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Power and energy costs of high performance computing  systems are a growing 
severity nowadays  operating costs and system reliability 
 AvgPwr of top 5 supercomputers (TOP500)10.1MW 
 20MW power-wall by DOE for exascale (1018 FLOPS) 
 Overheat problems (aging/failures) and cooling costs 
 

Dynamic Voltage and Frequency Scaling (DVFS) 
 CMOS-based components(CPU/GPU/mem.) dominant 
 Strategically switch processors to low-power states when the peak processor 

performance is unnecessary 
 voltage/frequency ↓  power ↓  energy efficiency 
   

Power and Energy Concerns in HPC 
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Two Classic Energy Saving DVFS 
Solutions 
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 Critical Path Aware 
Slack Reclamation 
 

 Race-to-halt/idle 
 



 Basics of the employed techniques 
 Dynamic power consumption of these components 
 Supply voltage has a positive correlation with (not strictly proportional/linear to) 

dynamic power 
 

 Limitations of Existing Solutions 
– Most DVFS techniques are frequency-directed 
– Undervolting: For a given frequency, hardware can be supplied w/ a voltage 

lower than the original paired one 
 Original part of the throughput can be preserved due to fixed frequency 
 Uniformly applied to both slack and non-slack of HPC runs (using the same 

DVFS techniques to find appropriate frequencies for each time interval, but 
with further reduced voltage).  

 Drawbacks: may cause increasing error rates 
 

 Can lowering Vdd with fixed nominal frequency be applied to HPC runtime? Are 
energy savings going to be offset by software-level fault-tolerance overhead? Any 
theoretical condition that needs to meet? 
   

Beyond DVFS: Undervolting With Fixed 
Frequency 
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Key Contributions 
We observe that energy saving could be achieved using undervolting by 
leveraging appropriate mainstream resilience techniques 
No requirements of pre-production machines and no modifications to the 
hardware 
Modeling performance and energy under undervolting analytically 
Up to 12.1% energy savings against baseline and 9.1% more energy saved than 
a state-of-the-art DVFS technique (Adagio). 

Contributions 
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Estimating Failure Rate According to 
Vdd  
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 Assumption based on [Alameldeen, ISCA’11][Zhu, ICCAD’04][Bacha, ISCA’13] 
Failures of combinational logic circuits follow a Poisson distribution, determined by frequency and voltage: 
 
 



Main-stream Software-level Fault 
Tolerance in HPC 

7 

Resilience Techniques 
 

Disk-Based Checkpoint/Restart (DBCR) 
 Checkpoints saved in disk, high I/O overhead 

 

Diskless Checkpointing (DC) 
 Checkpoints saved in memory, trade-off (mem. + generality) 

 

Triple Modular Redundancy (TMR) 
 Detect and correct one erroneous run within three runs 

 

Algorithm-Based Fault Tolerance (ABFT) 
 Leverage algorithmic characteristics to correct errors online 



Fault Tolerance in HPC (Cont.) 
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Examples (CR and ABFT only) 



Performance Modeling 
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Checkpoint/Restart (CR) for General Applications 
 

Given a failure rate, there exists an optimal checkpoint interval that minimizes 
the total CR overhead 
 
 At nominal voltage,               is small (close to zero) 

 
 
 

 At further reduced voltage,                is raised significantly 
 

 
 
 

Performance breakdown: 



Performance Modeling (Cont.) 
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 Algorithm-Based Fault Tolerance (ABFT) for Matrix Operations (Cholesky/LU/QR 
factorization) 
 
 In CR, checkpoints are periodically saved 

 

 While in ABFT, checksums are periodically updated 
 Interval of updating checksums is fixed and not affected by the variation of 

failure rates  more cost-efficient 
 

 Performance breakdown (for example, ABFT-enabled dense matrix 
factorizations--Cholesky factorization): 
 
 
 
 

