
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Byfl: Veni, Vidi, Numerari
Scott Pakin

Applied Computer Science Group (CCS-7)
14 August 2015

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Outline

Slide 2

 Motivation
 Approach
 Examples
 Conclusions

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Applications in the Exascale Timeframe

Slide 3

 Want apps being developed today to run fast on
tomorrow’s supercomputers

 Architectural details are as yet unknown
– Cache sizes and associativities, memory and storage latencies

and bandwidths, functional units per threads, threads per core,
cores per socket, sockets per node, extent of coherence
domains, on/off-chip network topologies, communication
latencies and bandwidths, …

 Can’t simulate or model what we don’t know
 Typical approach: Optimize for current supercomputers

and hope that future supercomputers aren’t too different

Zettascale

Yottascale

Xonascale

Wekascale

Vundascale

Tredascale

Udascale

Sortascale

Rintascale

Quexascale

Peptascale

Ochascale

Nenascale

Mingascale

Lumascale

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Applications in the Exascale Timeframe

Slide 4

 Want apps being developed today to run fast on
tomorrow’s supercomputers

 Architectural details are as yet unknown
– Cache sizes and associativities, memory and storage latencies

and bandwidths, functional units per threads, threads per core,
cores per socket, sockets per node, extent of coherence
domains, on/off-chip network topologies, communication
latencies and bandwidths, …

 Can’t simulate or model what we don’t know
 Typical approach: Optimize for current supercomputers

and hope that future supercomputers aren’t too different

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

 Provided by all modern processors
 Tally various microarchitectural events

– Flops, cache misses, branch mispredicts, …
 Inform many performance-analysis tools

– VTune, CrayPat, PAPI, HPCToolkit, …
 Pros

– Detailed HW information, unintrusive
 Cons

– Vary by processor, limited number usable at once,
often highly unintuitive interpretations

Hardware Performance Counters

Slide 5

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Measuring Memory Accesses

 How many main-memory
accesses?
– Measure L3 cache misses
– 100M accesses ×

8B/access × 1 line/64B × 1
miss/line = 12.5M misses

Slide 6

for (i = 0; i < 100000000; i++)
 sum += array[i]; /* doubles */

 Performance counter results
– Tally is only 1M
– Why? Because prefetches

don’t count as misses on
Intel processors 0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

Expected Measured

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Measuring Floating-Point Operations

Slide 7

 How many flops does the above perform?
– Expect somewhere between 3 (-, *, +=) and 6 (also
fabsf(), <=, (double))

double apply_shape (int n, float *v, float *vs)
{
 double accum = 0.0;
 int i;

 for (i = 0; i < n; i++) {
 float x = fabsf(v[i]);
 vs[i] = (1.0f - x)*(x <= 1.0f);
 }
 for (i = 0; i < n; i++)
 accum += (double) vs[i];
 return accum;
}

SP map

DP reduce

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Measuring Floating-Point Operations

 Performance counter
results
– Range is from 0 to 8
– Results depend on

microarchitecture,
compiler, and specific
counters used

 Explanations
– Vector flops not always

counted as flops
– FP register motion may

count as flops

1.0

5.1

1.3

6.4

0.0

5.0

0.0

6.1

5.0 5.0

8.0

2.0

0

1

2

3

4

5

6

7

8

9

Fl
op

s
pe

r i
te

ra
tio

n

Slide 8

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Key Insight

Slide 9

 Don’t need microarchitectural details for a first-
order analysis of future application performance

Likely to perform well Unlikely to perform well
Flop-heavy codes (actually,
also integer-op-heavy
codes)

Branch-heavy codes,
especially unpredictable or
divergent branches

Codes with lots of memory
locality (temporal, perhaps
also spatial)

Codes randomly accessing
large amounts of memory

Data-parallel codes (e.g.,
vector or SIMT parallelism)

Highly serial codes

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Byfl Approach

Slide 10

 “Software performance
counters”

