

Proudly Operated by **Battelle** Since 1965

CENter for Advanced Architecture Evaluation (CENATE): A Computing Proving Ground

Adolfy Hoisie Chief Computer Scientist and Laboratory Fellow Pacific Northwest National Laboratory

Work with: Kevin J. Barker, Ryan Friese, Roberto Gioiosa, Nitin Gawande, Darren J. Kerbyson, Gokcen Kestor, Andres Marquez, Matthew Macduff, Shuaiwen Leon Song, Nathan Tallent, Antonino Tumeo

ModSim Workshop, August 2016, Seattle

Technology Fragmentation Across the Hardware/Software Stack

Pacific Northwest

Technology Fragmentation Across the Hardware/Software Stack

Proudly Operated by **Battelle** Since 1965

Benchmarks

Center of Advanced Technology Evaluation (CENATE)

- Advanced technology evaluations
- Instrumentation for power and performance
- Testbed infrastructure for high-throughput evaluation of technologies
- Predictive exploration: integration of results from empirical evaluations with modeling and simulation
 - Impact at scale; "what-ifs"

CENATE Covers a Multidimensional Technology Space

CENATE: Potential to Leverage

- Testbeds targeted at several areas
 - System Technologies with future high impact to HPC
 - Novel Processing Paradigms beyond traditional computing
 - Emerging Technologies beyond Moore's Law

- Evaluation of workloads of interest
 - Scientific Computing
 - Irregular Applications
 - DOE-focused
- Integrated measurement and ModSim

Advanced Measurement Laboratory (AML)

- AML provides infrastructure to measure
 - Early Engineering Boards
 - Subsystem Prototypes (e.g., HMC)
 - Small Systems
- AML measures
 - Performance
 - Time-to-solution
 - Performance counters
 - Power
 - System Wall Power
 - Internal Shunts and Hall-sensors
 - Temperature
 - Thermo-Couples
 - Thermal cameras
- Building up FPGA capabilities
 - Xilinx and Altera Toolkits
 - Mentor Graphic's Modelsim

SEAPEARL: Integrated Power, Performance, and Thermal Measurement

Critical needs

- Ability to study power consumption and thermal effects at scale
- Correlation of measurements to workload features (not steady state)
- Platform for development of modeling and optimization capabilities
- SEAPEARL: A Unique Resource
 - High-fidelity power measurement
 - Spatial: separate CPU from memory
 - Temporal: low sampling period of 1 ms
 - Coupled thermal information
 - Advanced architectures: x86 multicore and AMD Fusion (integrates CPU and GPU)

Proudly Operated by Battelle Since 1965

Offline analysis and potential for online (dynamic) optimization

CENATE: Establishing Best Practices for Measurements

- Instrumenting systems requires knowledge of what "instrumentation hooks" are available:
 - Integrating state-of-the-art measurements into idiosyncratic systems
 - Best practices: Measurement is a science and a craft
- Multi-tier approach:
 - Tier 1: external, low-resolution, available to all systems
 - Tier 2: internal, system specific, provided by vendor (e.g., RAPL, Amester, Data Vortex thermal)
 - Tier 3: external, high-resolution, invasive, need vendor support (e.g., Penguin Power Insights)
- Measurements:
 - In-band: synchronous with the application (e.g., performance counters)
 - Out-of-band: asynchronous with the application (e.g., power meters)

Instrumentation Space of Interest

- Measurements of interest:
 - Performance (e.g., system: FLOPS, Memory Access/s, Application: TEPS...)
 - Power/Energy
 - Thermal
 - Reliability: Soft/Hard errors
- Interplay across dimensions
 - Measurements are not independent
 - System components are not isolated
 - Workload impacts interplay
 - Power/thermal throttling -> performance
 - Performance (e.g., high IPC) -> power
 - Temperature -> soft errors
 - Hard errors -> performance (e.g., reduced bandwidth)
 - Need to isolate effects through carefully designed experimentation
- Application behavior is ultimate goal

Instrumentation Granularity Affects Insight

- Coarse spatial and temporal instrumentation may hide important information
 - e.g., peak power/temperature consumption
- Example for scalar pentadiagonal solver with 32 parallel threads
 - Peak power measured with 0.1 second granularity is much higher (9.7 W/core) than the one measured with 1 second granularity (7.8 W/core)

Pacific North

NATIONAL LABORATORY
Proudly Operated by **Battelle** Since 1965

Testbed Classification

Low Priority

Far Future

Testbed Classes System Technologies with future high impact factor to HPC Computing (Throughput or Latency Optimized Computing, Processing Near Memory) Near Future High Priority Memory (Phase-Change, Spin Transfer Memory, Memristor, 3D) DRAM, 3D Flash) • Networks (single packet support *Data Vortex*, collectives support Mellanox. Software Defined Networks) Storage (high bandwidth/low latency buffers, fast container support netCDF/ HDF5, Software Define Storage) Novel Processing Paradigms beyond traditional computing paradigms Neuromorphic Processing (Spatio-Temporal Dentrite Processing) (STDP)) Approximate Computing Quantum Computing (topological quantum computing) Emerging Technologies (Materials -> Devices) beyond Moore's Law transitioning towards rudimentary logic/memory cell and circuit basic blocks

