
ORNL is managed by UT-Battelle
for the US Department of Energy

EExploring Emerging
Technologies in the Extreme
Scale HPC Co-Design Space with
Aspen

Jeffrey S. Vetter
Jeremy Meredith

http://ft.ornl.gov vetter@computer.org

MODSIM Workshop 2015
Seattle
13 Aug 2015

5

Prediction Techniques Ranked

6

Prediction Techniques Ranked

8

Aspen: Abstract Scalable Performance Engineering Notation
Representation in Aspen
• Modular
• Sharable
• Composable
• Reflects prog structure

E.g., MD, UHPC CP 1, Lulesh,
3D FFT, CoMD, VPFFT, …

Source code Aspen code

K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance Modeling,” in SC12: ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis, 2012

S ff d88 d J S V tt “A A D i S ifi L f P f M d li ” i SC12 ACM/IEEEE I t ti l C f f Hi h P f

Researchers are using Aspen for parallel applications, scientific workflows, capacity planning, power, quantum computing, etc

• Static analysis via compiler,
tools

• Empirical, Historical
• Manual (for future

applications)

Model Creation

• Interactive tools for graphs,
queries

• Design space exploration
• Workload Generation
• Feedback to Runtime Systems

Model Uses

9

Manual Example of LULESH

9

10

Example Uses: Resource Exploration

100

11

Aspen allows Multiresolution Modeling

Distributed Scientific Workflows

HPC System

Nodes

Wide-Area Networking,
Files, Many HPC systems,

and Archives

Computation, Memory,
Communication, IO

Computation, Memory,
Threads

Scenario Scope

S
ca

le

Node Scale Modeling with COMPASS

13

COMPASS System Overview

• Detailed Workflow of the COMPASS Modeling Framework

source code Input Program
Analyzer

Aspen machine
model

OpenARC IR with
Aspen annotations Aspen IR Generator

ASPEN IR

Aspen IR
Postprocessor

Aspen application
model Aspen

Performance
Prediction Tools

Program
characteristics

(flops, loads, stores,
etc.)

Runtime prediction

Optional feedback for advanced users

Other program
analysis

S. Lee, J.S. Meredith, and J.S. Vetter, “COMPASS: A Framework for Automated Performance Modeling and Prediction,” in ACM
International Conference on Supercomputing (ICS). Newport Beach, California: ACM, 2015, 10.1145/2751205.2751220.

16

MM example generated from COMPASS

18

Annotation Overhead

Benchmark Name Lines of Code Lines of Annotation Annotation Overhead
(%)

JACOBI 241 2 0.8
MATMUL 128 1 0.7
SPMUL 423 10 2.3

LAPLACE2D 210 7 3.3
CG 1511 10 0.6
EP 759 9 1.1

BACKPROP 1074 4 0.3
BFS 435 16 3.6
CFD 752 9 1.1

HOTSPOT 525 11 2.0
KMEANS 1822 11 0.6

LUD 421 6 1.4
NW 478 8 1.7

SRAD 550 12 2.1
LULESH 3743 125 3.3

19

Example: LULESH (10% of 1 kernel)

kernel IntegrateStressForElems
{
 execute [numElem_CalcVolumeForceForElems]
 {
 loads [((1*aspen_param_int)*8)] from elemNodes as stride(1)
 loads [((1*aspen_param_double)*8)] from m_x
 loads [((1*aspen_param_double)*8)] from m_y
 loads [((1*aspen_param_double)*8)] from m_z
 loads [(1*aspen_param_double)] from determ as stride(1)
 flops [8] as dp, simd
 flops [8] as dp, simd
 flops [8] as dp, simd
 flops [8] as dp, simd
 flops [3] as dp, simd
 flops [3] as dp, simd
 flops [3] as dp, simd
 flops [3] as dp, simd
 stores [(1*aspen_param_double)] as stride(0)
 flops [2] as dp, simd
 stores [(1*aspen_param_double)] as stride(0)
 flops [2] as dp, simd
 stores [(1*aspen_param_double)] as stride(0)
 flops [2] as dp, simd
 loads [(1*aspen_param_double)] as stride(0)
 stores [(1*aspen_param_double)] as stride(0)
 loads [(1*aspen_param_double)] as stride(0)
 stores [(1*aspen_param_double)] as stride(0)
 loads [(1*aspen_param_double)] as stride(0)

- Input LULESH program: 3700 lines
of C codes
- Output Aspen model: 2300 lines of
Aspen codes

20

Model Validation

FLOPS LOADS STORES
MATMUL 15% <1% 1%
LAPLACE2D 7% 0% <1%
SRAD 17% 0% 0%
JACOBI 6% <1% <1%
KMEANS 0% 0% 8%
LUD 5% 0% 2%
BFS <1% 11% 0%
HOTSPOT 0% 0% 0%
LULESH 0% 0% 0%

0% means that prediction fell between measurements from optimized
and unoptimized runs of the code.

