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Scaling Performance and Power
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P. Kogge, D. Resnick. Yearly Update: Exascale Projections for 2013.
Sandia National Laboratories.
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Cores 3.1M ~300x
Power 17.8MW 20-40MW ~1.5-2.5x
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Energy Scaling vs. Time Scaling

HPCCG Mini-app on 32nm Sandy Bridge EP
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Number of Threads

m Developers must understand how both energy and time scale
with parallelism
m Relationship between energy scaling and time scaling?
= When are they not the same?

= Tradeoffs
= Drive the development of diagnostic tools
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Energy Components

m Static Energy
m Scales with execution time

> Energy overhead
m E.g., leakage energy

= Technology dependent J
m Dynamic Energy A
= Scales with work  * Constant under ideal strong scaling
= Independent of time (strong scaling) e Grows under weak scaling
= Required to solve problem )

Energy scaling is limited by the fraction
corresponding to static energy
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Amdahl’s Law for Energy Scaling
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mldeal energy speedup never exceeds 1.0
mEnergy speedup < 1 implies energy penalty for concurrency
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Impact of Concurrency e
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mIn time, strong scaling is limited by the serial fraction
m When it is small, large benefit from strong scaling

mln energy, strong scaling is limited by the static fraction
m Static fraction is multiplicative penalty in addition of the serial fraction
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Energy Scaling Behaviors

When the static fraction is high,
time speedup - energy speedup
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When the serial fraction is high,
| energy efficiency = energy speedup
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Measurements: HPCCG

. 32nm Sandy Bridge EP 1
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Energy Auditing: eAudit Aop 10
_ _ o Profile
m Application energy auditing tool
= Function-level attribution Eiger .
. - Soer <> cAudit | I
s Diagnose application energy

consumption behavior
mProvide actionable information HW -_

to steer energy optimization
erferuferyeeu

Example output

Name Energy Time Instructions % Energy % Time
generate_matrix(int, int, int, HPC_Sparse_Matrix_STRUCT*, double™, double**, double*) at ?? 4.3672 0.115 372291000 54.97805 12.3656
HPC_sparsemv(HPC_Sparse_Matrix_STRUCT®, double const®, double®) at HPC _sparsemv.cpp 23132 0.511 1.214E+09 29.12098 54.9462
77at?? 1.0075 0.238 483396000 1268337 25.5914
waxpby(int, double, double const®, double, double const®, double®) at waxpby.cpp 0.1348 0.037 67981800 1.69754 3.97849
ddot(int, double const*, double const*, double®, double&) at ddot.cpp 0.1207 0.028 62164100 1.520063 3.11828
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eAudit Implementation

eAudit

|

Init Timer

Thread 0 Thread |1

Fork
Sleep
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Wake Up

exec()

Send Halt
Map Profilee to Cores
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Evaluate Model
Add Energy to Profile
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Sleep
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Register New Thread
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Sleep
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Periodic Interrupts
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Collate and Report Profile
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. package power plane
pp0/core power plane (all cores on the package)

@ or1/graphics power plane (client only)
f . DRAM power plane (server only)

Martin Dimitrov. https://software.intel.com/en-us/articles/intel-power-governor

s Sampling-based measurements,
similar to gprof

s RAPL limited to all cores on package:
future versions should expose per-core
counters
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eAudit In Action: Effect of Prefetching

32nm Sandy Bridge EP
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m Prefetching decreases time and energy, but not my same
degree
= Reduction in time - reduction in static energy
= Speculative memory traffic = increase in dynamic energy
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Scaling Across Sockets

meAudit demonstrated at
board-level

m Next steps:

= Add network energy models
-> system-level application
energy audit

Extension to full system

HPCCG on 32nm Sandy Bridge EP
Scaling from 1 socket (6 cores) to 2 sockets (12 cores)

Name Package Energy Package + Memory Time
Speedup Energy Speedup Speedup

HPC_sparsemv 1.03 1.10 1.94

waxpby 1.32 1.39 2.41

ddot 1.46 1.48 2.30

generate_matrix 0.59 0.62 1.00

SyS 0.14 0.15 0.24
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Summary

m Application design must take energy behavior into
consideration to reach performance goals

m Characterize energy scaling as a function of static and
dynamic energy
= Time scaling only improves static energy

mBasis for eAudit, an energy measurement and analysis tool
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eAudit available now: github.com/gtcasl/eaudit 0 53 01 06 0B 1
Static Fraction
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Backup Slides
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Case Studies 32nm Sandy Bridge EP vs. 22nm Haswell EP
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32nm Sandy Bridge EP
Compute vs. Memory-bound Scaling
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Energy Scaling Model

Energy with p cores Energy Speedup
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Time and Energy Efficiency B
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Base case is a single core
executing a serial algorithm
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