
Power-Performance Models for Runtime
Reconfiguration and Power Capping

Pietro Cicotti, Ananta Tiwari (AT), Laura Carrington
EP Analytics, Inc.
PMaC/SDSC

MODSIM 2015

Presenter - Ananta Tiwari (ananta.tiwari@epanalytics.com)
Corresponding Author – Pietro Cicotti (pietro.cicotti@epanalytics.com)

Motivation
•  Goals:

–  Support proactive run time decisions
–  Create integrated power/performance models

•  Requirement:
–  Incur little runtime overhead

•  Use little information
•  Be queried quickly

•  Approaches:
–  Instruction-Level Modeling

•  Constructed using single-instruction benchmarks
•  Correlates instructions in compute phase to performance/power

–  Statistical Modeling
•  Constructed on micro-benchmarks
•  Correlates performance hardware counters to performance/power

Use-case
•  Run-time system activated or informed before a

compute phase
–  Compute phases identified in the source code

•  Run-time system API calls added to the source code
–  Compute phases identified in the binary

•  Run-time system API calls added by binary instrumentation
–  Runtime queries models and selects optimal

configuration

•  Performance/power locally optimized

•  Power cap globally imposed (out of scope)

Instruction-Level Models
•  Instruction-level – measure cost in terms of performance and energy for all

instructions
–  Benchmark the contribution of individual instructions

•  add r1_64b,r2_64b -> 1 cycle, 1.4nJ (2.6GHz), 1.2nJ (2.5GHz), …

–  Create a model that aggregates the contributions
•  loop@2.5GHz

–  Time=2.5×10-9×α× ∑cyclesi
–  Energy=∑energyi(2.5GHz)
–  Power=Energy/Time

–  Offline

•  Measure the contribution of single instructions
•  Create the model
•  Analyze/instrument code

–  Online
•  Use information from static analysis before compute phase start and invoke run time system
•  Use information at run time dynamic execution

–  E.g. tune α for expected hit rate
•  Search performance/power space at different frequencies
•  Optimize: e.g. power limit and Energy Delay Product

Benchmarking Instructions

•  Reduce benchmarking space
–  300+ instructions in x86_64 ISA
– Some instructions are overloaded

•  Different data types, number of operands, etc.

•  Group instructions in equivalence classes
– Members of an equivalence class have same

latency and energy cost
– E.g. [add]={add, sub, and, …}

•  Approximate energy at different frequencies

Benchmarks
•  Arbitrarily long sequence of embedded asm

•  Power/Energy measured for system (Watts), package
(RAPL) and DRAM (RAPL)

for(i=0;i<n;++i)	
	 	 UNROLL(asm	 vola8le	 ("subsd	 %%xmm1,	 %%xmm0\t\n"::));	

0000000000400860	 <main>:	
	 	 ...	
	 	 400900:	 f2	 0f	 5c	 c1	 	 	 	 	 	 	 	 	 	 subsd	 	 %xmm1,%xmm0	
	 	 400904:	 f2	 0f	 5c	 c1	 	 	 	 	 	 	 	 	 	 subsd	 	 %xmm1,%xmm0	
	 	 400908:	 f2	 0f	 5c	 c1	 	 	 	 	 	 	 	 	 	 subsd	 	 %xmm1,%xmm0	
…	

Memory Operands

•  Load/store instructions
•  Instructions with memory operands
•  Latency and energy depend on level

servicing request
– E.g. latency=4 cycles, 12 cycles, 54 cycles,

375 cycles
•  ad-hoc benchmark to target a single level
•  Need estimate at runtime of hit rates

Integration with Tools
•  Compile time or static binary analysis

–  Determine instruction mix
•  Tools (or programmer)

–  Identify compute phases and insert calls to run time
system

–  setup ad-hoc model for a given compute phase
•  run time parameters: hit rates, optimization target, and power

cap
–  if know or reasonably estimate possible, model is statically

tuned
•  Run time system

–  Receives parameters before computation phase
–  Runs model and selects optimal DVFS setting

Machine-Learning Approach

•  Develop machine learning based model to
inform power capping decisions
– Models are trained using hardware counters

– Explore the performance and power sensitivity
of different computations when power-related
hardware parameters change

Enabling Components

•  Main enabling components
– Modeling methodology that can encapsulate the

relationship between hardware power states,
application characteristics derived from hardware
counters and power/performance responses

– A set of computational kernels that are
representative of most of the computations we
see in HPC

Modeling Methodology
•  Dimension reduction using correlation analysis

and PCA
•  Modeling technique: Cubist

–  Rule-based learning model built using a tree of linear
regression models

–  Predictions are made using a linear model found at
the leaf nodes of the tree

–  The choice of leaf is determined by the rules in non-
terminal nodes that are also based on linear
regression models

–  Has the capability of capture non-linear relationships
between inputs

Modeling Methodology
•  Prevent over-fitting:

– Split the empirical dataset into training and
validation sets

•  60%-40% split: 60% used for training the model and
40% for validation

–  10-fold cross validation to avoid over-fitting during
model training

•  Variable importance analysis to determine
which predictors have the most impact on
performance and power

Summary
•  Two approaches:

–  Instruction-based
•  Estimates cost of instructions, directs models with instruction

mix and optimization target
–  Status

•  Tuning and validating
•  Working on tools and run time system integration

•  Future goals
–  Integration with run time system
–  Model ARM
–  Multi-resource management and power shifting
–  Local and global optimizations

