
Power Aware and Temperature
Restraint Modeling for Maximizing

Performance and Reliability
Laxmikant Kale, Akhil Langer, and Osman Sarood

Parallel Programming Laboratory (PPL)
University of Illinois Urbana Champaign (UIUC)

Yelp Dataset Challenge
•  Currently working at Yelp

•  Academic dataset from Phoenix, Las Vegas, Madison, Waterloo and
Edinburgh!

•  1,125,458 Reviews

•  42,153 Businesses

•  252,898 Users

•  Your academic project, research and/or visualizations submitted by
December 31, 2014

•  yelp.com/dataset_challenge

Agenda
•  Applying thermal restraint to

•  Remove hot spots and reduce cooling energy consumption

•  Improve reliability and hence performance

•  Operation under strict power budget

•  Maximizing throughput of the entire data center having
multiple jobs

•  End Goal: Combining thermal and power constraints to
optimize performance in faulty environment

3

Hot spots

1.  Dale Sartor, General Recommendations for High Performance Computing Data Center Energy Management
Dashboard Display (IPDPSW 2013)

HPC Cluster Temperature Map, Building 50B room 1275, LBNL

Should we help ourselves?

4

Hardware, infrastructure people: Help!

`Cool’	 Load	 Balancer	

•  Uses	 Dynamic	 Voltage	 and	 Frequency	 Scaling	 (DVFS)	
•  Specify	 temperature	 range	 and	 sampling	 interval	
•  RunBme	 system	 periodically	 checks	 processor	
temperatures	

•  Scale	 down/up	 frequency	 (by	 one	 level)	 if	
temperature	 exceeds/below	 maximum	 threshold	 at	
each	 decision	 Bme	

•  Transfer	 tasks	 from	 slow	 processors	 to	 faster	 ones	
•  Using	 Charm++	 adapBve	 runBme	 system	
•  For	 details	 see	 SC’11	 proceedings*	

5	 * O. Sarood, L. Kale. A `Cool’ Load Balancer for Parallel Applications, Supercomputing’11 (SC’11)

Average	 Core	 Temperatures	 in	 Check	

•  Avg.	 core	 temperature	 within	 2	 C	 range	
•  ExecuBon	 Bme	 penalty	 minimized	 using	 Charm++	 load	 balancing	
•  Cooling	 energy	 savings	 of	 up	 to	 63%	 with	 11%	 delay	 in	 execuBon	
Bme	 (Mol3d:	 molecular	 dynamics	 applicaBon)	 6	

CRAC	 set-‐point	 =	 25.6C	 	 	 	 	 Temperature	 range:	 47C-‐49C	

Execution Time (seconds)

(32 nodes)

* O. Sarood, P. Miller, E. Totoni, L. Kale. `Cool’ Load Balancing for HPC Data Centers, IEEE TC 2012

Fault tolerance in present
day supercomputers

•  Earlier studies point to per socket Mean Time
Between Failures (MTBF) of 5 years - 50 years

•  More than 20% of computing resources are wasted
due to failures and recovery in a large HPC center1

•  Exascale machine with 200,000 sockets is
predicted to waste more than 89% time in failure/
recovery2

1.  Ricardo Bianchini et. al., System Resilience at Extreme Scale, White paper
2.  Kurt Ferreira et. al., Evaluating the Viability of Process Replication Reliability for Exascale Systems, Supercomputing’11 7

Fault Tolerance: What’s
new?

•  Most earlier software research focusses on
improving fault tolerance protocol (dealing
efficiently with faults)

•  Our work focusses on increasing the MTBF
(reducing the occurrence of faults)

•  Our work can be combined with most fault
tolerance protocol

8

CPU Temperature and MTBF

•  10 degree rule: MTBF halves (failure rate doubles) for
every 10C increase in temperature1

•  MTBF (m) can be modeled as:

 where ‘A’, ‘b’ are constants and ’T’ is processor
temperature

•  A single failure can cause the entire machine to fail,
hence MTBF for the entire machine (M) is defined as:

1. Wu-Chun Feng, Making a Case for Efficient Supercomputing, New York, NY, USA

9

Improving MTBF and Its
Cost

•  Temperature restraint comes along DVFS induced slowdown!

•  Restraining temperature to 56C, 54C, and 52C for Wave2D (5
point stencil) application using `Cool’ Load Balancer

Timing penalty calculated based on the run where all processors run at maximum frequency

Threshold (C) MTBF (days) Timing Penalty (%)

56 36 0.5

54 40 1.5

52 43 4

How helpful is the improvement in MTBF considering its cost?