 Instrument code at
compile time
– Tally operations of interest
– Flops, integer ops, loads,

stores, branches, …
– Richer info than at run-time

 Accumulate counter
values at run time
– Want to handle “while

not converged() do …”

for (i = 0; i < 100000000; i++) {
 sum += array[i]; /* doubles */
 num_loads++;
 num_flops++;
 bytes_loaded += 8;
}

for (i = 0; i < 100000000; i++)
 sum += array[i]; /* doubles */

Artist’s conception. Transformation
actually performed on the compiler’s
intermediate representation.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Benefits

Slide 11

 No ambiguity regarding semantics
– When in doubt, can read tool source code

 No measurement variability across architectures
– A divide is a divide, not a reciprocal approximation

 Not limited to a given number of live counters
 No mutually exclusive counters
 Not limited to what the hardware can measure
 Not limited to scalar counters

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Analyzing Application Performance

Slide 12

 Somewhat different thought process
– Not hardware-centric but application-centric

 Ask not Ask
How many cache (or TLB) misses
did my app observe?

What is my app’s working-set
size?

How many flops did my app
perform per second?

How many flops did my app
perform per load?

How many branches were
mispredicted?

How many operations did my app
perform per branch?

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Basic Analysis

Slide 13

 More detail than is provided by HW counters
Parameter Measurement (SNAP)

Load operations 25,952,958,723
Store operations 5,297,479,266
Floating-point operations 32,338,525,886
Integer operations 127,617,520,266
Function-call operations (non-exception-throwing) 33,202,227
Function-call operations (exception-throwing) 0
Unconditional and direct branch operations (removable) 1,109,576,789
Unconditional and direct branch operations (mandatory) 64,884,317
Conditional branch operations (not taken) 1,249,240,855
Conditional branch operations (taken) 10,986,614,142

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Basic Analysis

Slide 14

 More detail than is provided by HW counters
Parameter Measurement (SNAP)

Unconditional but indirect branch operations 0
Multi-target (switch) branch operations 10
Function-return operations 77,443
Other branch operations 0
Bytes loaded 295,721,649,378
Bytes stored 79,140,611,792
Unique addresses loaded or stored 128,318,469
Bytes needed to cover half of all dynamic loads and stores 1,928
Vector operations 11,208,258,983
Total vector elements 22,416,518,166

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Example #1: “Hot” Library Calls

Slide 15

 What library calls get invoked most frequently?
– SNAP: memset(), fabs(), and OpenMP calls
– NuT: memcpy() and transcendentals

SNAP NuT

1 54.4% llvm.memset.p0i8.i64 20.1% llvm.memcpy.p0i8.p0i8.i64
2 44.5% fabs 12.0% acos
3 0.1% _gfortran_internal_pack 8.3% log
4 0.1% omp_get_num_threads 7.2% asin
5 0.1% omp_get_thread_num 7.2% cos
6 0.1% GOMP_barrier 7.2% sin

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Example #2: Loads and Stores by Type

Slide 16

 Are load and store data types as expected?
– SNAP: loads of 64-bit FP vectors
– NuT: loads of 64-bit FP scalars

0% 5% 10% 15% 20% 25% 30% 35% 40%

Loads of 32-bit integers
Loads of 64-bit floating-point values

Loads of 64-bit integers
Loads of 8-bit integers

Loads of pointers to 32-bit integers
Loads of pointers to 64-bit floating-point values

Loads of pointers to 8-bit integers
Loads of pointers to oddly sized "other" values
Loads of vectors of 64-bit floating-point values

Stores of 32-bit integers
Stores of 64-bit floating-point values

Stores of 64-bit integers
Stores of 8-bit integers

Stores of pointers to oddly sized "other" values
Stores of vectors of 64-bit floating-point values

Fraction of dynamic loads and stores

SNAP
NuT

NuT loads more int values

SNAP loads more int* values

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Example #3: “Hot” Instructions

