Toward Integrated Multi-
Resolution HPC Modeling for
Rapid Performance Prediction

Jason Liu
Florida International University

Stephan Eidenbenz

Los Alamos National Laboratory

Workshop on Modeling & Simulation of Systems and Applications
August 10-12, 2016 ¢ University of Washington, Seattle, Washington

HPC Architecture |Is Changing Rapidly

* End of processor scaling (circa 2005) led to novel architectural design
* Changes can be transitional and disruptive

 HPC software adaptation is a constant theme:
* No code is left behind: must guarantee good performance
* Need high-skilled software architects and computational physicists

* Traditional methods are insufficient
* Middleware libraries, code instrumentation, mini-apps...

* Need modeling & simulation of large-scale HPC systems and
applications
* And the systems are getting larger (exascale is around the corner)

Full-Scale Cycle-Accurate Simulation of HPC
Systems and Applications

* It is unrealistic
e Extremely high computational and spatial demand
* Accurate models only limited to certain components and timescale

* And it is unnecessary

 Modeling uncertainties greater than errors from cycle-accurate models
* Languages, compilers, libraries, operating systems, ...
» System cross traffic

* Design uncertainties defies specificity of cycle-accurate models

* There has to be tradeoff between accuracy and performance

|II

“All models are wrong but some are usefu

- George Box, 1976

* Managing expectations:
* Ask what-if questions
* Evaluate alternative designs
* Explore parameter space
* Will models ever catch up with
real-system refresh?

* As valuable tools for prototyping new hardware,
new algorithms, new applications?

* Need tools for rapid assessment and performance
prediction

Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016 4

Requirements of Rapic
Performance Predictio

Assessment and

A

* Easy integration of models of varying abstraction

e Easy integration of architectures and applications

* Short development cycle
 Performance and scale

Selective Refinement Modeling

* The art of finding the “right” level of modeling details
 Just enough to answer the research questions
* Conceptually it is an iterative process:
@ Start from coarse-level models
@ Gather experiment results
@ ldentify components as potential performance bottlenecks
@ Replace those components by plugging in more refined models
@ Go to #2 until satisfaction

Performance Prediction Toolkit (PPT)

* “Scalable Codesign Performance Prediction for Computational
Physics” project at LANL
e Simian — parallel discrete-event simulation engine

* Configurable hardware models: clusters, compute nodes, processes/cores,
accelerators (GPU), interconnect, parallel file systems

* Application library: benchmark applications (PolyBenchSim, ParboilSim),
production applications (SNAPSim, SPHSim, SpecTADSIim)

* Data: application instrument data (PolyBench, SNAP, SPH, CloverLeaf),
hardware specs data (Mustang, Haswell, IvyBridge, SandyBridge, Vortex)

Simian: Parallel Discrete Event Simulation

using Interpreted Languages

* Open source, general purpose parallel

User Model
(Python)

discrete-event library Ve

User Model
(Lua)
v

N

* Independent implementation in two interpreted
languages: Python and Lua, with optional C libraries

N
D\ / O

-)

SimianPie

SimianLua

(such as MPI) l ,"“,.";ml“"il.ﬂJ
\ Y.

* Minimalistic design: LOC=500 with 8 common methods

e Simulation code can be Just-In-Time (JIT) compiled to
achieve very competitive event-rates, even
outperforming C++ implementation in some cases

e Support process-oriented world view (using Python
greenlets and LUA coroutines)

Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016

MPI C Libraries (Optional; either MPICH2 or OpenMPI)

Desktop or Distributed Cluster

Interconnection Network Models

« Common interconnect topologies
* Torus (Gemini, Blue Gene/Q)
* Dragonfly (Aries)
* Fat Tree (Infiniband)

* Distinction from previous approaches:
* BigSim, xSim, SST, CODES

* Emphasis on production systems

* Cielo, Darter, Edison, Hopper, Mira,
Sequoia, Stampede, Titan, Vulcan, ...

