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Prediction Techniques Ranked 
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Prediction Techniques Ranked 



8 

Aspen: Abstract Scalable Performance Engineering Notation 
Representation in Aspen 
• Modular 
• Sharable 
• Composable 
• Reflects prog structure 

E.g., MD, UHPC CP 1, Lulesh,  
3D FFT, CoMD, VPFFT, … 

Source code Aspen code 

K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance Modeling,” in SC12: ACM/IEEE International Conference for High Performance 
Computing, Networking, Storage, and Analysis, 2012 
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Researchers are using Aspen for parallel applications, scientific workflows, capacity planning, power, quantum computing, etc 

• Static analysis via compiler, 
tools 

• Empirical, Historical 
• Manual (for future 

applications) 

Model Creation 

• Interactive tools for graphs, 
queries 

• Design space exploration 
• Workload Generation 
• Feedback to Runtime Systems 

Model Uses 
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Manual Example of LULESH 
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Example Uses: Resource Exploration 

100
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Aspen allows Multiresolution Modeling 

Distributed Scientific Workflows 

HPC System 

Nodes 

Wide-Area Networking, 
Files, Many HPC systems, 

and Archives 

Computation, Memory, 
Communication, IO 

Computation, Memory, 
Threads 

Scenario Scope 

S
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le
 



Node Scale Modeling with COMPASS 
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COMPASS System Overview 

• Detailed Workflow of the COMPASS Modeling Framework 

source code Input Program 
Analyzer 

Aspen machine 
model 

OpenARC IR with 
Aspen annotations Aspen IR Generator 

ASPEN IR 

Aspen IR 
Postprocessor 

Aspen application 
model Aspen 

Performance 
Prediction Tools 

Program 
characteristics 

(flops, loads, stores, 
etc.) 

Runtime prediction 

Optional feedback for advanced users 

Other program 
analysis 

 
 

 
 

 

S. Lee, J.S. Meredith, and J.S. Vetter, “COMPASS: A Framework for Automated Performance Modeling and Prediction,” in ACM 
International Conference on Supercomputing (ICS). Newport Beach, California: ACM, 2015, 10.1145/2751205.2751220. 
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MM example generated from COMPASS
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Annotation Overhead 

Benchmark Name Lines of Code Lines of Annotation Annotation Overhead 
(%) 

JACOBI  241  2 0.8 
MATMUL  128  1 0.7 
SPMUL  423  10 2.3 

LAPLACE2D  210  7 3.3 
CG  1511  10 0.6 
EP  759  9 1.1 

BACKPROP  1074  4 0.3 
BFS  435  16 3.6 
CFD  752  9 1.1 

HOTSPOT  525  11 2.0 
KMEANS  1822  11 0.6 

LUD  421  6 1.4 
NW  478  8 1.7 

SRAD  550  12 2.1 
LULESH  3743  125 3.3 
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Example: LULESH (10% of 1 kernel) 

kernel IntegrateStressForElems 
{ 
   execute [numElem_CalcVolumeForceForElems] 
   { 
       loads [((1*aspen_param_int)*8)] from elemNodes as stride(1) 
       loads [((1*aspen_param_double)*8)] from m_x 
       loads [((1*aspen_param_double)*8)] from m_y 
       loads [((1*aspen_param_double)*8)] from m_z 
       loads [(1*aspen_param_double)] from determ as stride(1) 
       flops [8] as dp, simd 
       flops [8] as dp, simd 
       flops [8] as dp, simd 
       flops [8] as dp, simd 
       flops [3] as dp, simd 
       flops [3] as dp, simd 
       flops [3] as dp, simd 
       flops [3] as dp, simd 
       stores [(1*aspen_param_double)] as stride(0) 
       flops [2] as dp, simd 
       stores [(1*aspen_param_double)] as stride(0) 
       flops [2] as dp, simd 
       stores [(1*aspen_param_double)] as stride(0) 
       flops [2] as dp, simd 
       loads [(1*aspen_param_double)] as stride(0) 
       stores [(1*aspen_param_double)] as stride(0) 
       loads [(1*aspen_param_double)] as stride(0) 
       stores [(1*aspen_param_double)] as stride(0) 
       loads [(1*aspen_param_double)] as stride(0) 
       . . . . . . 

- Input LULESH program: 3700 lines 
of C codes 
- Output Aspen model: 2300 lines of 
Aspen codes 
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Model Validation 

FLOPS LOADS STORES 
MATMUL 15% <1% 1% 
LAPLACE2D 7% 0% <1% 
SRAD 17% 0% 0% 
JACOBI 6% <1% <1% 
KMEANS 0% 0% 8% 
LUD 5% 0% 2% 
BFS <1% 11% 0% 
HOTSPOT 0% 0% 0% 
LULESH 0% 0% 0% 

0% means that prediction fell between measurements from optimized 
and unoptimized runs of the code. 
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Model Scaling Validation (LULESH) 
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Performance Modeling 
for Distributed 
Scientific Workflows 
 
(see our Panorama 
poster) 

Distributed Scientific 
Workflows 

HPC System 

Nodes 

S
ca

le
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Workflow: SNS 

 



End-to-end Resiliency Design using 
Aspen 
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• End-to-End system design for Extreme-scale HPC 
– Why pay redundant costs for power, performance, etc? 

