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Motivation 
•  Goals: 

–  Support proactive run time decisions 
–  Create integrated power/performance models 

•  Requirement: 
–  Incur little runtime overhead 

•  Use little information 
•  Be queried quickly 

•  Approaches: 
–  Instruction-Level Modeling 

•  Constructed using single-instruction benchmarks 
•  Correlates instructions in compute phase to performance/power 

–  Statistical Modeling 
•  Constructed on micro-benchmarks 
•  Correlates performance hardware counters to performance/power 



Use-case 
•  Run-time system activated or informed before a 

compute phase 
–  Compute phases identified in the source code 

•  Run-time system API calls added to the source code 
–  Compute phases identified in the binary 

•  Run-time system API calls added by binary instrumentation 
–  Runtime queries models and selects optimal 

configuration 

•  Performance/power locally optimized 

•  Power cap globally imposed (out of scope) 



Instruction-Level Models 
•  Instruction-level – measure cost in terms of performance and energy for all 

instructions 
–  Benchmark the contribution of individual instructions 

•  add r1_64b,r2_64b -> 1 cycle, 1.4nJ (2.6GHz), 1.2nJ (2.5GHz), … 

–  Create a model that aggregates the contributions 
•  loop@2.5GHz  

–  Time=2.5×10-9×α× ∑cyclesi 
–  Energy=∑energyi(2.5GHz) 
–  Power=Energy/Time 

 
–  Offline 

•  Measure the contribution of single instructions 
•  Create the model 
•  Analyze/instrument code 

–  Online 
•  Use information from static analysis before compute phase start and invoke run time system 
•  Use information at run time dynamic execution 

–  E.g. tune α for expected hit rate 
•  Search performance/power space at different frequencies 
•  Optimize: e.g. power limit and Energy Delay Product 



Benchmarking Instructions 

•  Reduce benchmarking space 
–  300+ instructions in x86_64 ISA 
– Some instructions are overloaded 

•  Different data types, number of operands, etc. 

•  Group instructions in equivalence classes 
– Members of an equivalence class have same 

latency and energy cost 
– E.g. [add]={add, sub, and, …} 

•  Approximate energy at different frequencies 



Benchmarks 
•  Arbitrarily long sequence of embedded asm 

•  Power/Energy measured for system (Watts), package 
(RAPL) and DRAM (RAPL) 

for(i=0;i<n;++i)	  
	  	  UNROLL(asm	  vola8le	  ("subsd	  %%xmm1,	  %%xmm0\t\n"::));	  

0000000000400860	  <main>:	  
	  	  ...	  
	  	  400900:	  f2	  0f	  5c	  c1	  	  	  	  	  	  	  	  	  	  subsd	  	  %xmm1,%xmm0	  
	  	  400904:	  f2	  0f	  5c	  c1	  	  	  	  	  	  	  	  	  	  subsd	  	  %xmm1,%xmm0	  
	  	  400908:	  f2	  0f	  5c	  c1	  	  	  	  	  	  	  	  	  	  subsd	  	  %xmm1,%xmm0	  
…	  



Memory Operands 

•  Load/store instructions 
•  Instructions with memory operands 
•  Latency and energy depend on level 

servicing request 
– E.g. latency=4 cycles, 12 cycles, 54 cycles, 

375 cycles 
•  ad-hoc benchmark to target a single level 
•  Need estimate at runtime of hit rates 



Integration with Tools 
•  Compile time or static binary analysis 

–  Determine instruction mix 
•  Tools (or programmer) 

–  Identify compute phases and insert calls to run time 
system  

–  setup ad-hoc model for a given compute phase 
•  run time parameters: hit rates, optimization target, and power 

cap 
–  if know or reasonably estimate possible, model is statically 

tuned 
•  Run time system 

–  Receives parameters before computation phase 
–  Runs model and selects optimal DVFS setting 



Machine-Learning Approach 

•  Develop machine learning based model to 
inform power capping decisions 
– Models are trained using hardware counters 

– Explore the performance and power sensitivity 
of different computations when power-related 
hardware parameters change 



Enabling Components 

•  Main enabling components 
– Modeling methodology that can encapsulate the 

relationship between hardware power states, 
application characteristics derived from hardware 
counters and power/performance responses 

– A set of computational kernels that are 
representative of most of the computations we 
see in HPC 



Modeling Methodology 
•  Dimension reduction using correlation analysis 

and PCA  
•  Modeling technique: Cubist 

–  Rule-based learning model built using a tree of linear 
regression models 

–  Predictions are made using a linear model found at 
the leaf nodes of the tree 

–  The choice of leaf is determined by the rules in non-
terminal nodes that are also based on linear 
regression models 

–  Has the capability of capture non-linear relationships 
between inputs 



Modeling Methodology 
•  Prevent over-fitting: 

– Split the empirical dataset into training and 
validation sets 

•  60%-40% split: 60% used for training the model and 
40% for validation 

–  10-fold cross validation to avoid over-fitting during 
model training  

•  Variable importance analysis to determine 
which predictors have the most impact on 
performance and power 



Summary 
•  Two approaches: 

–  Instruction-based 
•  Estimates cost of instructions, directs models with instruction 

mix and optimization target 
–  Status 

•  Tuning and validating 
•  Working on tools and run time system integration 

•  Future goals 
–  Integration with run time system 
–  Model ARM 
–  Multi-resource management and power shifting 
–  Local and global optimizations 