21

Model Scaling Validation (LULESH)

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

10 20 30 40 50

By
tes

 St
or

ed

Edge Elements

Measured
(Unoptimized)

Aspen
Prediction

Measured
(Optimized)

Performance Modeling
for Distributed
Scientific Workflows

(see our Panorama
poster)

Distributed Scientific
Workflows

HPC System

Nodes

S
ca

le

26

Workflow: SNS

End-to-end Resiliency Design using
Aspen

30

• End-to-End system design for Extreme-scale HPC
– Why pay redundant costs for power, performance, etc?

• We introduce a new metric, the data vulnerability factor (DVF)
– Quantifying vulnerability of data structures
– Avoiding the isolation between application and hardware

• We measure DVF based on Aspen, a domain specific
language for system modeling

• We categorize memory access patterns of scientific
applications from a spectrum of computational domains
– Dense linear algebra, Sparse linear algebra, N-body method,

Structured grids, Spectral methods, and Monte Carlo

• We demonstrate the significance of DVF by two case studies
– Algorithm optimization
– Data protection quantification

Resiliency Modeling with Aspen

L. Yu, D. Li et al., “Quantitatively modeling application resilience with the data vulnerability factor (Best Student Paper Finalist),” in SC14: International Conference
for High Performance Computing, Networking, Storage and Analysis. New Orleans, Louisiana: IEEE Press, 2014, pp. 695-706, 10.1109/sc.2014.62.

31

Data Vulnerability Factor:
Why a new metric and methodology?
• Analytical model of resiliency that includes

important features of architecture and
application
– Fast
– Flexible

• Balance multiple design dimensions
– Application requirements
– Architecture (memory capacity and type)

• Focus on main memory initially
• Prioritize vulnerabilities of application data

L. Yu, D. Li et al., “Quantitatively modeling application resilience with the data vulnerability factor (Best Student Paper Finalist),” in
SC14: International Conference for High Performance Computing, Networking, Storage and Analysis. New Orleans, Louisiana:
IEEE Press, 2014, pp. 695-706, 10.1109/sc.2014.62.

torr (Best Student Paper Finalist),” in
nalyysisiss. NNewew OOrlrleaeansns, LoLouiuisisianana:a:

?

34

Workflow to calculate Data Vulnerability Factor

35

An Example of Aspen Program for DVF
 procedure VM(A,B,C)

 for i 1, 1000 do
 C[i] C[i] + A[i*4] * B[i*8]
 end for
end procedure

Pseudocode

kernel vecmul {
 execute mainblock2 [1]
 {
 flops [2*(n^3)] as sp, fmad, simd
 access {1000} from {matA} as stream(4,16)
 access {4000} from {matB} as stream(4,32)
 access {8000} from {matC} as stream(4,4)
 }
}

Extended Aspen Statements

Resilience Statements:
 Footprint Sizes:
 Int: 16,000
 Data Structures:
 Ident: matA
 Access Pattern: Stream
 Int: 4
 Int: 16
Resilience Statements:
 Footprint Sizes:
 Int: 16,000
 Data Structures:
 Ident: matA
 Access Pattern: Stream
 Int: 4
 Int: 16
Resilience Statements:
 Footprint Sizes:
 Int: 16,000
 Data Structures:
 Ident: matA
 Access Pattern: Stream
 Int: 4
 Int: 16
 Syntax Tree

Data structure A:
Number of errors: 30,400
Number of memory accesses: 51
DVF: 105504e+06
…

Resilience Modeling Results

Extended
Parser

Extended
Complier

36

36

DVF Results Provides insight for balancing interacting factors

37

DVF: next steps

• Evaluated different
architectures
– How much no-ECC, ECC, NVM?

• Evaluate software and
applications
– ABFT
– C/R
– TMR
– Containment domains
– Fault tolerant MPI

• End-to-End analysis
– Where should we bear the cost

for resiliency?
• Not everwhere!

37

39

Summary
• Our community has major challenges in HPC as we move to extreme

scale
– Power, Performance, Resilience, Productivity
– New technologies emerging to address some of these challenges

• Heterogeneous computing
• Nonvolatile memory

– Not just HPC: Most uncertainty in at least two decades

• We need performance prediction and engineering tools now more than
ever!

• Aspen is a tool for structured design and analysis
– Co-design applications and architectures for performance, power, resiliency
– Automatic model generation
– Scalable to distributed scientific workflows
– DVF – a new twist on resiliency modeling

40

Acknowledgements
• Contributors and Sponsors

– Future Technologies Group: http://ft.ornl.gov

– US Department of Energy Office of Science

• DOE Vancouver Project: https://ft.ornl.gov/trac/vancouver

• DOE Blackcomb Project: https://ft.ornl.gov/trac/blackcomb

• DOE ExMatEx Codesign Center: http://codesign.lanl.gov

• DOE Cesar Codesign Center: http://cesar.mcs.anl.gov/

• DOE Exascale Efforts: http://science.energy.gov/ascr/research/computer-
science/

– Scalable Heterogeneous Computing Benchmark team: http://bit.ly/shocmarx

– US National Science Foundation Keeneland Project:
http://keeneland.gatech.edu

– US DARPA

– NVIDIA CUDA Center of Excellence

