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Dedicated Network Connections: Increasing Deployments 

Dedicated connections becoming more available 
•  DOE OSCARS provides ESnet WAN connections 
•  Google SDN dedicated networks 

 
Desirable Features 

•  dedicated capacity - no competing traffic  
•  low loss rates – no induced losses from “other” traffic 
•  no need for “graceful degradation” to accommodate other traffic 

Expectations for data transport methods 
•  peak throughput easier to achieve using “simple” flow control 
•  easier to tune parameters – due to predictable and simple dynamics 

Scenarios: 
•  memory-to-memory, disk-to-disk, memory-to/from-disk transfers:  

•  high bandwidth file transfers 
•  data transfers between remote computations 

•  monitoring and control channels: low loss and jitter requirements 
•  computational monitoring and steering 
•  remote experimentation – computation controlled 
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Data Transfers Over Dedicated Network Connections 

Performance of data transfer methods 

 
 
Network Transport Methods 
•  TCP – widely deployed, including over dedicated connections 

•  mechanism: slow-start followed by congestion avoidance 
•  expected performance:  

•  convex throughput profiles  
•  slow-start followed by periodic trajectories 

•  UDT – UDP-based, particularly well-suited for dedicated connections 
•  mechanism: ramp-up followed by stable flow rate 
•  expected performance 

•  flat throughput profile  
•  ramp-up followed by constant trajectory  

•  ASPERA – commercial UDP-based transport method  

 

throughput trace: time 
 

throughput profile: RTT 
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TCP Memory-to-Memory Throughput Measurements 

Throughput profiles and traces: qualitatively similar  across TCP variants 
CUBIC (Linux default), Scalable TCP,  Hamilton TCP, Highspeed TCP 

As expected:  
•  profile: decreases with RTT;  
•  trace: sort of periodic in time 
 

Additional characteristics:  
•  profile: concave at lower RTT 
•  trace:  

•  significant variations 
•  larger variation at higher RTT 
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UDT Memory-to-Memory Throughput Measurements 

Implements flow control and loss recovery over UDP 
•  application-level – particularly suited for dedicated connections 

Analytical models indicate:  
•  profile: flat with RTT 
•  trace: smooth rise and constant 
 

Measured characteristics:  
•  profile: overall decrease with RTT 
•  trace:  

•  significant variations: same RTT 
•  repeated – significant drops  
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TCP Profiles: memory to memory transfer 
10Gbps dedicated connections: bohr03 and bohr04  
•  CUBIC congestion control module- default under Linux 
•  TCP buffers tuned for 200ms rtt: 1-10 parallel streams 

   

RTT: cross-country (0-100ms), cross-continents (100-200ms), across globe(366ms) 
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emulated connections: RTT:  0-800ms: 9.6 Gbps 
 

ANUE  
OC192 

Ciena 
CN4500 

Ciena 
CN4500 

dedicated 
connection 
rtt: 0-366ms 

 
 

10/9.6 Gbps 

host 
 
 
 

host 
 
 
 

iperf 

ANUE  
10GigE 

 
 

HP 32/48-core 
2/4-socket 

6.8/7.2 Linux  
 
 

e300  
10GE-OC192 

 
 
 

HP 32/48-core 
2/4-socket 

6.8/7.2 Linux 
 
 
 

e300  
10GE-OC192 

Cisco 
Nexus 7k 

Cisco 
Nexus 7k 

ORNL-ATL-ORNL connection : rtt: 11.6 ms: 100Gbps 
 

10GigE emulated connections: rtt:  0-800ms 
 

iperf 

 ORNL Network Testbed (since 2004) 
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TCP Throughput Profiles 
•  Most common TCP throughput profile 

–  convex function of rtt 
–  example, Mathis et al (1997) 

•  Observed Dual-mode profiles: throughput measuremen 
–  CUBIC, STCP, HTCP, HS-TCP 
Smaller RTT 

