
Toward Integrated Mul0-
Resolu0on HPC Modeling for
Rapid Performance Predic0on

Jason	Liu	
Florida	Interna-onal	University	

Stephan	Eidenbenz	
Los	Alamos	Na-onal	Laboratory	

Workshop	on	Modeling	&	Simula;on	of	Systems	and	Applica;ons	
August	10-12,	2016	♦	University	of	Washington,	SeaHle,	Washington	

HPC Architecture Is Changing Rapidly

•  End	of	processor	scaling	(circa	2005)	led	to	novel	architectural	design	
•  Changes	can	be	transi;onal	and	disrup;ve	

• HPC	so>ware	adapta;on	is	a	constant	theme:	
•  No	code	is	le8	behind:	must	guarantee	good	performance	
•  Need	high-skilled	so>ware	architects	and	computa;onal	physicists	

•  Tradi;onal	methods	are	insufficient	
•  Middleware	libraries,	code	instrumenta;on,	mini-apps…	

• Need	modeling	&	simula;on	of	large-scale	HPC	systems	and	
applica;ons	

•  And	the	systems	are	geLng	larger	(exascale	is	around	the	corner)	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 2	

Full-Scale Cycle-Accurate Simula0on of HPC
Systems and Applica0ons

•  It	is	unrealis;c	

•  Extremely	high	computa;onal	and	spa;al	demand	
•  Accurate	models	only	limited	to	certain	components	and	;mescale		

• And	it	is	unnecessary	
•  Modeling	uncertain;es	greater	than	errors	from	cycle-accurate	models	

•  Languages,	compilers,	libraries,	opera;ng	systems,	…	
•  System	cross	traffic	

•  Design	uncertain;es	defies	specificity	of	cycle-accurate	models	

•  There	has	to	be	tradeoff	between	accuracy	and	performance	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 3	

“All models are wrong but some are useful”

• Managing	expecta;ons:			
• Ask	what-if	ques;ons	
•  Evaluate	alterna;ve	designs	
•  Explore	parameter	space	

• Will	models	ever	catch	up	with		
real-system	refresh?	

• As	valuable	tools	for	prototyping	new	hardware,		
new	algorithms,	new	applica;ons?	

• Need	tools	for	rapid	assessment	and	performance	
predic;on	

-	George	Box,	1976	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 4	

Requirements of Rapid Assessment and
Performance Predic0on

•  Easy	integra;on	of	models	of	varying	abstrac;on	
•  Easy	integra;on	of	architectures	and	applica;ons	
•  Short	development	cycle	
• Performance	and	scale	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 5	

Selec0ve Refinement Modeling

• The	art	of	finding	the	“right”	level	of	modeling	details	
•  Just	enough	to	answer	the	research	ques;ons	

• Conceptually	it	is	an	itera;ve	process:	
①  Start	from	coarse-level	models	
② Gather	experiment	results	
③  Iden;fy	components	as	poten;al	performance	boelenecks	
④ Replace	those	components	by	plugging	in	more	refined	models	
⑤ Go	to	#2	un;l	sa;sfac;on	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 6	

Performance Predic0on Toolkit (PPT)

•  “Scalable	Codesign	Performance	Predic;on	for	Computa;onal	
Physics”	project	at	LANL	

•  Simian	–	parallel	discrete-event	simula;on	engine	
•  Configurable	hardware	models:	clusters,	compute	nodes,	processes/cores,	
accelerators	(GPU),	interconnect,	parallel	file	systems	

•  Applica;on	library:	benchmark	applica;ons	(PolyBenchSim,	ParboilSim),	
produc;on	applica;ons	(SNAPSim,	SPHSim,	SpecTADSim)	

•  Data:	applica;on	instrument	data	(PolyBench,	SNAP,	SPH,	CloverLeaf),	
hardware	specs	data	(Mustang,	Haswell,	IvyBridge,	SandyBridge,	Vortex)	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 7	