* Packet-level as opposed to phit-level

* For performance and scale (speed advantage in several orders of magnitude,
allow for full scale models, sufficient accuracy)

e Seamlessly integrated with MPI

Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016

Integrated MP| Model

* Developed based on Simian
(entities, processes, services)

* Include all common MPI functions
e Simplistic implementation

* Point-to-point and collective
operations

* Blocking and non-blocking
operations

e Sub-communicators and sub-groups

* Process-oriented approach

* Can easily integrate with most
application models

* Packet-oriented model

* Large messages are broken down
into packets (say, 64B)

e Reliable data transfer

Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016

Table 1: Implemented MPI Functions

MPI_Send

blocking send (until message delivered to destination)

MPI_Recv

blocking receive

MFPI_Sendrecy

send and receive messages at the same time

MPI_Isend

non-blocking send, return & reguest handle

MPI_Irecv

non-blocking recelve, return a request handle

MPI_Wait

walilt until given non-blocking operation has completed

MPI_Waitsall

walit for a set of non-blocking operations

MPI_Reduce

reduce values from all processes, root has final result

MPI_Allreduce

reduce values from all, everyone has final result

MPI_Beast

broadcast a message from root to &ll processes

MPI_Sarrier

block untll all processes have called this function

MPI_Gather

gather values form all processes at root

MPI_Allgather

gather values from all processes and glve to everyone

MPI_Scatter

send individual messages from root to all processes

MPI_Alltoall

send individual messages from zll to all processes

MPI_Alltoallw

same as above, but each can send different amount

MPI_Comm_split

create sub-communicators

MPI_Cem=n_dup

duplicate an existing communicator

MPI_Conm_f£free

deallocate a communlicator

MPI_Comm_group

return group associated with communicator

MPI_Group_size

return group size

MPI_Group_rank

return process rank n group

MPI_Group_inecl

create new group including all listed

MPI_Group_excl

create new group excluding all listed

MPI_Group_£free

reclaim the group

MFPI_Cart_create

add cartesian coordinates to communicator

MPI_Cart_cocords

return cartesian coordinates of given rank

MPI_Cart_rank

return rank of given cartesian coordinates

MPI _Cart_shift

return shifted source and destination ranks

Validation — Cray’s Gemini Interconnect

FMA Put Throughput (Empirical vs. Simulation)

7 T | I I I I
—#— empirical, PPN=4 N
—e— empirical, PPN=2 . i
6 - —e— empirical, PPN=1 -
) -1 simulation, PPN=4
& 5L O simulation, PPN=2 '
@ —<-— simulation, PPN=1
E 4 | | |
S
2 3
S 1
>
o 2 5 5 :/ . . | |
c | | S S | | 1
= 5 &
0op—B—N—N—N | ‘ \ \ ’
8 32 128 512 2K 8K 32K Tﬁ"’
Data Size (bytes) X

Image courtesy of Cray, Inc.

Gemini FMA put throughput (as reported in [2]) versus simulated throughput
as a function of transfer size for 11 2: and 4 processes per node. Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016 11

Latency (microsecond)

Throughput (Gbytes/sec)

14

12

Aries MPI Throughput (Empirical vs. Simulation)

—=— simulation (pingpbng)

----w--=- @mpirical (pingpong)
—e=— simulation (unidirectional) 1
ETTY e emplrlcal (unldlrectlonal)

64 256 1K 4K 16K 64K 256K 1024K
Data Size (bytes)
Aries MPI Latency (Empirical vs. Simulation)
simulation
empirical B
8 16 32 s4 128 256 512 1024

Data Size (bytes)

Validation - Cra
Aries Interconn

00000
00000
200000
00000
=00000
00000
00000
00000
00000
00000
00000

Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016

ay’
ne

00000
00000
00000

Ct

12

00000

Average Latency (microsecond)

Validation — Fat-tree FDR Infiniband

Fat-tree Latency (Nearest Neighbor)