10

Performance Model

•  Execution time (T): sum of useful work, check
pointing time, recovery time and restart time

•  Temperature restraint:

•  increases MTBF which in turn decreases check
pointing, recovery, and restart times

•  increases time taken by useful work

11

* O. Sarood, E. Meneses, L. Kale. A `Cool’ Way of Improving the Reliability of HPC Machines, Supercomputing’13 (SC’13)

Reduction in Execution Time
•  Inverted-U curve points towards a tradeoff between

timing penalty and improvement in MTBF

•  ‘Sweet’ spot dependent on application
characteristics

Reduction in time calculated compared to baseline case with no temperature control

Times improvement in
MTBF over baseline

12

Improvement in Machine
Efficiency

•  Our scheme improves utilization beyond 20K sockets compared to baseline

•  For 340K socket machine:

•  Baseline: Efficiency < 1% (un operational)

•  Our scheme: Efficiency ~ 21%

Machine Efficiency: Ratio of time
spent doing useful work when
running a single application

13

What’s the Problem?
Exascale in

20MW!

Power consumption for Top500

14

Data	 Center	 Power	
How is data center power need calculated?

•  using Thermal Design Power (TDP) of nodes

However, TDP is hardly reached!!

Solution
•  Constrain power consumption of nodes
•  Overprovisioning* - Use more nodes than

conventional data center for the same power
budget

15	 * Patki et.al. Exploring Hardware Overprovisioning in Power-Constrained, High Performance Computing (ICS 13)

Constraining	 CPU/Memory	 Power	

16	

Intel Sandy Bridge
•  Running Average Power Limit (RAPL) library

•  measure and set CPU/memory power

ApplicaBon	 Performance	 with	 Power	

17	

(20x32,10)	 	

(12x44,18)	 	

Configura)on	 	
(n	 x	 pc,	 pm)	

Performance	 of	 LULESH	 at	 different	 configuraBons	

n:	 number	 of	 nodes	
pc:	 CPU	 power	 cap	
Pm:Memory	 power	 cap	

• Application performance
does not improve
proportionately with increase
in power cap

• Better to run on larger

number of nodes each
capped at lower power
levels

Problem	 Statement	 	

Maximizing Data Center Performance Under Strict

Power Budget

Data center capabilities and job features
•  Power capping ability
•  Overprovisioning
•  Job moldability (Optional)
•  Job malleability (Optional)

•  Charm++
•  Dynamic MPI

18	

Power	 Aware	 Resource	 Manager	 (PARM)	

19	

SCHEDULER	

JOB	 QUEUE	

JOB	 PROFILER	
PASS	 MODEL	 EXECUTION	

FRAMEWORK	
	

❑  SHRINK/EXPAND	 JOBS	
❑  APPLY	 POWER	 CAPS	

JOB	 ARRIVAL	 JOB	
TERMINATION	

TRIGGERS	

JOB	 PROFILER	

20	

•  Measure job performance at various scales and CPU
power levels

•  Power Aware Strong Scaling (PASS) Model

•  Predict job performance at any (n, p)
•  n: number of nodes
•  p: CPU power level

Power	 Aware	 Strong	 Scaling	 (PASS)	 Model*	

Time vs Scale
Downey’s	 strong	 scaling	

Time vs Frequency!

21	

Frequency vs Power!

Time as a function of power and number of nodes !

❑  n: number of nodes
❑  A: Average Parallelism
❑  σ : duration of parallelism A

❑  Wcpu: CPU work
❑  Tmem: memory work
❑  Th : minimum exec time

❑  pcore: core power
❑  gi: cost level I cache access
❑  Li: #level I accesses
❑  gm: cost of mem access
❑  M: #mem accesses
❑  pbase: idle power

*O. Sarood, A. Langer, A. Gupta, L. Kale. Maximizing Throughput of Overprovisioned HPC Data Centers Under a Strict Power Budget. SC’14

EsBmaBng	 Performance	 using	 PASS	

22	

Model	 Parameters	

Power	 Aware	 Resource	 Manager	 (PARM)	

23	

SCHEDULER	

JOB	 QUEUE	

JOB	 PROFILER	
PASS	 MODEL	 EXECUTION	

FRAMEWORK	
	

❑  SHRINK/EXPAND	 JOBS	
❑  APPLY	 POWER	 CAPS	

JOB	 ARRIVAL	 JOB	
TERMINATION	

TRIGGERS	

24	

Scheduler:	 Integer	 Linear	 Program	 FormulaBon	

Power	 Aware	 Resource	 Manager	 (PARM)	

25	

SCHEDULER	

JOB	 QUEUE	

JOB	 PROFILER	
PASS	 MODEL	 EXECUTION	

FRAMEWORK	
	

❑  SHRINK/EXPAND	 JOBS	
❑  APPLY	 POWER	 CAPS	

JOB	 ARRIVAL	 JOB	
TERMINATION	

TRIGGERS	

PARM	 Performance	 Results	

26	

Average Completion times!