Simian: Parallel Discrete Event Simula0on
using Interpreted Languages

•  Open	source,	general	purpose	parallel		
discrete-event	library	

•  Independent	implementa;on	in	two	interpreted	
languages:	Python	and	Lua,	with	op;onal	C	libraries	
(such	as	MPI)	

• Minimalis;c	design:	LOC=500	with	8	common	methods	
•  Simula;on	code	can	be	Just-In-Time	(JIT)	compiled	to	
achieve	very	compe;;ve	event-rates,	even	
outperforming	C++	implementa;on	in	some	cases	

•  Support	process-oriented	world	view	(using	Python	
greenlets	and	LUA	corou;nes)	

SimianLua(SimianPie(

Engine,(En.ty(
Python(Classes(

Engine,(En.ty(Lua(
Classes(

Greenlet(Processes(
(lightweight(threads)(

Corou*ne(Processes(
(lightweight(threads)(

MPI(C(Libraries((Op.onal;(either(MPICH2(or(OpenMPI)(

User(Model(
(Python)(

User(Model(
(Lua)(

Desktop(or(Distributed(Cluster(

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 8	

Interconnec0on Network Models

•  Common	interconnect	topologies	
•  Torus	(Gemini,	Blue	Gene/Q)	
•  Dragonfly	(Aries)	
•  Fat	Tree	(Infiniband)	

•  Dis;nc;on	from	previous	approaches:	
•  BigSim,	xSim,	SST,	CODES	

•  Emphasis	on	produc;on	systems	
•  Cielo,	Darter,	Edison,	Hopper,	Mira,		
Sequoia,	Stampede,	Titan,	Vulcan,	…	

•  Packet-level	as	opposed	to	phit-level	
•  For	performance	and	scale	(speed	advantage	in	several	orders	of	magnitude,		
allow	for	full	scale	models,	sufficient	accuracy)	

•  Seamlessly	integrated	with	MPI	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 9	

Integrated MPI Model

•  Developed	based	on	Simian	
(en;;es,	processes,	services)	

•  Include	all	common	MPI	func;ons	
•  Simplis;c	implementa;on	
•  Point-to-point	and	collec;ve	
opera;ons	

•  Blocking	and	non-blocking	
opera;ons	

•  Sub-communicators	and	sub-groups	
•  Process-oriented	approach	

•  Can	easily	integrate	with	most	
applica;on	models	

•  Packet-oriented	model	
•  Large	messages	are	broken	down	
into	packets	(say,	64B)	

•  Reliable	data	transfer	
10	Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	

Valida0on – Cray’s Gemini Interconnect

 0

 1

 2

 3

 4

 5

 6

 7

 8 32 128 512 2K 8K 32K

T
h

ro
u

g
h

p
u

t
(G

b
yt

e
s/

se
c)

Data Size (bytes)

FMA Put Throughput (Empirical vs. Simulation)

empirical, PPN=4
empirical, PPN=2
empirical, PPN=1
simulation, PPN=4
simulation, PPN=2
simulation, PPN=1

Gemini	FMA	put	throughput	(as	reported	in	[2])	versus	simulated	throughput		
as	a	func;on	of	transfer	size	for	1,	2,	and	4	processes	per	node.		
	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 11	

Valida0on - Cray’s
Aries Interconnect

 0

 2

 4

 6

 8

 10

 12

 14

 64 256 1K 4K 16K 64K 256K 1024K

Th
ro

ug
hp

ut
 (G

by
te

s/
se

c)

Data Size (bytes)

Aries MPI Throughput (Empirical vs. Simulation)

simulation (pingpong)
empirical (pingpong)
simulation (unidirectional)
empirical (unidirectional)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 8 16 32 64 128 256 512 1024

Late
ncy

 (mi
cros

eco
nd)

Data Size (bytes)

Aries MPI Latency (Empirical vs. Simulation)

simulation
empirical

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 12	

Valida0on – Fat-tree FDR Infiniband

 0
 1000
 2000
 3000
 4000
 5000
 6000

500 1000 2000 4000 8000Av
er

ag
e

La
te

nc
y

(m
ic

ro
se

co
nd

)

