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Applications in the Exascale Timeframe 
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 Want apps being developed today to run fast on 
tomorrow’s supercomputers 

 Architectural details are as yet unknown 
– Cache sizes and associativities, memory and storage latencies 

and bandwidths, functional units per threads, threads per core, 
cores per socket, sockets per node, extent of coherence 
domains, on/off-chip network topologies, communication 
latencies and bandwidths, … 

 Can’t simulate or model what we don’t know 
 Typical approach: Optimize for current supercomputers 

and hope that future supercomputers aren’t too different 
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 Provided by all modern processors 
 Tally various microarchitectural events 

– Flops, cache misses, branch mispredicts, … 
 Inform many performance-analysis tools 

– VTune, CrayPat, PAPI, HPCToolkit, … 
 Pros 

– Detailed HW information, unintrusive 
 Cons 

– Vary by processor, limited number usable at once, 
often highly unintuitive interpretations 
 

 

Hardware Performance Counters 
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Measuring Memory Accesses 

 How many main-memory 
accesses? 
– Measure L3 cache misses 
– 100M accesses × 

8B/access × 1 line/64B × 1 
miss/line = 12.5M misses 

Slide 6 

for (i = 0; i < 100000000; i++) 
  sum += array[i]; /* doubles */ 

 Performance counter results 
– Tally is only 1M 
– Why?  Because prefetches 

don’t count as misses on 
Intel processors 0
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Measuring Floating-Point Operations 
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 How many flops does the above perform? 
– Expect somewhere between 3 (-, *, +=) and 6 (also 
fabsf(), <=, (double)) 

double apply_shape (int n, float *v, float *vs) 
{ 
  double accum = 0.0; 
  int i; 
 
  for (i = 0; i < n; i++) { 
    float x = fabsf(v[i]); 
    vs[i] = (1.0f - x)*(x <= 1.0f); 
  } 
  for (i = 0; i < n; i++) 
    accum += (double) vs[i]; 
  return accum; 
} 

SP map 

DP reduce 
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Measuring Floating-Point Operations 

 Performance counter 
results 
– Range is from 0 to 8  
– Results depend on 

microarchitecture, 
compiler, and specific 
counters used 

 Explanations 
– Vector flops not always 

counted as flops 
– FP register motion may 

count as flops 
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Key Insight 

Slide 9 

 Don’t need microarchitectural details for a first-
order analysis of future application performance 

Likely to perform well Unlikely to perform well 
Flop-heavy codes (actually, 
also integer-op-heavy 
codes) 

Branch-heavy codes, 
especially unpredictable or 
divergent branches 

Codes with lots of memory 
locality (temporal, perhaps 
also spatial) 

Codes randomly accessing 
large amounts of memory 

Data-parallel codes (e.g., 
vector or SIMT parallelism) 

Highly serial codes 
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Byfl Approach 
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 “Software performance 
counters” 

 Instrument code at 
compile time 
– Tally operations of interest 
– Flops, integer ops, loads, 

stores, branches, … 
– Richer info than at run-time 

 Accumulate counter 
values at run time 
– Want to handle “while 

not converged() do …” 

for (i = 0; i < 100000000; i++) { 
  sum += array[i]; /* doubles */ 
  num_loads++; 
  num_flops++; 
  bytes_loaded += 8; 
} 

for (i = 0; i < 100000000; i++) 
  sum += array[i]; /* doubles */ 

Artist’s conception.  Transformation 
actually performed on the compiler’s 
intermediate representation. 
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Benefits 
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 No ambiguity regarding semantics 
– When in doubt, can read tool source code 

 No measurement variability across architectures 
– A divide is a divide, not a reciprocal approximation 

 Not limited to a given number of live counters 
 No mutually exclusive counters 
 Not limited to what the hardware can measure 
 Not limited to scalar counters 
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Analyzing Application Performance 
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 Somewhat different thought process 
– Not hardware-centric but application-centric 

 Ask not Ask 
How many cache (or TLB) misses 
did my app observe? 

What is my app’s working-set 
size? 

How many flops did my app 
perform per second? 

How many flops did my app 
perform per load? 

How many branches were 
mispredicted? 