Description!
•  noMM: without Malleability and Moldability"
•  noSE: with Moldability but no Malleability"
•  wSE: with Moldability and Malleability!

Performance!
•  32% improvement with nMM over SLURM
•  13.9% improvement with noSE over noMM
•  7.5% improvement with wSE over noSE
•  1.7X improvement in throughput

Malleability: changing number of nodes at runtime
Moldability: assigning number of nodes from within a range (at schedule time)

Datasets

Large	 Scale	 ProjecBons	
Performance	

27	

•  baseline: SLURM scheduling"
•  noSE: with Moldability but no Malleability"
•  wSE: with Moldability and Malleability

5.2X speedup with wSE using job logs from Intrepid!*!

*To get diversity in job arrival rates, we multiplied job arrival times by γ"

Heterogeneity	 in	 homogenous	
CPUs!	

28	

Ti
m

es
te

p
(s

ec
s)

*Similar results presented by Barry Rountree earlier (Beyond DVFS:

A First Look at Performance Under a Hardware-Enforced Power Bound)

Bad chip, bad cooling,
or something else?

Help us!

Exascale:	 Power,	 Thermal	 and	
Reliability	 PerspecBve	

29	

Temperature
Sensors

Object
Migration

(Charm++)

Power
Capping

Application
Profile

Machine
Reliability

Profile

Temperature
Control

Reliability
Modeling

Fault Tolerant
Performance

Optimizer

Power Aware
Scheduler

Power Aware
Strong Scaling
Model (PASS)

Heterogeneity-Aware
Load Balancer

Universal Performance
Controller

DVFS Job
Malleability

Future
Work

Tool
/

Capability

Strategy
/

Algorithm

Key

Machine
Room

Temperature

Power,	 Performance	 and	 our	 work	

30	

Current (power unaware)

Our work

Power

Pe
rfo

rm
an

ce

*Inspired by Prof. D.K. Panda’s talk from MODSIM 2014

Publications (related)
•  Osman Sarood, Akhil Langer, Abhishek Gupta, Laxmikant Kale. Maximizing Throughput of Overprovisioned HPC Data Centers Under

a Strict Power Budget. SC’14.

•  Ehsan Totoni, Joseph Torellas, Laxmikant Kale. Using an Adaptive HPC Runtime System to Reconfigure the Cache Hierarchy. SC’14.

•  Esteban Meneses, Osman Sarood, and Laxmikant V. Kale. Energy Profile of Rollback-Recovery Strategies in High Performance
Computing. Elsevier - Parallel Computing (PARCO 2014).

•  Osman Sarood, Esteban Meneses, and Laxmikant V. Kale. A `Cool’ Way of Improving the Reliability of HPC Machines.
Supercomputing’13 (SC’13).

•  Osman Sarood, Akhil Langer, Laxmikant V. Kale, Barry Rountree, and Bronis de Supinski. Optimizing Power Allocation to CPU and
Memory Subsystems in Overprovisioned HPC Systems. IEEE Cluster 2013.

•  Harshitha Menon, Bilge Acun, Simon Garcia de Gonzalo, Osman Sarood, and Laxmikant V. Kale. Thermal Aware Automated Load
Balancing for HPC Applications. IEEE Cluster.

•  Esteban Meneses, Osman Sarood and Laxmikant V. Kale. Assessing Energy Efficiency of Fault Tolerance Protocols for HPC Systems.
IEEE SBAC-PAD 2012. Best Paper Award.

•  Osman Sarood, Phil Miller, Ehsan Totoni, and Laxmikant V. Kale. `Cool’ Load Balancing for High Performance Computing Data
Centers. IEEE Transactions on Computers, December 2012.

•  Osman Sarood and Laxmikant V. Kale. Efficient `Cool Down’ of Parallel Applications. PASA 2012.

•  Osman Sarood, and Laxmikant V. Kale. A `Cool’ Load Balancer for Parallel Applications. Supercomputing’11 (SC’11).

•  Osman Sarood, Abhishek Gupta, and Laxmikant V. Kale. Temperature Aware Load Balancing for Parallel Application: Preliminary
Work. HPPAC 2011.

31

Thank You!

32

DistribuBon	 of	 Node	 Power	 ConsumpBon	

33	
Pie Chart: Sean Wallace, Measuring Power Consumption on IBM Blue Gene/Q

Power distribution for BG/Q
processor on Mira
❑  76% by CPU/Memory
❑  No good mechanism for

controlling other power
domains