Number of Messages

Fat-tree Latency (Nearest Neighbor)

Emulab
Simulation
FatTreeSim

 0
 1000
 2000
 3000
 4000
 5000
 6000

500 1000 2000 4000 8000Av
er

ag
e

La
te

nc
y

(m
ic

ro
se

co
nd

)

Number of Messages

Fat-tree Latency (Random)

Emulab
Simulation
FatTreeSim

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 13	

• Mini-app	MPI	traces:	
•  Trace	generated	when	running	mini-apps	on	
NERSC	Hopper	(Cray	XE06)	with	<=1024	cores	

•  Trace	contains	informa;on	of	the	MPI	calls	
(including	;ming,	source/des;na;on	ranks,	
data	size,	…)		

•  For	this	experiment,	we	use:	
•  LULESH	mini-app	from	ExMatEx	

•  Approximates	hydro-dynamic	model	and	
solves	Sedov	blast	wave	problem			

•  64	MPI	processes	
•  Run	trace	for	each	MPI	rank:	

•  Start	MPI	call	at	exactly	same	;me	
indicated	in	trace	file	

•  Store	comple;on	;me	of	MPI	call	
•  Compare	it	with	the	comple;on	;me	in	
trace	file	

14	

Trace Driven Simula0on

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	

Applica0on Models

•  Stylized	version	of	actual	applica;ons	
•  Focus	on	loop	structures,	important		
numerical	kernels	

• Use	MPI	to	facilitate	communica;on	
• Use	node	model	to	compute	;me:	

•  Hardware	configura;on	based	on	clock-speed,		
cache-level	access	;mes,	memory	bandwidth,	etc.		

•  Input	is	a	task-list	that	consists	of	a	set	of	commands	to	be	executed	by	the	
hardware,	including,	for	example,	the	number	of	integer	opera;ons,	the	
number	of	floa;ng-point	opera;ons,	the	number	of	memory	accesses,	etc.		

•  Predict	the	execu;on	;me	for	retrieving	data	from	memory,	performing	ALU	
opera;ons,	and	storing	results		

A	2-D	illustra-on	of	the	parallel	wavefront	solu-on	technique	for	SNAP		
	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 15	

SNAP: SN Applica0on Proxy

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000

P
re

di
ct

ed
 R

un
 T

im
e

(s
)

Measured Run Time (s)

SNAPSim v SNAP on Cielito: Predicted v
Measured Run Time for Suite of 500 Serial Jobs

Ideal

Actual

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000

P
re

di
ct

ed
 R

un
 T

im
e

(s
)

Measured Run Time (s)

SNAPSim v SNAP on Cielito: Predicted v
Measured Run Time for Suite of 500 Serial Jobs

Ideal

Actual

A suite of 500 SNAP and SNAPSim jobs, varying the number of spatial cells, the number of angular directions
per octant, the number of energy groups, and the number of angular moments for particle scattering approximation.
Changing them has effects on memory hierarchy and parallelism.
Experiments conducted by Joe Zerr at LANL.
	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 16	

Scaling Experiments on Cielito

Strong	Scaling	Results	 Weak	Scaling	Results	

Experiments conducted by Joe Zerr at LANL.	 Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 17	

Thoughts on Integrated Mul0-Resolu0on
HPC Modeling and Simula0on

•  Foreground	vs	background	applica;ons:	

•  Foreground	applica;ons	are	the	target	of	our	study;	they	need	to	be	
modeled	with	high	fidelity	

•  Background	applica;ons	cannot	be	modeled	in	great	detail	due	to	
uncertain;es	and	high	computa;onal	complexity,	but	they	may	have	
significant	influence	on	the	overall	performance	

• Mul;-resolu;on	models:	
•  Fluid	models,	hybrid	models	
•  Large-scale	applica;on	behaviorals	
•  Traffic	matrices	

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 18	

Thanks

Jason	Liu,	Stephan	Eidenbenz,	ModSim	Workshop,	August	2016	 19	