•  Concave region 
Larger RTT 

•  Convex region 
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•  Concave regions is very desirable 
–  throughput does not decay as fast 
–  rate of decrease slows down as rtt 
Function                          is concave iff derivative             is non-increasing 

 not satisfied by Mathis model: 

 

•  Measurements: throughput profiles for rtt: 0-366ms 
–  Concavity: small rtt region 
     Only some TCP versions: 

•  CUBIC,  
•  Hamilton TCP 
•  Scalable TCP 

Not for some TCP versions: 
•  Reno 

–  These are loadable linux modules 

 

Desired Features of Concave Region 
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•  Ramp-up Phase 
–  throughput increases from initial value to around capacity 

e.g. TCP slow start, UDT ramp-up 
–          time trace of throughput during ramp-up 

•  Sustainment Phase 
–  Throughput is maintained around a peak value 

•  TCP congestion avoidance, UDT stable peak 

–          time trace of throughput during sustainment 

Generic Transport Model 
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Boundary Case 

time 

C

RT
ST

ramp up sustainment 

loss event 

( )S t Cθ =
( )tθ

link capacity 
reached 

OT

increases with 

Average Throughput: Monotonicity 

[ ]1

R O R
O R S

O O

R R S R

S R S R

T T T
T T

f f

f

θ θ

θ θ

θ θ θ

⎡ ⎤−
Θ = + ⎢ ⎥

⎣ ⎦

= + −

⎡ ⎤= − −⎣ ⎦

decreases with 

+
τ

τ



Multiple TCP Streams and Large Buffers 
Both provide higher throughput and expanded concave region 

•  Increase in average throughput: STCP over 10GigE 

•    

•  Expanded Concave Region:  Hamilton TCP: 10 flows  over OC192 

1GB socket 
buffer 

1GB socket 
buffer 

256MB 
buffer 

256MB 
buffer 

244KB 
buffer 

244KB 
buffer 



decreasing function of 

Concavity: Faster than Slow Start – Multiple TCP flows 

Faster than Slow Start: 

Average Throughput:  
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Average Throughput:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

R O R
O R S

O O

S R R S

T T T
T T

f

τ τ
τ θ τ θ τ

θ τ τ θ τ θ τ

−⎡ ⎤
Θ = + ⎢ ⎥

⎣ ⎦

⎡ ⎤= + −⎣ ⎦

Effective sustained phase:  ( ) ( )S Rθ τ θ τ>

Ineffective sustained phase:  

monotonically decreases in  τ

( )Rf τ( )Sθ τ

( ) ( )S Rθ τ θ τ<

( )O τΘ

may increase in  τ( )O τΘ

If            decreases “faster” than  ( )Rf τ ( )Sθ τ

Some UDT measurements show this behavior 

Monotonicity Conditions: Not always decreasing in τ

may lead to: 
•  lower throughput 
•  convex region  



Poincare Map 
Well-Known tool for analyzing time series – used in chaos theory 

•  Poincare map 
–  Time series: 
–  generated as  

•  Effect of Poincare map:  
–  range specifies achievable throughput 

–  complexity indicates rich dynamics – lower throughput and narrow concave 
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•  low throughput 
       next slide 



Lyapunov Exponent: Stability and Concavity 
•  Log derivative of Poincare map 

•  Provides critical insights into dynamics 
–  Stable trajectories: 
–  Chaotic trajectories: 

•  indicate exponentially diverging trajectories with small state variations 
•  larger exponents indicate large deviations  

–  protocols are operating at peak at rtt 
–  stability implies average close to peak - implies concavity  
–  positive exponents imply lowered throughput – trajectories can only go down  

»  then, weak sustainment implies convexity 
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XDD: host-to-host file transfer tool 

•  XDD started as a file and storage benchmarking toolkit 
–  storage tuning options 