 

• We introduce a new metric, the data vulnerability factor (DVF) 
– Quantifying vulnerability of data structures  
– Avoiding the isolation between application and hardware 

• We measure DVF based on Aspen, a domain specific 
language for system modeling 

• We categorize memory access patterns of scientific 
applications from a spectrum of computational domains 
– Dense linear algebra, Sparse linear algebra, N-body method, 

Structured grids, Spectral methods, and Monte Carlo 

• We demonstrate the significance of DVF by two case studies 
– Algorithm optimization  
– Data protection quantification 

Resiliency Modeling with Aspen 

L. Yu, D. Li et al., “Quantitatively modeling application resilience with the data vulnerability factor (Best Student Paper Finalist),” in SC14: International Conference 
for High Performance Computing, Networking, Storage and Analysis. New Orleans, Louisiana: IEEE Press, 2014, pp. 695-706, 10.1109/sc.2014.62. 
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Data Vulnerability Factor:  
Why a new metric and methodology? 
• Analytical model of resiliency that includes 

important features of architecture and 
application 
– Fast 
– Flexible 

• Balance multiple design dimensions 
– Application requirements 
– Architecture (memory capacity and type) 

• Focus on main memory initially 
• Prioritize vulnerabilities of application data 

L. Yu, D. Li et al., “Quantitatively modeling application resilience with the data vulnerability factor (Best Student Paper Finalist),” in 
SC14: International Conference for High Performance Computing, Networking, Storage and Analysis. New Orleans, Louisiana: 
IEEE Press, 2014, pp. 695-706, 10.1109/sc.2014.62. 

torr (Best Student Paper Finalist),” in
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Workflow to calculate Data Vulnerability Factor 
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An Example of Aspen Program for DVF 
 procedure VM(A,B,C) 

    for i  1, 1000 do 
        C[i]  C[i] + A[i*4] * B[i*8] 
    end for 
end procedure 

Pseudocode 

kernel vecmul { 
    execute mainblock2 [1] 
    { 
    flops [2*(n^3)] as sp, fmad, simd 
    access {1000} from {matA} as stream(4,16) 
    access {4000} from {matB} as stream(4,32) 
    access {8000} from {matC} as stream(4,4) 
    } 
} 

Extended Aspen Statements  

Resilience Statements: 
    Footprint Sizes: 
        Int: 16,000 
    Data Structures: 
        Ident: matA 
    Access Pattern: Stream 
        Int: 4 
        Int: 16 
Resilience Statements: 
    Footprint Sizes: 
        Int: 16,000 
    Data Structures: 
        Ident: matA 
    Access Pattern: Stream 
        Int: 4 
        Int: 16 
Resilience Statements: 
    Footprint Sizes: 
        Int: 16,000 
    Data Structures: 
        Ident: matA 
    Access Pattern: Stream 
        Int: 4 
        Int: 16 
 Syntax Tree 

Data structure A: 
Number of errors: 30,400 
Number of memory accesses: 51 
DVF: 105504e+06 
…  

Resilience Modeling Results 

   
   
   

Extended 
Parser 

Extended 
Complier 
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DVF Results Provides insight for balancing interacting factors 
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DVF: next steps 

• Evaluated different 
architectures 
– How much no-ECC, ECC, NVM? 

• Evaluate software and 
applications 
– ABFT 
– C/R 
– TMR 
– Containment domains 
– Fault tolerant MPI 

• End-to-End analysis 
– Where should we bear the cost 

for resiliency? 
• Not everwhere! 
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Summary 
• Our community has major challenges in HPC as we move to extreme 

scale 
– Power, Performance, Resilience, Productivity 
– New technologies emerging to address some of these challenges 

• Heterogeneous computing 
• Nonvolatile memory 

– Not just HPC: Most uncertainty in at least two decades 

• We need performance prediction and engineering tools now more than 
ever! 

• Aspen is a tool for structured design and analysis 
– Co-design applications and architectures for performance, power, resiliency  
– Automatic model generation 
– Scalable to distributed scientific workflows 
– DVF – a new twist on resiliency modeling 



40 

Acknowledgements 
• Contributors and Sponsors 

– Future Technologies Group: http://ft.ornl.gov 

– US Department of Energy Office of Science 

• DOE Vancouver Project: https://ft.ornl.gov/trac/vancouver  

• DOE Blackcomb Project: https://ft.ornl.gov/trac/blackcomb  

• DOE ExMatEx Codesign Center: http://codesign.lanl.gov  

• DOE Cesar Codesign Center: http://cesar.mcs.anl.gov/  

• DOE Exascale Efforts: http://science.energy.gov/ascr/research/computer-
science/  

– Scalable Heterogeneous Computing Benchmark team: http://bit.ly/shocmarx  

– US National Science Foundation Keeneland Project: 
http://keeneland.gatech.edu 

– US DARPA 

– NVIDIA CUDA Center of Excellence 