 Performance modeling for other resilience techniques is conceptually similar 



Energy Savings over State-of-the-art 
(Adagio) 
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Frequency-directed DVFS Approaches 
 

Processors equipped with a range of frequencies 
 

Predict and apply appropriate freq./volt. during slack 
 Accurate workload prediction, frequency approximation, etc. 
 Major Related work include Adagio and CPU-miser 

 

Can we further save energy beyond DVFS? 
 Employ a state-of-the-art DVFS technique Adagio  
 Continue undervolting further per selected appropriate F/V 
 Also leverage resilience solutions to guarantee correctness, which costs 

additional overhead 



Energy Savings over Adagio (Cont.) 
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Our Strategy 
 

Use the frequency Adagio predicted for eliminating slack and further lower  
the voltage paired with it 

 
 

Theoretical energy savings over baseline runs 



Example: Energy Saving Conditions 
over Baseline 
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Given Platform-dependent Parameters  (c1, c2, c3, AC’, Isub, f, V, PC) 
 

Before Model Relaxation 
 
 
 
 
 
 

 
 

After Model Relaxation (N-1 ≈ N) 



Experimental Setup 

14 



Implementation (Cont.) 
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 Undervolting Production Processors 
 

– Modify the northbridge/CPU FID and VID control reg. 
 Register values are altered using Model Specific Register 

 
– This approach needs careful detection of the upper and lower bounds of 

supply voltage of the processor 
 Hardware-damaging issues may arise 

 
– Different from the undervolting approach in [ISCA’13] 

 Software/firmware control 
 Pre-production processor is required (commonly not accessible) 
 Advanced ECC memory support is required 

 



Implementation (Cont.) 
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NB/CPU FID/VID control register format and formula 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 frequency = 100 MHz * (CPUFid + 10hex)/(2^CPUDid) 
E.g.: 0x30002809 -> frequency = 100 * (9+16)/2^0 = 2.5 GHz 
 voltage = 1.550 V – 0.0125 V * CPUVid 
E.g.: 0x30002809 -> voltage = 1.550 - 0.0125 * 0010100h = 1.300 V 

 
 

Bits (64 bits in total) Description 

63:32, 24:23, 21:19 Reserved 

32:25 Northbridge Voltage ID 

22 Northbridge Divisor ID 

18:16 P-state ID, Read-Write 

15:9 Core Voltage ID, Read-Write 

8:6 Core Divisor ID, Read-Write 

5:0 Core Frequency ID, Read-Write 



Implementation (Cont.) 
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Error Injection 
 

Minimum voltage we can undervolt to is 
 

 No errors will be observed due to close-to-zero failure rates 
 

Based on the failure rates between        and                 , we inject errors to 
emulate the erroneous scenarios 
 

 Crashes caused by soft errors: manually kill an arbitrary MPI process 
 Other soft errors (arithmetic errors and storage corruption): e.g., bit-flips of 

matrix elements randomly or modify assembly codes 
 
 



Benchmarks 
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NASA-concerned HPC Benchmarks 
MG, CG, and FT from the NPB benchmark suite 
 

DOE-concerned HPC Benchmarks 
LULESH 
AMG 
 

Widely-used Numerical Linear Algebra Libraries 
Matrix multiplication 
Cholesky factorization 
LU factorization 
QR factorization 
 
 



Experimental Results (DBCR vs. DC) 
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7.5% 



Experimental Results (TMR vs. ABFT) 
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12.1% 



Experimental Results (Adagio + 
Undervolting) 
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9.1% 

If frequency switching is more frequent, cycle modulation (or duty cycle 
modulation) can be adopted.  



Conclusions and Future Work 
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 Future work 
 

 Extending Iso-energy-efficiency model [Song, IPDPS’11] to include voltage as a 
parameter for scalability study at scale.  
 
 Focusing on designing highly-efficient software-level fault tolerance techniques,  
e.g., low-overhead checksum mechanisms to cover wide of iterative methods.  
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