Slide 17

 Which instructions should the CPU run fast?
– SNAP: integer adds
– NuT: XORs and integer multiplies

0%

5%

10%

15%

20%

A
dd

A
llo

ca
A

nd
A

Sh
r

A
to

m
ic

R
M

W
B

itC
as

t
B

r
C

al
l

E
xt

ra
ct

E
le

m
en

t
E

xt
ra

ct
V

al
ue

FA
dd

FC
m

p
FD

iv
FM

ul
FP

To
U

I
FS

ub
G

et
E

le
m

en
tP

tr
IC

m
p

In
se

rtE
le

m
en

t
In

se
rtV

al
ue

In
vo

ke
Lo

ad
LS

hr
M

ul O
r

P
H

I
P

trT
oI

nt
R

et
S

D
iv

S
el

ec
t

S
Ex

t
S

hl
S

hu
ffl

eV
ec

to
r

S
IT

oF
P

S
R

em
S

to
re

S
ub

S
w

itc
h

Tr
un

c
U

D
iv

U
IT

oF
P

U
R

em X
or

ZE
xt

Fr
ac

tio
n

of
 in

st
ru

ct
io

ns

ex
ec

ut
ed

Instruction

Add, 20.5%

Xor, 11.6% Mul, 11.6%

SNAP
NuT

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Example #4: Instruction Dependencies

Slide 18

 Which instructions feed into which other
instructions?
– Think fused multiply-add: What else should be fused?
– Useful for synthetic application mock-ups

SNAP

Load

GEP

[Const]

...

GEP Load

ICmp

Br

[Const]

...

Load

FMul

Load

Add

ICmp

Or

Load

FMul

[Const]

FMul

FSub

Load
FAdd

FAdd

FMul

[Const] Load

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Example #4: Instruction Dependencies

Slide 19

 Which instructions feed into which other
instructions?
– Think fused multiply-add: What else should be fused?
– Useful for synthetic application mock-ups

GEP Load

Xor

LShr

[Const]

LShr

Mul

[Const]

Xor

Mul

[Const]

[Const]

GEP

[Const]

...

Add

And

[Const]

[Const] Alloca

Load

Add

[Const]

Mul

Xor

Mul

NuT

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Example #5: Accesses by Data Structure

Slide 20

 3 data structures cover 50% of
accesses

 No difference between 4KB and 4MB of
high-speed memory

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

25
6M

this @ RNG.hh:71

[unknown]

agg.result @
 sourcery.hh:135

unnamed @ stl_vector.h:104

[Total of 209 data structures]

H
its

 to
 h

ig
h-

sp
ee

d
m

em
or

y
(%

)

Size of high-speed memory (B)

Capacity (B) Coverage (%)

128 20
1KB 50
8MB <100

256MB 100

NuT

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Conclusions

Slide 21

 Want to optimize apps for future supercomputers
– As-yet unknown architecture → can’t model or simulate
– Insight: Can follow trends to know what app characteristics are

likely to be good/bad for performance

 Software performance counters provide the requisite
information for optimization
– Hardware counters too grounded in today’s hardware and too

divorced from the app developer’s view
– Byfl’s compile-time instrumentation + run-time data gathering

provides richer information than either hardware or static analysis

https://github.com/losalamos/Byfl

	Byfl: Veni, Vidi, Numerari
	Outline
	Applications in the Exascale Timeframe
	Applications in the Exascale Timeframe
	Hardware Performance Counters
	Measuring Memory Accesses
	Measuring Floating-Point Operations
	Measuring Floating-Point Operations
	Key Insight
	Byfl Approach
	Benefits
	Analyzing Application Performance
	Basic Analysis
	Basic Analysis
	Example #1: “Hot” Library Calls
	Example #2: Loads and Stores by Type
	Example #3: “Hot” Instructions
	Example #4: Instruction Dependencies
	Example #4: Instruction Dependencies
	Example #5: Accesses by Data Structure
	Conclusions