6000 . . .
s Emulab

5000 | mmsss Simulaton
o FatTreeSim

4000 + = e i R

3000 |
2000 |
1000

500 1000 2000 4000 8000
Number of Messages

Average Latency (microsecond)

6000
5000
4000
3000
2000
1000

Fat-tree Latency (Random)

mmsm Emulab
- mmmmm Simulation
I FatTreeSim

500 1000 2000 4000 8000
Number of Messages

Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016 13

Trace Driven Simulation
* Mini-app MPI traces:

* Trace generated when running mini-apps on
NERSC Hopper (Cray XEO6) with <=1024 cores

* Trace contains information of the MPI calls
(including timing, source/destination ranks,
data size, ...)

* For this experiment, we use:

* LULESH mini-app from ExMatEx

* Approximates hydro-dynamic model and
solves Sedov blast wave problem

* 64 MPI processes

e Run trace for each MPI rank:

e Start MPI call at exactly same time
indicated in trace file

e Store completion time of MPI call

 Compare it with the completion time in
trace file

Duration of MP1 Call (nanoseconds)

Duration of MPI Call {(nanoseconds)

Trace Data

Simulation (with Time Shift)

1.0*10°

L 2
§ ‘
-]
5.0°10’ ;

Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016 Time (seconds)

A 2-D illustration of the parallel wavefront solution technique for SNAP

Application Models -

111

pipeline
octant
pairs

P=1 —)5_% = > a

e Stylized version of actual applications ™ &
* Focus on loop structures, important guas starta pipeline
numerical kernels aes octant | groups

pair — =

 Use MPI to facilitate communication)

* Use node model to compute time:

* Hardware configuration based on clock-speed,
cache-level access times, memory bandwidth, etc.

* Input is a task-list that consists of a set of commands to be executed by the
hardware, including, for example, the number of integer operations, the
number of floating-point operations, the number of memory accesses, etc.

* Predict the execution time for retrieving data from memory, performing ALU
operations, and storing results

Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016 15

Predicted Run Time (s)

SNAP: SN Application Proxy

SNAPSIm v SNAP on Cielito: Predicted v SNAPSIm v SNAP on Moonlight: Predicted v
Measured Run Time for Suite of 500 Serial Jobs Measured Run Time for Suite of 500 Serial Jobs
10000 1000
1000 A 100 A
@
100 - GE) 10 -
=
C
10 A T 1 1
©
9
1 2 0.1 -
Q
o
0.1 - em|deal 0.01 - em|deal
% Actual x Actual
001 7 T T T T T 0001 I T T T T
0.01 0.1 1 10 100 1000 10000 0.001 0.01 0.1 1 10 100 1000
Measured Run Time (s) Measured Run Time (s)

A suite of 500 SNAP and SNAPSIm jobs, varying the number of spatial cells, the number of angular directions

per octant, the number of energy groups, and the number of angular moments for particle scattering approximation.
Changing them has effects on memory hierarchy and parallelism.

Experiments conducted by Joe Zerr at LANL. Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016 16

Scaling Experiments on Cielito

Strong Scaling Results

100

=#=\leasured (SNAP)
«B=Predicted (SNAPSIm)

Execution Time (s)
o

1 .

8 32 128 512
Processes

Experiments conducted by Joe Zerr at LANL.

Weak Scaling Results

10
0
0]
£
=
-
ie;
5
(&)
O]
X
Ll
=#=|\leasured (SNAP)
=B=Predicted (SNAPSIm)
1 I I T
8 32 128 512
Processes
Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016 17

Thoughts on Integrated Multi-Resolution
HPC Modeling and Simulation

* Foreground vs background applications:

* Foreground applications are the target of our study; they need to be
modeled with high fidelity

* Background applications cannot be modeled in great detail due to
uncertainties and high computational complexity, but they may have
significant influence on the overall performance

* Multi-resolution models:)
- cop @iy

* Fluid models, hybrid models rcr@ba

e Large-scale application behaviorals
e Traffic matrices

Thanks

Jason Liu, Stephan Eidenbenz, ModSim Workshop, August 2016

19

