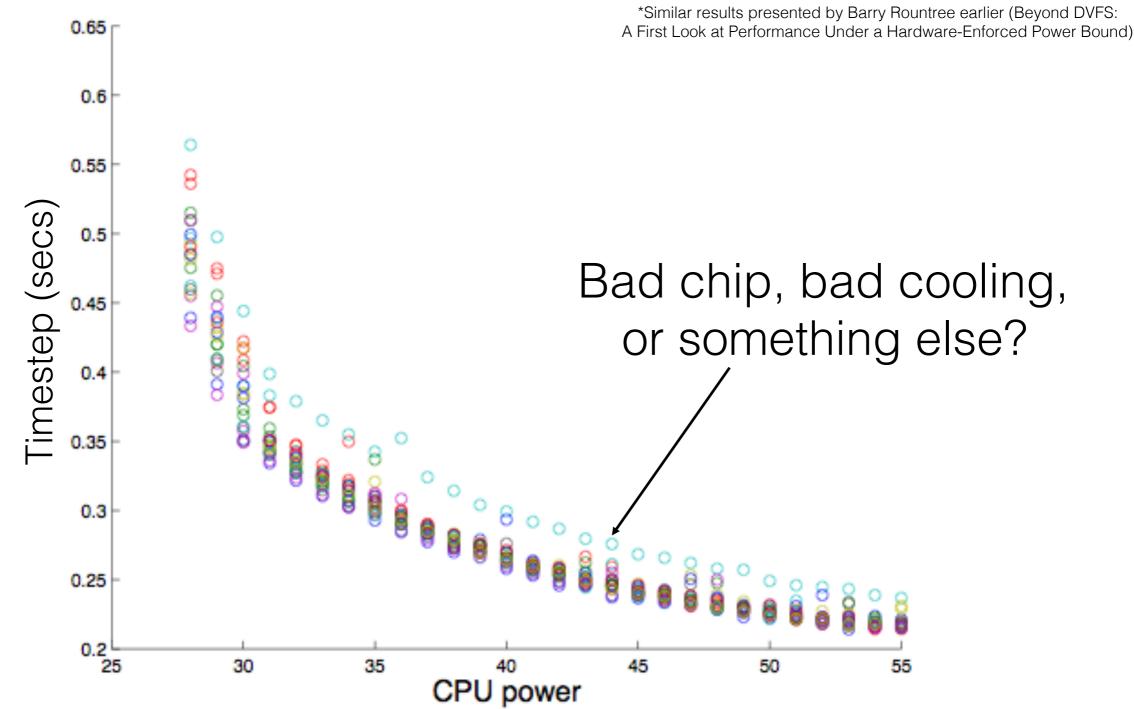
5.2X speedup with wSE using job logs from Intrepid!*

- **baseline**: SLURM scheduling
- **noSE**: with Moldability but no Malleability
- **wSE**: with Moldability and Malleability

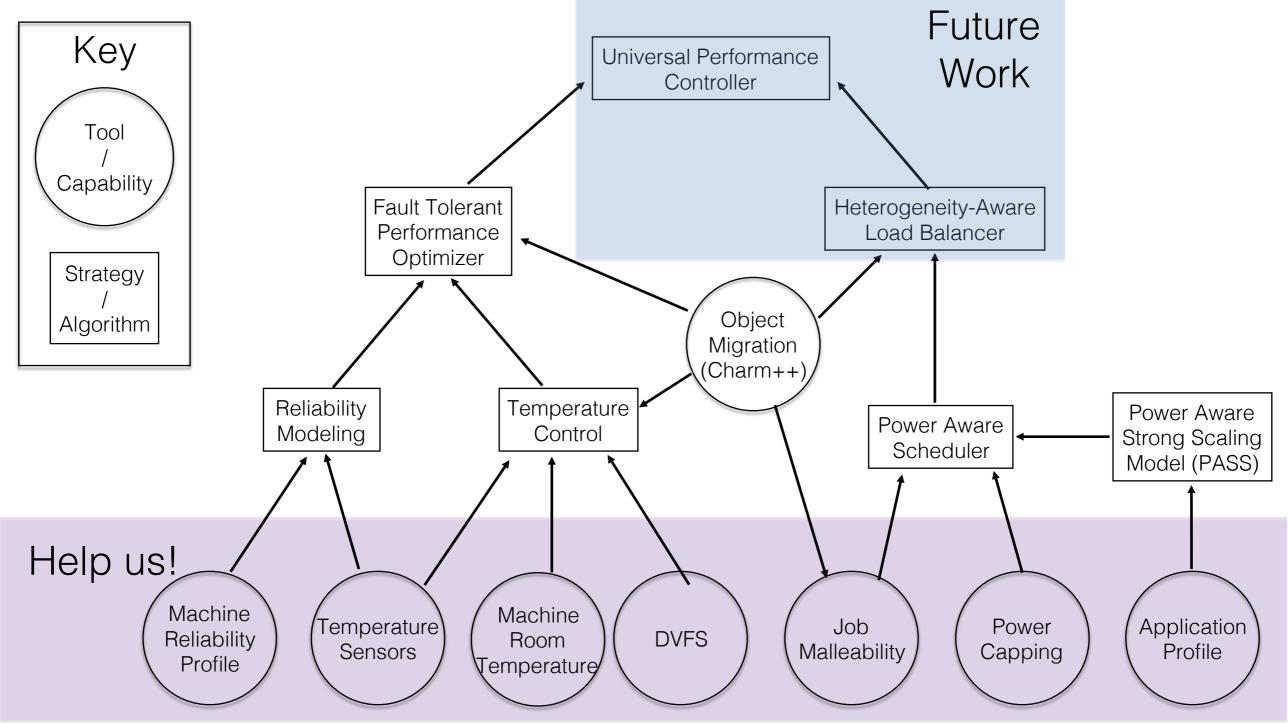


*To get diversity in job arrival rates, we multiplied job arrival times by γ

Heterogeneity in homogenous CPUs!

