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Status of Node Modeling at Cray

3

● Focus is on modeling future “what if” architectural designs
● ISA extensions, memory systems, NICs, expanded vector technology, thread 

synchronization, etc.

● Model performance of hybrid parallel apps 
● MPI + OpenMP + Vector
● Up to 256 threads on a node (SoC)
● Simulate and model real apps at a net rate of 10-20 MIPS
● Parameterized to model sensitivity to varying architectural features
● Characterize how real at-scale apps perform on a given target architecture

● Adding power modeling and management (DVFS, etc.)

● Modeling alternatives to improve fine-grain threading

● Validation kernels with known performance attributes are used to 
verify accuracy against hardware or calculated performance
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What’s Lacking?
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● Node-side interactions of network components difficult to model
● We could model on-node NICs, injection bandwidth, performance of various 

message sizes, message matching cost
● Could maybe extrapolate on-node NIC reference patterns to a larger multi-

node network
● Model how a larger network might affect node performance

● Need representative Mini-Apps
● Huge representative memory footprints to study tiering options for HBM, NVM
● Wider vector loop trip counts to study power options, cache performance, 

fine-grain threading, etc.
● Hybrid MPI + OpenMP parallel implementations
● Wider and deeper threading or tasking implementations
● Reflective of future application development

● Need parameterized power models to study future architecture 
designs rather than measuring only current implementations.
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Modeling the TaihuLight Node
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● Node = 4 clusters – each with
● 1 master (supervisory) core with L1 and L2 cache, 16 DP flops/cycle
● 64 slave (processing) cores

● 64K scratchpads (instead of cache hierarchy)
● 8 DP flops/cycle

● 1 MC, 128-bit DDR3 at 2133 MHz => 34 GB/s
● 8GB memory bank (memory partition)
● Uses NoC (network-on-chip) vs. cache hierarchy

● At 1.45 GHz => 3.06 peak TFLOPS (includes master cores) (40,960 
nodes => 125.4 peak PFLOPS)

● Parallelism based on MPI and OpenAcc 2.0

● With a few modifications we could model TaihuLight with its 
known features (assuming we have apps built for it)
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TaihuLight Implications
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● Path to the first exascale system in 2020?!
● Potentially, but only for HPL-like apps (93 sustained PFLOPS = 74% of peak)
● BUT, for HPCG achieves only 0.3% of peak
● Which of these do DOE applications look more like? 

● Our experience is some of each, but more HPCG

● Software implications:
● No hardware cache hierarchy/coherence means software must:

● Very carefully align, block, and migrate data to/from core scratchpads
● Generate explicit memory barriers
● Be aware/manage data cached in the master core

● Responsibility is mostly in the applications - compiler has insufficient info to manage fine-
grain coherence and coarse-grain might kill performance

● OpenAcc has the directives to manage memory

● How many apps are designed to run well without cache or cache coherence?

● What effort is required to restructure them if they aren’t?
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Open Questions
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● Rather than improving modeling accuracy or only measuring 
power and performance, could we generate metrics to measure an 
app’s “fit” on any proposed architectural design?  
● For example, HPL is a fit on TaihuLight, but HPCG is not.  How would we 

characterize why HPL is a fit and HPCG is not besides performance?

● How much effort and lead time is necessary to move DoE apps to 
more radical architectures (e.g., memory tiers, scratchpads 
instead of caches, processing-in-memory, very wide vector units, 
support for wider/deeper levels of threading, etc.)?  
● Is it even practical to consider such architectures in the exascale timeframe?

● What should a system vendor like Cray be providing to scientists 
to support the development of exascale applications?
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