How many operations did my app 
perform per branch? 
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Basic Analysis 
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 More detail than is provided by HW counters 
Parameter Measurement (SNAP) 

Load operations 25,952,958,723 
Store operations 5,297,479,266 
Floating-point operations 32,338,525,886 
Integer operations 127,617,520,266 
Function-call operations (non-exception-throwing) 33,202,227 
Function-call operations (exception-throwing) 0 
Unconditional and direct branch operations (removable) 1,109,576,789 
Unconditional and direct branch operations (mandatory) 64,884,317 
Conditional branch operations (not taken) 1,249,240,855 
Conditional branch operations (taken) 10,986,614,142 
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Basic Analysis 
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 More detail than is provided by HW counters 
Parameter Measurement (SNAP) 

Unconditional but indirect branch operations 0 
Multi-target (switch) branch operations 10 
Function-return operations 77,443 
Other branch operations 0 
Bytes loaded 295,721,649,378 
Bytes stored 79,140,611,792 
Unique addresses loaded or stored 128,318,469 
Bytes needed to cover half of all dynamic loads and stores 1,928 
Vector operations 11,208,258,983 
Total vector elements 22,416,518,166 
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Example #1: “Hot” Library Calls 
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 What library calls get invoked most frequently? 
– SNAP: memset(), fabs(), and OpenMP calls 
– NuT: memcpy() and transcendentals 

SNAP NuT 

1 54.4% llvm.memset.p0i8.i64 20.1% llvm.memcpy.p0i8.p0i8.i64 
2 44.5% fabs 12.0% acos 
3 0.1% _gfortran_internal_pack 8.3% log 
4 0.1% omp_get_num_threads 7.2% asin 
5 0.1% omp_get_thread_num 7.2% cos 
6 0.1% GOMP_barrier 7.2% sin 
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Example #2: Loads and Stores by Type 
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 Are load and store data types as expected? 
– SNAP: loads of 64-bit FP vectors 
– NuT: loads of 64-bit FP scalars 

0% 5% 10% 15% 20% 25% 30% 35% 40%

Loads of 32-bit integers
Loads of 64-bit floating-point values

Loads of 64-bit integers
Loads of 8-bit integers

Loads of pointers to 32-bit integers
Loads of pointers to 64-bit floating-point values

Loads of pointers to 8-bit integers
Loads of pointers to oddly sized "other" values
Loads of vectors of 64-bit floating-point values

Stores of 32-bit integers
Stores of 64-bit floating-point values

Stores of 64-bit integers
Stores of 8-bit integers

Stores of pointers to oddly sized "other" values
Stores of vectors of 64-bit floating-point values

Fraction of dynamic loads and stores 

SNAP 
NuT 

NuT loads more int values 

SNAP loads more int* values 
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Example #3: “Hot” Instructions 
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 Which instructions should the CPU run fast? 
– SNAP: integer adds 
– NuT: XORs and integer multiplies 
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Instruction 

Add, 20.5% 

Xor, 11.6% Mul, 11.6% 

SNAP 
NuT 
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Example #4: Instruction Dependencies 
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 Which instructions feed into which other 
instructions? 
– Think fused multiply-add: What else should be fused? 
– Useful for synthetic application mock-ups 

SNAP 

Load 

GEP 

[Const] 

... 

GEP Load 

ICmp 

Br 

[Const] 

... 

Load 

FMul 

Load 

Add 

ICmp 

Or 

Load 

FMul 

[Const] 

FMul 

FSub 

Load 
FAdd 

FAdd 

FMul 

[Const] Load 
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 Which instructions feed into which other 
instructions? 
– Think fused multiply-add: What else should be fused? 
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Example #5: Accesses by Data Structure 

Slide 20 

 3 data structures cover 50% of 
accesses 

 No difference between 4KB and 4MB of 
high-speed memory 
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 Want to optimize apps for future supercomputers 
– As-yet unknown architecture → can’t model or simulate 
– Insight: Can follow trends to know what app characteristics are 

likely to be good/bad for performance 

 Software performance counters provide the requisite 
information for optimization 
– Hardware counters too grounded in today’s hardware and too 

divorced from the app developer’s view 
– Byfl’s compile-time instrumentation + run-time data gathering 

provides richer information than either hardware or static analysis 

https://github.com/losalamos/Byfl 
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