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) Massively parallel torus, dragonfly networks.
. * Key questions: configuring link
bandwidth, dimensionality, buffer space,
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CODES Simulation framework for extreme-scale HPC
& Distributed Systems

Workflows

[ Workloads
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Services

Protocols

Hardware/Networks

Simulation (PDES)

Detailed simulation of storage and network
components, scientific workloads and the
surrounding environment.

Modular simulation components
— Pluggable I/0 and network workload components
— Pluggable high-performance network models
Incrementally develop simulation capability,

validating approach and components along the
way

Goal: provide a simulation toolkit to the
community to enable broader investigation of the
design space.
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Enabling CODES: parallel discrete-event simulation

= Discrete event simulation (DES): a computer
model for a system where changes in the state of
the system occur at discrete points in simulation
time
= Parallel DES allows execution of simulation on a
parallel platform Simulation pre-regs for co-design

— Enables much richer simulations (e.g., more
events) than otherwise possible

= Rensselaer Optimistic Simulator System (ROSS)

Cost (Time + Memory)

provides PDES capability for CODES Fidelity + Accuracy
— Optimistically schedules events. Rollback
realized via reverse computation Scalability

— Users provide functions for reverse
computation — undo the effects of a particular

evnt on the LP state

— Logical processes (LPs) model state of the
system

— Scalable: can efficiently execute simulations
with millions of network nodes at a flit-level
fidelity

* Courtesy: Christopher D. Carothers, RPI
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CODES Pluggable Network and I/0 Models

2 empirical: mpptest —— -
. simulate%: loggp %podel -------- - 0
=  Pluggable Network models: @ 1500 L
)
— Models are decoupled from higher =2
levels via a consistent API § 1000
— Analytic — based on LogGP =
: : : @ 500 |
— Flit-level simulation of torus, dragonfly
topologies at extreme scale Y TR R TN Y
. . S 2o S Z Z YT
— Flit-level fat-tree and SlimFly models G & 24 Z,%g%j&%@?%@g’gj%@
are being developed
Message size (bytes)
= Pluggable Network and 1/0 workloads MPI message latency of CODES logGP model and mpptest
— 1/0 workload component: Allows
arbitrary workload consumer 1000 | mpplestiepBaP

ross torus model--BG/P

mpptest CCNI BG/Q —K—
ross torus model--BG/Q

components to obtain IO workloads
from a diverse range of input sources
including characterization tools like
Darshan.
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Latency (microseconds)

— Network workload component: Allows
workloads from the Design Forward* T b % % % % Y T % A
program to be replayed on pluggable
network models

Message length (bytes)

MPI message latency of CODES torus model vs. mpptest on
Argonne BG/P (1 mid-plane) and RPI Amos BG/Q (1 rack)
networks, 8 hops, 1 MPI rank per node

*http://portal.nersc.gov/project/ CAL/doe-miniapps.htm

Design space of extreme-scale HPC network and Storage Systems .



Example CODES Network Model Plug-in: Dragonfl

Hierarchical topology: several groups
connected via all-to-all links

Used in Edison (Cray XC30) and Cori
architectures

CODES dragonfly model supports
minimal, non-minimal and adaptive
routing

Shown to scale on millions of network
nodes with a simulation event-rate of up
to 1.33 billion events/second on IBM
Blue Gene/Q

Key Questions: Effect of dimensionality,
network configuration and link
bandwidth on performance?
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Average (left) and maximum (right) latency of a 1.3M node dragonfly
network model with global traffic pattern (minimal & non-minimal
routing)
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Million-node dragonfly simulation performance on 1 rack of
Mira Blue Gene/Q
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CODES Service Models: High-Energy Physics (HEP)
Science Data Facility
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Image Credit: Andrew Norman, Adam Lyon @ Fermilab



CODES Service Models: High-Energy Physics (HEP)
Data Facility

Experimental/observational data Worker - - -

processing pipeline @ Fermilab 3

Generate projects

Work underway to develop an end-to-end '
simulation of Fermilab’s HEP scientific
data facility

