

Prometheus: Scalable and Accurate Emulation of Task-Based Applications on Many-Core Systems

GOKCEN KESTOR, ROBERTO GIOIOSA, DANIEL CHAVARRÍA-MIRANDA

2015 Workshop on Modeling & Simulation of Systems and Applications

Exascale parallel programming models

Exascale systems will achieve high performance through high level of parallelism

- O(1k-10k) cores per node
- O(billion) concurrent threads
- Task-based programming models are a promising way to program exascale applications
 - Applications are divided into a myriad of small tasks
 - The system is oversubscribed with tasks (N_{tasks} >> N_{cores})
 - e.g., Cilk++, Intel TBB, Charm++, etc.

There are no tools to model these systems (hardware and software) at the level of scalability required.

August 14, 2015

Simulators/Emulators landscape Pacific Northwest Proudly Operated by Battelle Since 1965 1-O(100) Cores 1-O(1000) Cores 1-8 Cores 1-1k Cores Error < 25%Error < 10%Error ? Error ? Cycle-Cycle-**Discrete-Full-system** approximate accurate event emulators simulators simulators emulators Prometheus Model Employ Trace can be manipulated Accura **Pros**: Scalable **Pros**: F Pros: A **Pros:** F **<u>Cons</u>**: Reordering change the app behavior Cons: Cons: Cons: S Cores: 1-thousands Cores: Cores: Cores: **<u>App</u>**: C App: OMP, MPI **App**: S **App**: C **Ex**: BigSim, DIMEMAS Ex: Ge Ex: Zsi Ex: KV

Prometheus

Key Observation: When modeling parallel applications on large systems, performance is largely dominated by runtime and synchronization effects

- Fast enough to emulate future exascale nodes
- Accurate and reliable results
- Modular, swap components in and out
- Model non-determinism of task-based applications

Prometheus Architecture

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

DAG tracer

The DAG is extracted from single thread execution
Difficult and not necessary to extract a DAG from parallel execution
DAGs do not depend on the level of execution parallelism

Hardware contention in multi-core and multi-threaded processor is modeled by the contention module.

Validation – Experimental setup

- Modeling a AMD Interlagos systems*
 - 2 processors chips
 - 4 modules, 4 cores/module, 2 threads/core
 - 32 threads total
 - 64 GB DRAM, 4 NUMA domains
- Cilk++ task-based applications
 - Random work-stealing, work-first scheduler

Application	Configuration	Number of tasks
Fib	n = 35	74,651,756
Heat	nt = 200, nx = 4096*4, ny = 1024	1,234,945
Integrate	xMax = 5000	193,385,368
Jacobi	n = 1024, steps = 100	139,809,901
MatrixMul	n = 256	71,902,351
QuickSort	n = 75000000	152,452,586

Parameter	Same core	Local NUMA	Remote NUMA
Successful steal	7555	9135	10635
Unsuccessful steal	1148	1199	1382

* Results for Intel MIC (244 hardware threads) in the paper.

Validation – Results

RMin 🕇	qSort	MMul	Jacobi	Integ.	Heat	Fib		Ν
×	5.39	104.94	24.46	53.86	29.20	53.75	RMin	8
T	5.32	105.50	24.53	52.10	29.03	54.10	Emu	
RMax	6.17	106.24	25.21	54.40	30.01	54.88	RMax	
	-1.28	0.00	0.00	-3.28	-0.58	0.00	Error	
X	3.86	52.28	12.86	52.43	18.46	26.39	RMin	16
	3.77	52.54	12.93	50.61	18.36	26.52	Emu	
	4.07	52.62	12.96	52.88	19.03	26.53	RMax	
Generally <4%,	-2	0.00	0.00	-3.46	-0.54	0.00	Error	
max 5.2%	4	29.44	8.19	37.14	17.95	17.93	RMin	32
	4	29.44	8.13	35.87	18.08	17.99	Emu	
vo exceptions on	4	29.54	8.36	37.40	18.89	18.15	RMax	
MIC (6.97 and	5	0.00	-0.82	-3.43	0.00	0.00	Error	
10.16%)								

Performance

- Minimum slowdown up to 1,024 cores
- 6.4x slowdown at 512k cores
- Emulation completed in 11.5 hours
- Idle cores slow down emulation!

Case study 1: Power-constrained systems

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

- Emulate the behavior of heterogeneous, power-constrained exascale systems
 - 1,024 total cores, 16 voltage islands, 64 cores/island
 - Varying the number of voltage islands in low-power mode
 - Low-power mode cores run at ½ max frequency
- Automatic task balancing contains performance degradation

Low-power

Case study 2: Reduced per-core cache

Assume exascale architectures with many-cores on a chip but reduced per-core cache

Use Gem5 SE as hardware contention driver to model multicore ARM processor

- 16 processor chips
- 4 MB last-level cache per processor chip
- 4 to 64 cores per processor chip

Parallelism makes up for reduced single-thread performance

Note: we could not run Cilk++ apps on Gem5 SE

Modeling exascale systems will require new scalable tools

Task-based programming models are non-deterministic

Prometheus: a fast, scalable, modular emulator for task-based applications

Prometheus scales up to 512k cores in 11.5h (6.4x slowdown)

Future work: add network, power, resilience...

Acknowledgements & more information

- Work sponsored by DOE ASCR under the Beyond the Standard Model (BSM) project
- Kestor G, R Gioiosa, and D Chavarría-Miranda. 2015. "Prometheus: Scalable and Accurate Emulation of Task-Based Applications on Many-Core Systems." In IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2015).
- Akhmetova D, G Kestor, R Gioiosa, S Markidis, and E Laure. 2015. "On the application task granularity and the interplay with the scheduling overhead in many-core shared memory systems." To Appear in IEEE Cluster 2015