•  Added a network implementation, python frontend, multi-host 
coordination, and NUMA tuning options 
–  multiple NIC’s from a single process for “better” storage access 

•  xddprof: sweep relevant tuning parameters 
–  identify storage parameters to align with network performance profiles 

xddmcp: Composing host-to-host flows 
•  Network and storage tuning optimizations aren’t always complementary 

–  network may prefer high number of streams 
–  storage may prefer lower thread counts 

•  Leverage profiling information to understand performance 

•  Identify compatible network and storage parameters 



ORNL Testbed: nfs, xfs and lustre file systems 
 

Peak IO rates: xddprof on hosts  
nfs: ~2Gbps 
xfs: ~40 Gbps  
lustre: ~32 Gbps 

Peak n/w throughput: iperf 
TCP: > 9Gbps  
UDP/T: > 8Gbps 
for 0ms rtt  
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TCP CUBIC and xfs 
•  xddmcp host-to-host file transfers: peak: 10Gbps  

xdd file IO throughput is close to TCP throughput 
•  8 IO threads and 8 TCP parallel streams 
•  Impedance mismatch is quite small 
 

8 threads 8 threads 

memory 
10Gbps xfs write 

10Gbps 



Average Throughput: lustre, xfs 
8 streams: lustre throughput is lower compared to 1 stream 

memory:   
10 Gbps 

 

lustre: 
2.3 Gbps 

 

xfs read:   
9 Gbps 

 

xfs write:   
10 Gbps 
8MB block 

 

 



xfs: write 
•  8 streams, 8MB blocks: 10Gbps 

1 stream 
5 Gbps 
 

1 stream 
4 Gbps 
 

8 streams 
10 Gbps 
 

8 streams 
4 Gbps 
 

Smaller 8MB blocks for higher throughput 



Best Case: Lustre default IO 
4 streams – 2 stripes: 7.5 Gbps 

Computational Research and 
Development Programs 

•  2 stripes provide higher throughput 

2 stripes 
7.7 Gbps 

8 stripes 
7.2 Gbps 

read                 write 



Best Case with direct IO 
•  8 threads – 8 stripes : 8.5Gbps 

8 stripes provide higher throughput by 1Gbps over default IO best  case 

read                 write 



d-w Method 
•  Joint file I/O and network transport parameters for peak rate  

–  Deriving them from full-profile takes months of measurements 
–  Statistical variations are significant – gradient estimate is noisy 

•  Developed a Depth-Width or - method 
–  exploits overall unimodality: throughput vs. number of streams 
–  stochastic gradient search method: using  repeated measurements over 

window 
•  Result: Identified peak configurations: 

–  97% of peak transfer rate for XFS and Lustre  
–  probing 12% of parameter space – days vs. months for full profile 

d-w algorithm 
•  initialization: start with largest number of flows 

•  repeat until halting criterion:  

–  jump over a 𝑤-sized window for new probing configuration (different number of flows) 
–  compute maximum throughput of 𝑑 collected measurements at current configuration 

•  halting criterion: 
–  maximum throughput decreases for two consecutive iterations 



d-w Probing XFS Write 
Confidence Estimate: fraction of 700 configurations  conducive to d-w method  



Conclusions 
Contributions 

–  Collected extensive transport measurements over dedicated connections 
•  Multiple TCP variants and UDT: new insights 

–  concave region of throughput profile 
–  rich dynamics: complex Poincare map and positive Lyapunov exponents 

–  Developed throughput model  
•  simple enough not to require detailed protocol parameters 
•  still explains the basic qualitative 

–  concavity analysis 
–  Poincare Maps and Lyapunov exponents: link dynamics to profiles 

–  Applied for fine tuning  XDD file transfers 

Future Directions 
–  Detailed analytical models to explain concavity  
–  Automatic parameter optimization methods 
–  Differential methods:  

•  align analytical models with measurements 
•  capture difference and apply corrections 
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Thank you  
  Questions? 


