Power-Performance Models for Runtime Reconfiguration and Power Capping

Pietro Cicotti, Ananta Tiwari (AT), Laura Carrington
EP Analytics, Inc.
PMaC/SDSC

MODSIM 2015

Presenter - Ananta Tiwari (ananta.tiwari@epanalytics.com)
Corresponding Author – Pietro Cicotti (pietro.cicotti@epanalytics.com)
Motivation

• Goals:
 – Support proactive run time decisions
 – Create integrated power/performance models

• Requirement:
 – Incur little runtime overhead
 • Use little information
 • Be queried quickly

• Approaches:
 – Instruction-Level Modeling
 • Constructed using single-instruction benchmarks
 • Correlates instructions in compute phase to performance/power
 – Statistical Modeling
 • Constructed on micro-benchmarks
 • Correlates performance hardware counters to performance/power
Use-case

• Run-time system activated or informed before a compute phase
 – Compute phases identified in the source code
 • Run-time system API calls added to the source code
 – Compute phases identified in the binary
 • Run-time system API calls added by binary instrumentation
 – Runtime queries models and selects optimal configuration

• Performance/power locally optimized

• Power cap globally imposed (out of scope)
Instruction-Level Models

• Instruction-level – measure cost in terms of performance and energy for all instructions
 – Benchmark the contribution of individual instructions
 • add r1_64b,r2_64b -> 1 cycle, 1.4nJ (2.6GHz), 1.2nJ (2.5GHz), ...

 – Create a model that aggregates the contributions
 • loop@2.5GHz
 – Time=2.5 \times 10^{-9} \times \alpha \times \sum cycles_i
 – Energy=\sum energy_{(2.5GHz)}
 – Power=Energy/Time

 – Offline
 • Measure the contribution of single instructions
 • Create the model
 • Analyze/instrument code

 – Online
 • Use information from static analysis before compute phase start and invoke run time system
 • Use information at run time dynamic execution
 – E.g. tune \alpha for expected hit rate
 • Search performance/power space at different frequencies
 • Optimize: e.g. power limit and Energy Delay Product
Benchmarking Instructions

• Reduce benchmarking space
 – 300+ instructions in x86_64 ISA
 – Some instructions are overloaded
 • Different data types, number of operands, etc.

• Group instructions in equivalence classes
 – Members of an equivalence class have same latency and energy cost
 – E.g. [add]={add, sub, and, …}

• Approximate energy at different frequencies
Benchmarks

- Arbitrarily long sequence of embedded asm

```asm
for(i=0;i<n;++i)
  UNROLL(asm volatile("subsd %xmm1, %xmm0\t\n":));
```

```c
0000000000400860 <main>:
...
400900: f2 0f 5c c1  subsd  %xmm1,%xmm0
400904: f2 0f 5c c1  subsd  %xmm1,%xmm0
400908: f2 0f 5c c1  subsd  %xmm1,%xmm0
...
```

- Power/Energy measured for system (Watts), package (RAPL) and DRAM (RAPL)
Memory Operands

- Load/store instructions
- Instructions with memory operands
- Latency and energy depend on level servicing request
 - E.g. latency=4 cycles, 12 cycles, 54 cycles, 375 cycles
- ad-hoc benchmark to target a single level
- Need estimate at runtime of hit rates
Integration with Tools

- Compile time or static binary analysis
 - Determine instruction mix
- Tools (or programmer)
 - Identify compute phases and insert calls to run time system
 - setup ad-hoc model for a given compute phase
 - run time parameters: hit rates, optimization target, and power cap
 - if know or reasonably estimate possible, model is statically tuned
- Run time system
 - Receives parameters before computation phase
 - Runs model and selects optimal DVFS setting
Machine-Learning Approach

• Develop machine learning based model to inform power capping decisions
 – Models are trained using hardware counters
 – Explore the performance and power sensitivity of different computations when power-related hardware parameters change
Enabling Components

• Main enabling components
 – Modeling methodology that can encapsulate the relationship between hardware power states, application characteristics derived from hardware counters and power/performance responses
 – A set of computational kernels that are representative of most of the computations we see in HPC
Modeling Methodology

• Dimension reduction using correlation analysis and PCA
• Modeling technique: Cubist
 – Rule-based learning model built using a tree of linear regression models
 – Predictions are made using a linear model found at the leaf nodes of the tree
 – The choice of leaf is determined by the rules in non-terminal nodes that are also based on linear regression models
 – Has the capability of capture non-linear relationships between inputs
Modeling Methodology

• Prevent over-fitting:
 – Split the empirical dataset into training and validation sets
 • 60%-40% split: 60% used for training the model and 40% for validation
 – 10-fold cross validation to avoid over-fitting during model training

• Variable importance analysis to determine which predictors have the most impact on performance and power
Summary

• Two approaches:
 – Instruction-based
 • Estimates cost of instructions, directs models with instruction mix and optimization target
 – Status
 • Tuning and validating
 • Working on tools and run time system integration

• Future goals
 – Integration with run time system
 – Model ARM
 – Multi-resource management and power shifting
 – Local and global optimizations