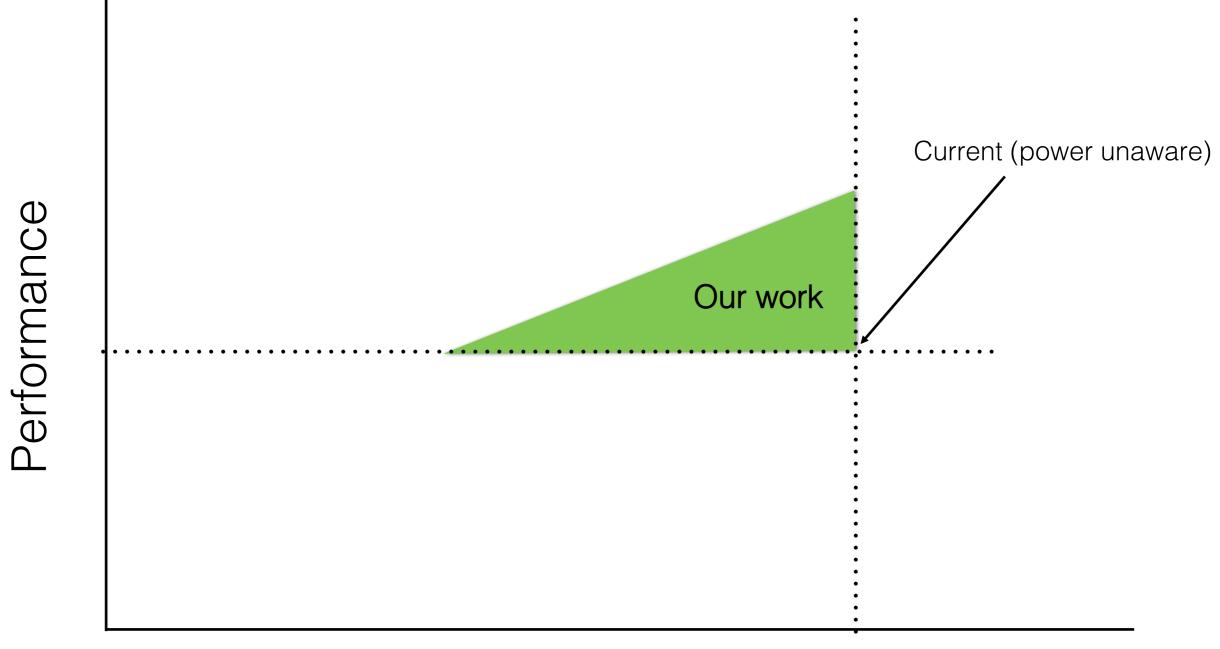


Exascale: Power, Thermal and Reliability Perspective



Power, Performance and our work

*Inspired by Prof. D.K. Panda's talk from MODSIM 2014



Publications (related)

- Osman Sarood, Akhil Langer, Abhishek Gupta, Laxmikant Kale. Maximizing Throughput of Overprovisioned HPC Data Centers Under a Strict Power Budget. SC'14.
- Ehsan Totoni, Joseph Torellas, Laxmikant Kale. Using an Adaptive HPC Runtime System to Reconfigure the Cache Hierarchy. SC'14.
- Esteban Meneses, Osman Sarood, and Laxmikant V. Kale. Energy Profile of Rollback-Recovery Strategies in High Performance Computing. Elsevier Parallel Computing (PARCO 2014).
- Osman Sarood, Esteban Meneses, and Laxmikant V. Kale. A `Cool' Way of Improving the Reliability of HPC Machines. Supercomputing'13 (SC'13).
- Osman Sarood, Akhil Langer, Laxmikant V. Kale, Barry Rountree, and Bronis de Supinski. Optimizing Power Allocation to CPU and Memory Subsystems in Overprovisioned HPC Systems. IEEE Cluster 2013.
- Harshitha Menon, Bilge Acun, Simon Garcia de Gonzalo, Osman Sarood, and Laxmikant V. Kale. Thermal Aware Automated Load Balancing for HPC Applications. IEEE Cluster.
- Esteban Meneses, Osman Sarood and Laxmikant V. Kale. Assessing Energy Efficiency of Fault Tolerance Protocols for HPC Systems. IEEE SBAC-PAD 2012. Best Paper Award.
- Osman Sarood, Phil Miller, Ehsan Totoni, and Laxmikant V. Kale. 'Cool' Load Balancing for High Performance Computing Data Centers. IEEE Transactions on Computers, December 2012.
- Osman Sarood and Laxmikant V. Kale. Efficient `Cool Down' of Parallel Applications. PASA 2012.
- Osman Sarood, and Laxmikant V. Kale. A 'Cool' Load Balancer for Parallel Applications. Supercomputing'11 (SC'11).
- Osman Sarood, Abhishek Gupta, and Laxmikant V. Kale. Temperature Aware Load Balancing for Parallel Application: Preliminary Work. HPPAC 2011.

Thank You!

Distribution of Node Power Consumption

Power distribution for BG/Q processor on Mira

- □ 76% by CPU/Memory
- No good mechanism for controlling other power domains