L

-

Register
Projects

[}
Pre-populate project files
¥

/

Fetch files

-

— Validate the simulation against actual
data facility logging information

Fetch missing files from Enstore

v

— Use realistic HEP workflows scenarios

Submit Job

/
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Research Questions: 7

Lookup files of the job |
¥ |y —— Send Files

: File Access Request
| />
copy file on worker node |
- ' |
'
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— How best to configure existing peta-byte
scale storage systems? E.g. how to
increase cache life times, trying different
cache policies

— How to quantify the value for deploying Fig: Initial simulation model of the
new hardware? E.g. adding more archival

devices for e.g. tapes.
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Fermilab data-access facility

Data movement and access on data-intensive science platforms



Example CODES Resilience Model: Distributed Object
Storage Rebuild Simulation

=  Some protocols of interest in a replicated object storage system:

— Rebuild —we’ve detected a server down, how do we re-replicate data?

— Forwarding — how do we propagate write data between servers efficiently?
= Example: rebuild (lead: Phil Carns, ANL)
=  Work explores advanced placement algorithms e.g. multi-ring hash algorithm

= Design questions: Determine the effect of algorithm/configuration on rebuild?
(e.g., how many rings to use?)

Question: How do pipelining and object placement affect rebuild performance?
Original owner of
® oip 233

New owner of OID
O 233 after fault
_ Triage requests by
- — >
500 () 200 server 600

OID: 233 -+ — > Rebuild traffic to
server 600

Fault

Resilience in distributed data-intensive storage systems
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Example CODES Resilience Models: Group
Membership with SWIM protocol

Storage system resilience = detection and dissemination of
group membership updates

O: per-server view of
membership state

Scalable Weakly-consistent Infection-style Process Group Storage Servers
Membership Protocol [1]
Developed a high-resolution model of the SWIM protocol

— Use simulation to evaluate behavior that can’t be predicted
using analytical models

— Individual network message costs are calculated using the
LogGP network model

Scale:

— O (thousands) of file servers

— Tolerate transient errors < 15 seconds

— Take action (confirm failure) within 30 seconds
Questions:

— How fast do membership updates propagate through the
system?

— How much network traffic are we willing/able to incur?

[1] Das, A., Gupta, I., Motivala, A.: Swim: Scalable weakly-consistent infection-style process group membership protocol. In: Proceedings of the 2002
International Conference on Dependable Systems and Networks. pp. 303—312. DSN '02, IEEE Computer Society Press, Washington, DC, USA (2002)

Resilience in distributed data-intensive storage systems



Summary: Work being done with CODES

Network models
— Torus
— Dragonfly
— Fat tree (lIT, UIUC)
— Slim Fly (In Progress)
Storage models
— 1/0 protocols
— Data placement
— Fault Detection/ Response
— Burst buffers
HPC workload models
— |IOWA- modeling large-scale 1/O workloads
— Network --- Design Forward network trace replay
Workflow processing / Data management
— Bioinformatics: Kbase usecase, meta-genomic server model
— High Energy Physics (HEP) : Fermilab’s peta-scale storage system (In Progress)
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Modsim Workshop Questions

What is the major contribution of your research?

— High-fidelity and large-scale parallel discrete-event models of high-end
computing components like HPC networks, I/0 and network workloads,

scientific workflows and data-intensive architecture

— Modular components can be combined for HPC and data-intensive
architectural evaluation and co-design.

What is the bigger picture for your research area? What are the gaps?
— Ability to execute high fidelity network models over 12 hr to 24 hr time-scales

— Lack of flexible network and storage behavior descriptions
— Reverse computation is coded by hand for CODES models.

e Compiler efforts: LLVM (RPI)

= What is the bigger picture for your research area? (i.e., identify synergistic
projects, complementary projects in technical sense, etc)

— Node-level simulators such as SST (SNL), Manifold (GaTech), Booksim
(Stanford)
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Repo access and SoC

= CODES developer access

— http://www.mcs.anl.gov/research/projects/codes/

= Discussion forum
— codes-ross-users@lists.mcs.anl.gov

= 1St Summer of CODES workshop

— http://www.mcs.anl.gov/research/projects/codes/publications/
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Questions?