> Superconductive Processing (Single Flux Quantum (SFQ), Adiabatic Quantum Computing (AQC))

Memory: Novel Memory Architectures

Novel memory technology benefiting existing systems

- Exploration of alternative memory solutions in many cases persistent
 - Phase Change Memory
 - Spin Transfer Memory
 - 3D Memory
 - Nvram
 - Memristor
- Analyze memory performance/power for memory execution patterns that can leverage fast, persistent memory

Pacific North

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

Networks: Data Vortex

- Novel network technology based on topology fundamentals
 - Ensures high probability of contention-free transport
 - Enables very small packet transport without paying an overhead premium
 - Analyze network performance/power for applications of interest, s.a., highdimensional PDE or FFT solvers or finely partitioned, data-intensive applications
 - Four end-point system expected July 2016

ModSim within CENATE

Pacific Northwest

Proudly Operated by Battelle Since 1965

Modeling and Simulation will be used to explore:

- System scales that cannot be directly measured
- Systems integrating disparate technologies
- Multiple alternative system configurations
- Quantify trade-offs between multiple metrics of interest:
 - Performance
 - Power and energy consumption
 - Impact of thermal variation, faults, and fault mitigation
- Modeling builds on the CENATE foundation:
 - Application-centric models are derived from workload applications
 - Models are parameterized using measurements taken on instrumented testbeds (micro-benchmarks isolate "atomic" performance characteristics)
 - Models are validated at small-scale
- Key contribution of modeling is insight:
 - Rapid turnaround from system specification to performance quantification
 - Issues in performance can be traced to root causes
 - Quantify interplay between application characteristics and system

Integrated ModSim Approach

- Across the spatial axis
 - Tools tradeoff between rapid evaluation and high precision
 - High-fidelity, low-level simulations serve as input into more abstract system models
- Across the temporal axis
 - More abstract techniques are able to use partial or incomplete specification information
 - Greater certainty in the design allows for the use of more precise prediction tools
- Employ a "bag of tools" approach in which ModSim technologies are applied where they are most appropriate
- CENATE will employ:
 - PALM: Automated analytical modeling tool for full applications at large scale
 - Cross-Roofline Model: Node-level modeling of throughput-oriented architectures
 - P-McPAT: Power modeling at the micro-architectural level
 - Prometheus: Emulation tool for node-level non-deterministic workloads

Pacific Nortl

Proudly Operated by Battelle Since 1965

16

Modeling Possible Future Silicon Photonics Networks

- Disparate technologies from IBM (internode) and Oracle (intranode)
- Modeling enabled:
 - Possible "marriage" options to be explored overcoming separation barriers
 - Quantified advantages over expected future electrical networks
 - Analyzed in the context of key graph analytic applications

- IBM TOPS inter-node network
 - 64 node system
 - 256 of 64 x 64 optical switch planes
 - 16 wavelengths per fiber
 - 20 GB/s BW per wavelength
 - Oracle Macrochip intra-node network
 - 64 compute/memory sites fully connected
 - 2 GB/s per site pair (128 GB total)
 - 32 ports I/O per macrochip (for internode)
- Improvement due to:
 - Improved link bandwidth
 - Greater link concurrency
 - Varied topological routing

Parallel Community Detection Relative Execution Time

ModSim as an Integrating Methodology

- Data Vortex network fabric
 - Provides contention-free routing for small packet sizes
 - Currently, nodes have small core counts due to limitations on memory bandwidth to feed the network
- Micron's Hybrid Memory Cube (HMC)
 - 3D stacked memory architecture results in high levels of memory bandwidth
- CENATE's modeling approach will allow for the "virtual" integration of technologies such as these
 - e.g., How many cores can a Data Vortex system equipped with HMC support per node?
- Integrated modeling approach requires
 - Detailed understanding of application characteristics (e.g., what are the data movement patterns exhibited by a particular workload?)
 - Detailed understanding of architecture characteristics and capabilities
 - Integration of ModSim techniques across scales

Pacific Northwest

Conclusions

- Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965
- Adaptivity of systems and system and application software requires an "introspective" approach to design and optimization
- Integrated measurement and ModSim for performance, power, and thermal aspects through CENATE
- Measurements serve as input for models, and as the validation means for them
- Tackling a wide space of technologies in terms of maturity and architectural coverage
- Testbeds of technologies
- ModSim for "union of technologies"
- Invited to access and use CENATE resource
- Work sponsored by the U.S. Department of Energy, Office of Advanced Scientific Computing Research, CENATE contract, 2015.